ON TESTING THE HYPOTHESIS THAT SUBMATRICES OF THE MULTIVARIATE REGRESSION MATRICES OF k POPULATIONS ARE EQUAL

TAKESI HAYAKAWA AND D. G. KABE*)

(Received Sept. 28, 1963; revised July 29, 1964)

1. Introduction and summary

Let $\prod_1, \prod_2, \dots, \prod_k$ be k normal p variate populations which are independently distributed. Let

$$\left[egin{array}{c} X_1^{(g)} \ Z_1^{(g)} \end{array}
ight], \ \left[egin{array}{c} X_2^{(g)} \ Z_2^{(g)} \end{array}
ight], \ \cdots, \left[egin{array}{c} X_{N_g}^{(g)} \ Z_{N_g}^{(g)} \end{array}
ight]$$

denote N_g independent samples from the gth population \prod_g , where $X_{\alpha}^{(g)}$ and $Z_{\alpha}^{(g)}$ are vectors of observed and fixed variates, respectively. The relation between $E(X_{\alpha}^{(g)})$ and $Z_{\alpha}^{(g)}$ for the α th sample of the gth population is given by

$$E(X_{\alpha}^{(g)}) = B_g Z_{\alpha}^{(g)}$$
 $(\alpha = 1, 2, \dots, N_g, g = 1, 2, \dots, k),$

where B_q is a $p \times q$ matrix. Partitioning B_q into two parts

$$B_{q}=(B_{q_1}B_{q_2}), \qquad q=1, 2, \cdots, k,$$

where B_{g1} is a $p \times q_1$ matrix and B_{g2} is a $p \times q_2$ matrix $(q = q_1 + q_2)$, we consider the hypothesis

$$H: B_{11}=B_{21}=\cdots=B_{k1} \ (=B_1^o)$$

and derive the likelihood ratio criterion and its distribution.

It is known that the likelihood ratio criterion is distributed as a ratio of central Wishart distributions with N-kq and N-kq degrees of freedom in the case where B_1^o is a known matrix. In this paper we consider the case where B_1^o is an unknown matrix. We assume that all the k populations have the same covariance matrix Σ . First we introduce the following matrix notations:

^{*)} Editorial remark: Kabe and Hayakawa obtained these results independently and due to editorial convenience the results were combined and published as a single paper.

$$egin{aligned} X^{(g)} = & [X_1^{(g)}, X_2^{(g)}, \, \cdots, \, X_{N_g}^{(g)}] & (p imes N_g), & (g = 1, \, 2, \, \cdots, \, k) \ X = & [X^{(1)}, \, X^{(2)}, \, \cdots, \, X^{(k)}] & (p imes N), & N = \sum\limits_{g = 1}^k N_g, \ Z^{(g)} = & [Z_1^{(g)}, \, Z_2^{(g)}, \, \cdots, \, Z_{N_g}^{(g)}] & (q imes N_g), \ & = & \left[egin{aligned} Z_1^{(g)}, \, Z_2^{(g)}, \, \cdots, \, Z_{N_g}^{(g)}, \, Z_{N_g}^{(g)}, \, \cdots, \, Z_{N_g}^{(g)}, \, Z_{N_g$$

where $Z_1^{(g)}$, $Z_2^{(g)}$, and $Z^{(g)}$ have ranks q_1 , q_2 and q_3 , respectively,

$$egin{aligned} m{Z} = & [m{Z}^{(1)}, m{Z}^{(2)}, \, \cdots, \, m{Z}^{(k)}] & (q imes N) \ = & \left[m{Z}_1 \ m{Z}_2 \end{array}
ight] = & \left[m{Z}_1^{(1)}, \, m{Z}_1^{(2)}, \, \cdots, \, m{Z}_1^{(k)} \ m{Z}_2^{(2)}, \, \cdots, \, m{Z}_2^{(k)} \end{array}
ight] & (q_1 imes N) \ (q_2 imes N), \quad q = q_1 + q_2 \end{aligned}$$

where Z_1 , Z_2 and Z have ranks q_1 , q_2 and q, respectively. We shall assume that $N_q \ge p + q$ for all q.

2. The maximum likelihood estimates

Suppose that $\{X^{(g)}\}$ are k independent observation matrices and $\{Z^{(g)}\}$ are k known matrices. Since $\{X_{\alpha}^{(g)}\}$ are independently distributed according to $N[B_gZ_{\alpha}^{(g)}, \Sigma]$, the likelihood function of B_1, B_2, \dots, B_k and Σ is

$$L(X) = \prod_{g=1}^{k} L(X^{(g)})$$

$$= \frac{1}{(2\pi)^{(1/2)PN} |\Sigma|^{(1/2)N}} \exp\left\{-\frac{1}{2} \operatorname{tr} \Sigma^{-1} [X - (B_1 Z^{(1)}, B_2 Z^{(2)}, \cdots, B_k Z^{(k)})] \right\}$$

$$\cdot [X - (B_1 Z^{(1)}, B_2 Z^{(2)}, \cdots, B_k Z^{(k)})]' \right\}.$$

Let \widehat{B}_{q}^{ρ} $(g=1,\dots,k)$ and $\widehat{\Sigma}_{\rho}$ be the maximum likelihood estimates of B_{q} $(g=1,2,\dots,k)$ and Σ over the entire parameter space. Then we have

$$\hat{B}_{g}^{o} = X^{(g)} Z^{(g)'} [Z^{(g)} Z^{(g)'}]^{-1} \qquad (g=1, 2, \dots, k),$$

$$N \hat{\Sigma}_{o} = \sum_{g=1}^{k} X^{(g)} [I_{N_{g}} - Z^{(g)'} (Z^{(g)} Z^{(g)'})^{-1} Z^{(g)}] X^{(g)'},$$

where I_{N_g} is the $N_g \times N_g$ identity matrix. Let

Then, we can represent $N\hat{\Sigma}_{\varrho}$ as

$$N \hat{\Sigma}_{\rho} = X(I_N - A)X'$$

where I_N is the $N \times N$ identity matrix. Concerning this A, we have $A^2 = A$, that is, A is an idempotent matrix, and rank $A = \operatorname{tr} A = kq$. Further, it is known that X(I-A)X' is distributed according to the central Wishart distribution with N-kq degrees of freedom, [1]. Now we estimate B_q and Σ under the hypothesis H. The likelihood function is written as

$$L(X) = \frac{1}{(2\pi)^{(1/2)PN} |\Sigma|^{(1/2)N}} \cdot \exp\left\{-\frac{1}{2} \operatorname{tr} \Sigma^{-1} [X - B_1^{\circ} Z_1 - (B_{12} Z_2^{(1)}, B_{22} Z_2^{(2)}, \cdots, B_{k2} Z_2^{(k)})] \cdot [X - B_1^{\circ} Z_1 - (B_{12} Z_2^{(1)}, B_{22} Z_2^{(2)}, \cdots, B_{k2} Z_2^{(k)})]'\right\}.$$

Let $\hat{B}_{1}^{o\omega}$, \hat{B}_{g2}^{ω} $(g=1, 2, \dots, k)$ and $\hat{\Sigma}_{\omega}$ be the maximum likelihood estimates of B_{1}^{o} , B_{g2} $(g=1, 2, \dots, k)$ and Σ in the parameter space restricted by the null hypothesis H, respectively. Then we have

$$\hat{B}_{1}^{o\omega} = \sum_{g=1}^{k} X^{(g)} (Z_{1}^{(g)} P^{(g)})' A_{11.2}^{-1}$$
 ,

where

$$egin{aligned} &m{P}^{(g)} \!=\! m{I}_{N_g} \!-\! m{Z}_2^{(g)\prime} \!(m{Z}_2^{(g)} m{Z}_2^{(g)\prime})^{-1} m{Z}_2^{(g)}, \qquad (g \!=\! 1, 2, \cdots, k), \ &A_{11.2} \!=\! \sum\limits_{g=1}^k m{Z}_1^{(g)\prime} \!-\! (m{Z}_1^{(g)\prime} \!-\! (m{Z}_1^{(g)} m{Z}_2^{(g)\prime}) (m{Z}_2^{(g)} m{Z}_2^{(g)\prime})^{-1} (m{Z}_2^{(g)} m{Z}_1^{(g)\prime}) m{Z}_1^{(g)\prime}, \end{aligned}$$

and

$$\hat{B}_{g^2}^{\omega} = X^{(g)} Z_2^{(g)\prime} (Z_2^{(g)} Z_2^{(g)\prime})^{-1} - \hat{B}_1^{\sigma\omega} (Z_1^{(g)} Z_2^{(g)\prime}) (Z_2^{(g)} Z_2^{(g)\prime})^{-1}, \qquad (g=1, 2, \cdots, k),$$

and

$$\begin{split} N \, \widehat{\Sigma}_{w} = & X X' - [\sum_{g=1}^{k} X^{(g)} (Z_{1}^{(g)} P^{(g)})'] A_{11,2}^{-1} [\sum_{g=1}^{k} X^{(g)} (Z_{1}^{(g)} P^{(g)})']' \\ & - \sum_{g=1}^{k} X^{(g)} Z_{2}^{(g)} / (Z_{2}^{(g)} Z_{2}^{(g)})')^{-1} Z_{2}^{(g)} X^{(g)}. \end{split}$$

Here we assume that rank $A_{11.2}=q_1$. It can easily be seen that \hat{B}_1^{o} and \hat{B}_{g2}^{o} are unbiased estimates of B_1^{o} and B_{g2} , respectively. Let

$$B = [Z_1^{(1)}P^{(1)}, Z_1^{(2)}P^{(2)}, \cdots, Z_1^{(k)}P^{(k)}]'A_{11,2}^{-1}[Z_1^{(1)}P^{(1)}, Z_1^{(2)}P^{(2)}, \cdots, Z_1^{(k)}P^{(k)}]$$

$$(N \times N),$$

and

$$C = \begin{bmatrix} Z_{2}^{(1)\prime} (Z_{2}^{(1)} Z_{2}^{(1)\prime})^{-1} Z_{2}^{(1)} \\ Z_{2}^{(2)\prime} (Z_{2}^{(2)} Z_{2}^{(2)\prime})^{-1} Z_{2}^{(2)}, & 0 \\ \vdots & \vdots & \vdots \\ 0 & \ddots & \vdots \\ Z_{2}^{(k)\prime} (Z_{2}^{(k)} Z_{2}^{(k)\prime})^{-1} Z_{2}^{(k)} \end{bmatrix} (N \times N)$$

Then we see that $B^2 = B$, $C^2 = C$ and rank $B = \text{tr } B = q_1$, rank $C = \text{tr } C = kq_2$. We can write $N\hat{\Sigma}_{\bullet}$ as

$$N\widehat{\Sigma}_{\alpha} = X(I_N - B - C)X'$$
.

It is easily seen that $N\hat{\Sigma}_{\omega}$ is invariant for change of location

$$Y=X-E(X)=X-B_1^oZ_1-(B_{12}Z_2^{(1)},B_{22}Z_2^{(2)},\cdots,B_{k2}Z_2^{(k)}).$$

 $Y(p \times N)$ is distributed according to

$$\frac{1}{(2\pi)^{(1/2)PN}|\Sigma|^{(1/2)N}}\cdot\exp\left\{-\frac{1}{2}\operatorname{tr}\Sigma^{-1}YY'\right\},$$

and we have

$$N \hat{\Sigma}_{\alpha} = Y(I_N - B - C) Y'.$$

3. The distribution of $N \, \widehat{\Sigma}_{\omega}$

We now prove that $N\hat{\Sigma}_{\omega}$ is distributed according to the central Wishart distribution with $N-kq_1-q_1$ degrees of freedom.

1°.
$$YCY' = \sum_{g=1}^{k} Y^{(g)} Z_2^{(g)} (Z_2^{(g)} Z_2^{(g)})^{-1} Z_2^{(g)} Y^{(g)}$$

Since $Z_2^{(g)}Z_2^{(g)\prime}(q_1\times q_2)$ has rank q_2 , there exists a non-singular matrix $F^{(g)}$ such that

$$F^{(g)}(Z_2^{(g)}Z_2^{(g)\prime})F^{(g)\prime}=I_{q_2}$$

Let

$$E_3^{(g)} = F^{(g)} Z_2^{(g)} (q_2 \times N_g), \qquad (g=1, 2, \dots, k).$$

Then

$$E_3^{(g)}E_3^{(g)\prime}=F^{(g)}Z_2^{(g)}Z_2^{(g)\prime}F^{(g)\prime}=I_{q_2}.$$

Let

Then

$$E_3E_3'=I_{kq_0}$$

By using $E_3^{(g)}$'s, we can represent C as

2°.
$$YBY' = Y[Z_1^{(1)}P^{(1)}, Z_1^{(2)}P^{(2)}, \cdots, Z_1^{(k)}P^{(k)}]'A_{11,2}^{-1}[Z_1^{(1)}P^{(1)}, Z_1^{(2)}P^{(2)}, \cdots, Z_1^{(k)}P^{(k)}].$$

Since rank $A_{\scriptscriptstyle{11.2}}=q_{\scriptscriptstyle{1}}$, there exists also non-singular matrix R such that

$$RA_{_{11.2}}R'=I_{q_{_{1}}}.$$

Let

$$E_1=R[Z_1^{(1)}P^{(1)}, Z_1^{(2)}P^{(2)}, \cdots, Z_1^{(k)}P^{(k)}] (q_1\times N).$$

Then

$$E_2E_2'=RA_{11.2}R'=I_{q_1}.$$

We also have

$$B=E_2'E_2$$

and

3°. Thus, $E_{23} = \begin{bmatrix} E_2 \\ E_3 \end{bmatrix}$ $((kq_2+q_1) \times N)$ has (kq_2+q_1) orthogonal rows such that $E_{23}E'_{23} = I_{kq_2+q_1}$. It is possible to find a $(N-kq_2-q_1) \times N$ matrix E_1 such that $E = \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}$ is orthogonal ([1], p. 225, equation (12)).

$$Y=[U_1, U_2, \cdots, U_N]E=UE.$$

Then

Now, let

$$\begin{split} N\widehat{\Sigma}_{\omega} &= UU' - U \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix} E_2' E_2 [E_1' E_2' E_3'] U' \\ &- U \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix} E_3' E_3 [E_1' E_2' E_3'] U' \\ &= UU' - U \begin{bmatrix} 0 & 0 & 0 \\ 0 & I_{q_1} & 0 \\ 0 & 0 & 0 \end{bmatrix} U' - U \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & I_{kq_2} \end{bmatrix} U' \\ &= \sum_{\alpha=1}^{N} U_{\alpha} U_{\alpha}' - \sum_{\alpha=N-kq_2-q_1+1}^{N-kq_2} U_{\alpha} U_{\alpha}' - \sum_{\alpha=N-kq_2+1}^{N} U_{\alpha} U_{\alpha}' \\ &= \sum_{\alpha=1}^{N-kq_2-q_1} U_{\alpha} U_{\alpha}'. \end{split}$$

Here U_{α} is distributed according to $N[0, \Sigma]$ and independently of U_{β} $(\beta \neq \alpha)$. Therefore $N\widehat{\Sigma}_{\alpha}$ is distributed according to the central Wishart distribution with $N-kq_2-q_1$ degrees of freedom.

4. The likelihood ratio criterion

By the preceding consideration, under the null hypothesis, the likelihood ratio criterion λ is given by

$$\begin{split} V &= \lambda^{2/N} = \frac{|N \, \widehat{\Sigma}_g|}{|N \, \widehat{\Sigma}_o|} = \frac{|Y(I-A) \, Y'|}{|Y(I-B-C) \, Y'|} \\ &= \frac{|Y(I-A) \, Y'|}{|Y(I-A) \, Y' + Y(A-B-C) \, Y'|} \, . \end{split}$$

It is easily seen that A-B-C is an idempotent matrix. Now, we apply theorem 1 of Hogg's [2] to

$$Y(I-B-C)Y' = Y(I-A)Y' + Y(A-B-C)Y'$$

where Y(I-B-C)Y' and Y(I-A)Y' are distributed according to the central Wishart distribution with $N-kq_2-q_1$ and N-kq degrees of freedom, respectively, and A-B-C is positive semi-definite. Then we see that Y(A-B-C)Y' is distributed according to the central Wishart distribution with $(k-1)q_1$ degrees of freedom, independently of Y(I-A)Y'. Thus $\lambda^{2/N}$ is a U-statistic such that $U_{p\cdot(k-1)q_1\cdot N-kq}$ is distributed as $\lambda^{2/N}=\prod_{i=1}^p X_i$, where X_i has the beta density $\beta(x; \frac{1}{2}(N-kq+1-i), \frac{1}{2}(k-1)q_1)$, and X_1, X_2, \dots, X_p are independent with each other, [1].

Although we have treated the aspect of testing submatrices, the testing of matrices follows on similar lines, and to test the hypothesis $B_1=B_2=B_3=\cdots=B_k$, we have the criterion

$$\lambda_1^{2/N} = \frac{|YY' - YAY'|}{|YY' - YAY' + YAY' - YZ'(ZZ')^{-1}ZY'|},$$

whose distribution is that of $U_{p\cdot(k-1)q\cdot N-kq\cdot n}$

THE INSTITUTE OF STATISTICAL MATHEMATICS WAYNE STATE UNIVERSITY

REFERENCES

- T. W. Anderson, An Introduction to Multivariate Statistical Analysis, John Wiley, New York, 1958.
- [2] Robert V. Hogg, "On the independence of certain Wishart variables," Ann. Math. Statist., 34 (1963), 935-939.