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1. Introduction

In the statistical analysis of observations from multinomial distribu-
tion it is sometimes necessary to combine, or pool, two or more sets of
observations in order to estimate the probabilities involved.

Kastenbaum (1958) considered the pooling of incomplete samples,
while Watson (1956), Batschelet (1960), and Geppert (1961) considered
the pooling of truncated samples with complete samples. The purpose
of this paper is to give a generalized and somewhat simplified treatment
of the estimation problem for the multinomial distribution.

First we shall reformulate the problem as considered by the last
three authors mentioned above and shall discuss the main properties of
the maximum likelihood estimates. Then, in section 8, we generalize
the problem, no longer requiring the presence of a complete sample.
The main objective will be to find necessary and sufficient conditions
for the parameters to be estimable. Finally, in section 4, we study
“nested” and ‘‘chained’’ samples. Here explicit formulas for the
estimates are available.

2. Formulation of the problem and its maximum likelihood solution

Suppose a multinomial distribution with a finite number of cells, in
which individuals are observed. A sample covering all cells is called a
complete sample, and we denote the sample space, that is the set of all
cells, by 2,. We also consider a truncated sample which is observed in
a subset 2, of 2,.
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Let p; be the probability in ith cell for a complete sample space
£2,, where > p,=1. Then the conditional probability for a truncated
2
sample is given by p,/> p, for 1€ 2,. Let n{® be the frequency for the
2

tth set of observations, t=1, 2. Since 3 p,=1, we assume that a special
2}

probability p, in 2,N%; is linearly dependent on the other p.’s.
With this notation the likelihood function L, is given by

NN (|
21 L= 1 1V3 i P\
2.1) ST e 2P s

2 249 2q

where N;=31n{® and N,=3n® .
.Ql -QR

We then have the following theorems.

THEOREM 1. The likelihood estimates of the p.’s are given by

(2.2) f’i=ngl)/N1 Jor 1e2,N%
(2.3) f)iz(ngl)+ngn))/Nl(1+ 21\::9) ) for 1€ 9,.
§2:

This theorem is directly obtained by solving the maximum likeli-
hood equations and is also a special case of the results in Batschelet
[1960] and Geppert [1961].

THEOREM 2. All of the estimates defined by (2.2) and (2.3) are un-

biased, conmsistent and jointly sufficient. And their variances and co-
variances are as follows:

(2.4) Vipi}=p(1—p)/N, Jor 1e2,n8,

) b} ="Li(1—p, N D _ 4
@5 Vibl=R-p)+; zpi<gzpi )
2

$2e
L Nl—.__I (M () "1}
s e ) £ UL
for ief,.

(2.6) Cov{pd,;} = —p:p;/ Ny for i#3, 1,j€N%,



ESTIMATING MULTINOMIAL PROBABILITIES 3

2.7 Cov{pp,} =—-PPs 4 Nypip,
(2.7) {D:0,} N N}(% o)
2

N, N,
X {1— —’—( 1) " "z}
> Nt N,—n, \ M (Ql%}.();pi) (% 1)
fO’r iij; i’jE'Q2!
(2.8) Cov{dp,} = —p:p;/ N Jor 1€y, jen;,

where n,= > n®.
Qlﬂ.Q;

In general, the superiority of estimates obtained by using combined
data is that they have smaller variances and also smaller covariances
than estimates obtained by neglecting such combined data. The differ-
ences in values of variance and of covariance are expressed by the
second term of the right-hand-side of (2.5) and of (2.7), respectively.

PROOF.

(i) Unbiasedness. The unbiasedness of p, for e £2,N2% follows
obviously from (2.1) and (2.2).

Now, in order to show the unbiasedness of P, for 7€, let us
study the likelihood function L, in (2.1), which is based on the product
of two separate multinomial distributions; that is, one ordinary multino-
mial distribution and a conditional multinomial distribution. Using this
fact, let us introduce the following function.

Z n
<> {2 p}a,no;
)|
(2 9) L — M ! (Nl""'%2 'ni ) . angg 1 (nSX)"_”S:))
T S S0 TP+ (el e
N [ [ %
where
(2.10) 5 5 L1

2
(2,50, TaD)(eee, D, -0
ounes Tt =t
5 #O=N1, 3 (5 #P)=Na+ 5 n{d
1 2y ¢ §29
which is a modified form of L, over different summations and which

in effect simplifies the underlying calculation.
Hence the expectation of p, for i € 2, is expressed by

2
- {33 n0)

NN+ n) L

(2.11) E{p}=33 for 1€ 2,
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and the main part concerning summations becomes equivalent to (2.10)
in case we put N/=N,—1 and {3 »P}={2n}—1. Thus we obtain
2 2

the unbiasedness.
(ii) Variances and covariances. To prove (2.4) and (2.6) we have
to calculate the following expectations :

(2.12) E{p}=p:— 1{’;1+ 1{’, for i€ 2,02,

(2.13) E{pp)=2 1p,p, for i%j, 1,j€QN%,

and we obtain immediately (2.4) and (2.6) since each p, is unbiased.
In order to get (2.5) and (2.7) we have to make use of the func-
tion (2.9) instead of (2.1).

(Z 1)

0 (2 ’ @ __ : (ty
@14 BpI=X3 jmnt +2 o (GO w D+ L

LN Ny a1 (N (s oyt
(1 R 207 T D 3 )  p
p P N5y 1 (VoD (D prcgpre forico.

N, N N+, ny ! (n,—1) ! 0

(E n‘”)“(Z n“))(Z‘. ny’)

2.15
( ) E{ptpj} >3 N?(M"‘% ndy

N, pop
=(1— 1 _ PPy
(15 pot 3 B

% {1_27\,%( >(QI§ PSS pf)"z}

and V{d}=E{) -0}, Cov{pd;}=E{pDd,;,} —p:p; for i#j, ,5€2,.

The result given by (2.8) is obtained by applying both formulas
(2.1) and (2.9) in the following way :

nP (0 nP)(S )
2

(2.16) E{pp} =,Q 292 NN+ ;/_I: n{d) L,

1,
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(P +nP)(S )
29

=p;>2 > N(N,+ 3> n$d) L;,
2,

where L] denotes an expression obtained from L, by replacing N, with
N,—1 and > n{® with 3 n{®—1, and then

Q1DQ§
2.17) Epp)="lpp, sy =21y,
N1 Nl

for ’&.E.Qg, ngln‘Q;!

where LY is obtained from L, by replacing N;, > n{® and %“, n{® with
Qlﬂ.Qg p]

N,—2, S n®—1and 3 n®—1, respectively. Thus we obtain (2.8) from
0N 2
Cov{p.p,}=E{D:D;} —p:p;-

(iii) Consistency and sufficiency. Consistency is evident since the
estimates are unbiased and the variances and covariances tend to zero
if N>oo.

The likelihood function L, can be expressed as a function of the
estimates p,’s and the parameters p,’s only. This will prove the sufficiency
of the estimates.

Finally, the set of sufficient statistics given by (2.1) can be mapped
to the present estimates in a unique way. This completes the proof of
theorem 2.

Now we want to know whether or not the estimates, p’s, are
efficient. For this purpose we need the information matrix in R. A.
Fisher’s sense.

THEOREM 3. The information matrix of our estimates is given by
the following elements.

(2.18) o“'=N1< 1 —i) for i#0, i€ 2N,
Y Do
. N4N, N N,
(2.19) o.u= 1 2 __ 1 2
D Do = D:)!
£
Jor i#j3, 1, 3#0, 1, € 2N,
(2.20) gt =D for i€,
Do
N, N,

(2-21) O'ij: fO’r i:#j’ 7:’ j € Qz ’

Do B = p)
24



6 CHOOICHIRO ASANO

(2.22) a”=a”=——l:—‘ for i#0, i€ QN jEQ,.
0

PROOF. o¢% is defined to be ¢'/=—E{d'log L/opdp;}. The calcula-
tions are straightforward and need no special explanation. However,
we replaced the probability p, of a special cell in 2,N25 by 13V,
where >/ denotes the sum over all p,’s except p,.

Now we are goirig to compare the information matrix with the in-
verse variance-covariance matrix. Formulas (2.4) through (2.8) provide
the elements of the variance-covariance matrix related to all p,’s ignor-
ing p,. The inversion of this matrix is laborious but it is easy to see
that the elements do not correspond to the elements of the information
matrix. From this we conclude that the estimates are not efficient.

3. Generalization of the problem

Assume that we are given ¢ samples which are truncated in differ-
ent ways. To each sample we associate a sample space 2,, i=1, 2, ---, t.
For each 2; we denote the probability of the jth cell by 2%, j=1, 2, ---k,.
In a similar way n$’ denotes the observed frequency of this cell. Values
of n{”’s are stochastically independent for different values of i. We
assume that each sample space has at least one cell in common with
some other sample space. Furthermore, without loss of generality, we
assume ;%2 if i#4. If this were not true we could simply combine
the #'th observations into a single space £2,.

We consider a decomposition {w,} of OQi which is such that w, N w,
i=1
=¢ if u#u’. Such a decomposition is {w,}={ rfLQ{t}, where 7r,=0, 1,
i=1
t
subject to the condition 1<>) r;<t, and where 2:=9, and 2:=2¢. Thus,
i=1

for t=2, {,}={2.N 2, 25N, 2,N2;}. Under these conditions, number
of w,’s, M, is such that t+1<M<20—1.
We thus have

M t t
(3.1) Nw.=3 NG=UR(=9),
u=1 ri=o, 1 i=1 i=1
1=Zr; <t

with o,Ne,=¢ when u#w'
Now we wish to indicate explicitly what value u takes for each w,

that falls in 2, for any %, 1=1,2, ---,¢t. To do this, we can show
that each £, will contain at most 2! such ,’s so that
3.2) u=1,2, ..., ;<21 for 1=1,

while
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(3.3) w=h,+1, hy+2, -+, hy+h;<h,+2:2 for 1=2.
In general, for i=1,2, --., ¢,
i-1 i-1 i1
(3°4) U=72 hk+11 Ehk+21 Tty Ehk"l'hip
k=1 k=1 k=1

where h,<2"* and h,=0.
Now let p..’s, v=1, 2, ---, l,, be the probabilities associated with

lll
the cells in an arbitrary o, of our decomposition. Let P,=3 p,,, where
v=1

M M
> P,=1. Hence, we have >l,—1 parameters to be estimated. Since
u=1 u=1

maximum likelihood estimation is invariant, we may, and indeed shall,
assume that P, is a linearly dependent parameter. Here we denote

l“ ki
(3.5) nG=nP | 2,Dw,37), nﬁ"svgl ng), N; —EE ng,

where the subscript of » of »n{) is denoted the newly-defined number of
cell in o, instead of the j of n{.

Thus we obtain under the foregoing conditions the following general
result.

THEOREM 4. Estimates of the p,’s are obtained from the combined
sample as follows :

2 ,n(l)
(3'6) f’utr:%m;—g)pu
{fI.Q:Dwu}
where u=1,2, ---, M<2'—1 and v=1, 2, ---, l,, and where
3.7) P=1—-31P,
u=2

and P,, P,,, .-+, Py are obtained as the solutions of the followmg M—1
szmultaneously equations :

ny N ]_ —1.2 ...
(3.8) S [ s S |=0 fru=t M.
{#12:Dewu} ¢
{{12:Dwu}
PROOF. The likelihood function L, is given by
¢ o)
IR\ ¢ PP /
39  L=—*= T | —
T T 29! =1 {j|%2i3 7} 92 D
=1 {125} {712:3 7}
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Using the notation introduced in (3.5), (3.9) can be rewritten as follows :

: ¥

3.10 L,=const. T I [—Joﬁ]
(8.10) y=const. [] {u|!2;[lwu} 1 > P,
{uIQiD(I)u}

We then obtain

(3.11) 1ogL1=log(const.)+$j[ >3 Zunﬁ?{logpuu—log(( >3 Pu)}]

=1L {|Q2: Dwu} ?=1 %|Q2: Dou}
and
(3.12) olog Ly _ [”bffv’ _ N; ]zo,
0Puo ({12 Dwu) L Duv > P,
{ul.Qz Dwu}

The likelihood function for P,’s is
N

(3.18)  Ly=— = P

t
@)y =H{uliDwu)
I 1 »d! ‘ (125D wu)

.
\

dlog L, _ [nff.) N; ]

3.14 — = - =0

(3.14) opP, ({12>wu) L P, > P,
{u|Qtiu,}

for u=2,3, ---, M,

which is the same as (3.8).

Combining (3.12) and (3.14), we obtain the simple formula (3.6)
given in theorem 4. (Q. E.D.)

In general, as ¢t increases, the solution of (8.6) becomes more com-
plicated. However, the estimates, P,’s, u=2,38, ---, M, can be obtained
by iterative solutions of maximum likelihood equations as indicated
below.

Let the solutions be P,, 133, cee, PM. Let Py, Py, ---, Py be approx-
imations to Pg, f’s, cer, Py, respectively, obtained in any manner. An

easy procedure for obtaining such approximations is to neglect any
combination of observations and take as our approximations the frequency
ratios of @, in 2.

Now by the Taylor-Maclaurin expansion, to the first order of small
quantities, improved values for the estimates will be

(3-15) P22=P21+5P21, 1332=P31+51331, Tty PMEZPM1+5PM1 ’

where the increments 5132,, b‘Pﬂ, cen, SPM are the solutions of
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-~ ~ 2
(3.16) olog Ly | ;p, gLy 4 < 5p, Flogly _
oP,, 0P, = oP,0P,,

for u#7, u=2,3, ---, M.
To indicate the first estimates of p, and p;, we write p,, and p;
after differentiation, and further each term of (3.16) is given as follows:

oP,, {92l L P, 3P,
(0P, El9w} L P2 (32 P,y
(3.19) Flogly . sv N g je@suw,
a-Pu,la-le {l I‘Qt 24, ]} (2 -F.u,l)z
@20  Plogli for j¢ (2> u).
aPulanl

An iterative process may be based on the M—1 equations given in
(8.16), replacing P, 15,1 by P, P,, and solving for increments 6P,,, P,

and so on, until a satisfactorily close approach to P, 13_,- is achieved.
Thus we obtain the individual estimates of p,, by applying (3.5).

THEOREM 5. A mecessary and sufficient condition for the p; to be
estimable is that every sample space has at least one cell in common with
some other of the sample spaces involved. (In other words, it is the con-
dition that each sample space somewhere overlaps another sample space.)

PROOF. The reader should feel that this theorem is natural. To
prove the necessity, suppose that ¢ sample spaces are given and are sep-
arated to s connected spaces in a sense of overlap. Let a total number
of their cells be k. Then, since the sum of the probabilities in cells
becomes one, k—1 probabilities must be linearly independent. Suppose,
on the other hand, we are given s parameter spaces, each of which
corresponds to one of the s connected sample spaces. Then the number
of linearly independent parameters in each parameter space is less by
one than the number of cells in the space. Hence, there exist, at most,
k—s linearly independent parameters altogether. So we have s—1 de-
grees of freedom to estimate the probabilities and cannot obtain uniquely
the k parameters. From this, we conclude that s should be 1.

To prove the sufficiency, let us use the above notation. If s=1,
then we actually showed the possibility of estimating all p,,’s in theorem
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4. From this, we can conclude to the sufficiency of the estimates.

(Q.E.D.)

4. Some particular generalizations

As corollaries to theorem 4, we now give explicit estimates of the
Pu’s for some special cases.

4.1 Nested case. Let us consider the case in which the observation
space is such that
QEQnggD "' . DQ; .

In this case we shall refer to the sample spaces as ‘‘ nested ’’. This is
a generalization of the case considered in section 2.

£ T 8

2
i
£
i

-1+

47

Fig. 1. The combination of contingency tables

17
In this case, the decomposition {w,} of _L_JlQi can be defined by

t

¢
“4.1) 2 w,= gl(gingi+l)=g ’

u=1

where 2;,, =2 and the values of u and ¢ are the same. Let p,,’s, v=
1,2, .--,1, denote the probabilities associated with the cells in o,.
Then we obtain the following result.

COROLLARY 1. For al vew,, u=1,2, ---,t, the following explicit
expression for the maximum likelthood estimate of p,, is obtained from
the combined samples :

> nuv
(4.2) Puv=— e
jz;’l =1 .
{I—E)‘? prv}

r

where v, =¢, D=0, and n,, and n$’ are defined in section 4. Further-
more, these estimates are umbiased, consistent and jointly sufficient.

Indeed, we can obtain the explicit estimates of »,,’s by applying
successively the above formula (4.2) starting with w=1.
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For example, in case t=3, we get

4.3) Droy =T for v, € w,,
1
(4.4) ﬁ“”: n2v2 for Vy € Wy,
1 i
N1+ 2 5
%1
N {1- e
‘ N,
and
(4.5)
A _ nxv
pﬂva - (1 + n(v? + 3 ng?
(1)
N‘{l LS } 1-3 M > Mary
M 1 Nl N1 1 N1 2 1+ nS,? -
N, N, {1_2 Ny, }
fOI' Vs €Wy

The latter half of this corollary is proved in quite the same man-
ner as was theorem 2. However, the following functions are applied
in place of L, and L, as given by (2.1) and (2.9) respectively :

, N oD
o el
(4.6) ! _;D; ]Tnﬁ”!!);nai 21D

25314 925

(€]

5 n
N+ 3 af™™)! (3 p)

t-1 251N 82¢ 25N 82¢541
(4.7) L= Y i v
(e 3 e)! (3 p)Y
Q541 25N2°541 (7Y
% alh
N+ = i) 1 p. =
QN8 23
X
> P % i)
g3 Mm A" )1
(Y]

4.2 Chained case. Let us consider the estimation problem in which
the observation spaces are linked like a chain. That is,

Qingj¢¢: if j_——i_l, 7:, i+1 )

=g, ~ otherwise.
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This case is a generalization of Kastenbaum (1958) and the case is also
described in chapter 6 of Li (1961).

-Q'l’. ﬂt .21""

I

Fig. 2. The combination of contingency tables
Here we use double subseripts for the decomposition as follows :

0, =82,_,N%2,
4.8)

=80 —0,—w;,
wiaEQinQi+1 , for 7:=1, 2, ey t ,

where 2,=2,.,=¢.
Furthermore, let P,;’s be partial sums of p.,’s on o;;, then P,’s are
corresponding to P;;’s so that

21 t 3
u2=1 ZZP¢1=1.

i=1 j=1

il Mg
III

(4.9) é

where P, ,=P,_, ; for i=2, 3, ---, t. Now we denote nj,=> n’. Then
“gn
we obtain the following corollary 2 from theorem 4. !
COROLLARY 2. For all vew,, =1, 2, ---, 2t—1, the following ex-
plicit expression for the maximum likelihood estimate of Du. 18 obtained
from the combined samples :

3o

T

(@10 P TS w
(1124 Swu)
while
A * 1
(4.11) P= 2; - ,
! 1 topk ;l—:l;n;cka(n;kz‘l‘ n;‘;)
+"22 N, o %
T[ N1

k=2



(4.12) P=P, ;.= e
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i—1 i
11 ni&nd ) 11 ni
k=2 k=2

\ nE(mE+ny)

N sy ke
n;’; g=2 g *
i

for u=2, 8, .-+, 2%t—1, t=i=2, j=1,2,3.

These estimates are also unbiased, consistent and jointly sufficient.

For example, in case t=2, we simply get

A nEn¥ 2 nEng

P 1— ’ P 2—
(4.13) ninS+nin 4+ ning ning+nifnd +ning

p3:1—131_p2 .

The proof of the latter half of this corollary may be omitted, be-

cause the principle is quite the same as before.
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