ON A MULTIDIMENSIONAL LINEAR DISCRIMINANT FUNCTION

TosIO UEMATU

1. Suppose that we want to assign any individual, drawn from a
mixed population consisting of s (=2) groups of individuals, to one of
these groups. If we want to use for this discrimination a linear dis-

. . - p
criminant function y=>3 a;x; of p measurements x,, x,, ---, x, about the
i=1

individual, we need the coefficients {a,} of this function. These coeffi-
cients are best if they are determined such that the resulting function
affords the maximum possible disecrimination as the linear function. But
to determine such coefficients will be impossible except for special cases.

An alternative way of determining the coefficients is the method of
maximizing the correlation ratio y*=g,%/s?, where ¢* is the variance of ,
and o,' is the variance of y between groups. This is the way which
was adopted by C. Hayashi in his quantification theory [1]. We can
generalize the above method in the following way. For the discrimina-
tion we use m (2=<m<p) linear combinations

p .
(1) yi=§awa}j, "/—_:1, 2, “',m,

instead of a single linear discriminant function. In order to determine
the coefficients {a;;}] we consider some measure of discrimination, which
is a generalization of 7* in some sense or other. We determine the co-
efficients so-as to maximize such a measure of discrimination.

2. In [2] C. Hayashi presented two measures which may be con-
sidered as generalizations of 7’. One of them is A=1—[0.}/¢"], where ¢*
is the generalized variance of y=(y,, ¥, *- -, ¥), and o,} is the generalized
variance of y within groups.

Now we define :

#(v) : the mean of y, within the vth group,
g,(v): the variance of y, within the vth group,
o,;(v): the covariance between y; and y, within the vth group

(1%£9),
;- the mean of y,,
o; : the variance of y,,
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o;;: the convariance between y, and y, (i1#J),

w,: the relative size of the vth group (;V_‘f r,=1),
#O)=(a(), (), <, pa(), p=(m, 1, -+, pra),
F=(0), B=(0,0)) Fo=( m(ul)—p) ()~ 1),

Z’,,,=1r12'1+n'52'2+ te '|‘7’-'.s2;'s=($l 71.',0”(1))) .

Then the above ¢* and o, are defined respectively as ¢'=|JY | and o=
|Z»|. Thus we have

(2) A=1—[a%/d"1=1—[| Z,]/| Z].
Alternatively we may choose the following measure :
(3) *=ald'=|2,|[| ¥ |,

where ¢,’=| 2, | can be interpreted (cf. [3]) as the measure of scatter
of s points p(1), g(2), ---, p(s) in an m dimensional space, multiplicity
of each point being taken into consideration according to the size of the
corresponding group.

We are going to consider the problem of determining the coefficients
{a;;} so as to maximize 1 or i*.

3. We define

m,(v): the mean of x; within the vth group,

A:(v): the variance of x; within the vth group,

4;;(v): the covariance between z, and x, within the vth group (:#37),
m; : the mean of z,,

A : the variance of wx;,

Z; : the covariance between z; and z, (¢#7),

m(v)=(my(v), my(v), -, my(v)), m=(my, my, ---, m,),

A=(1)), A=), do=317Ad.,
a;
aiz(aﬂ: Aigy ** aip)) A:(atj)'—"

a,

Then we have p(v)=m(v)A’, p=mA’, 3,=AA,A’, and Z=AAA’, where
A’ means the transpose of A. From those relations we can easily see
that

(4) J,=AA4,A',
(5) 2y=ADD'A’,
where
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Vm
(6) D=m@Q)—m', m'2)—m', -, m'(s)—m) v . '
vz,

and we can represent 2 and A* as follows:

(7) i=1-[| A4,A"'| || A44'|],
and
(8) *=|ADD'A’'|| |A44'|.

We seek the maximum of 2 or 2*. Let U denote the matrix 4, or DD’
according as we consider 2 or i*. Then our problem is to minimize or
maximize |AUA’'|/ |[AAA'|, the elements {a;;} of A being variables which
may vary under the restriction | 444’ |# 0.

Now we can find a non-singular matrix P depending on 4 so that
P'AAA’'P=1I (unit matrix) and P AUA’P has a diagonal form. But | AUA’|
/|AAA'|=|PPAUA'P|| |P"AAA’P|. Therefore we can conclude that, when
we want to minimize or maximize | AUA’ |[/| A4A’' |, we may do it under
the conditions that A4A’=1I and AUA’ has a diagonal form.

In [4] C. Hayashi treated some multidimensional measure in connec-
tion with a quantification problem, and sought the solution such that
the measure attains its maximum under some orthogonality conditions.
We remark that by this procedure the unconditioned maximum of the
measure is attained in this case, too.

4. In what follows we consider the case m=2 only. We assume
that 4 and 4, are non-singular. This will be a natural assumption in
the usual application of the linear discriminant function. In the quantifi-
cation problem ([1], [2]), however, 4 and 4, always appear as singular
matrices. But in this case there is a non-singular matrix @ for which

H:. O F : 0
QUQ'=(... : )’ QAQ'=(... : > ,

0:0 0O:.0
where H is some positive semi-definite matrix of order p—t for a certain
t(>0) and F is some positive definite matrix of order p—t. Moreover
in the case of U=4,, H is positive definite. Consequently in the quantifi-
cation problem we may consider |[AHA'|| |AFA’|instead of [AUA'|/|A4A’].
From this consideration we may assume that 4 and A4, are non-singular,
without loss of generality. From the remark in the preceding section our
problem in the case m=2 is to minimize or maximize r=[AUA'|/|A44’ |
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under the conditions

(9) ada’ =1,
(10) ada;/ =1,
(11) a,da =0,
(12) a,Ua/=0.

We remark that under these conditions r becomes
(13) r=(a,Ua)(a;Ua;’) .
From the assumption that 4 and 4, are non-singular, it follows that if
ada’'=1 then aUa'+#0, in the case U=AI,,.

In the case U=DD' our objective is to maximize z. But z=>0, and
if a;Ua,/=0 or a;Ua; =0, then r=0. Hence we may consider only such

a;, a; that a,Ua;#0 and a,Ua,#0 except the trivial case of max r=0.
From these considerations it is justified to impose the additional condition

(14) a,Ua)/+0 and a;Ua;+#0 .

Next we solve the problem of minimizing or maximizing (13) under the
conditions (9), (10), (11), (12), and (14). Introducing Lagrangian param-
eters [, I, I; and I, we obtain the following equations, as necessary con-
ditions to minimize or maximize (13) under the above conditions :

(15) (ag Uag’)al U= llag U+ lgagA‘l' l;alA ’
(16) (al Ual’)ag U=l1a1 U+ lgalA'l‘lgazA .

These equations together with (9), (10), (11), and (12) give
am (a:Uay')a,Ua))=1;=1, .
Hence (15) and (16) become

(18) (ag Uag’)a1 U=l1ag U+ lgagA"i‘lsalA y
19) (a,UaYa,U=la,U+l,a,4+1l:a,4 .

We have to solve the system of equations (9), (10), (11), (12), (14), (18)
and (19). This solution is obtained under some additional assumptions
which will be stated later.

First we see that the only solution of [, I, is [,=0[,=0. From (18),
(10), (11), and (12) it is obvious that if ;=0 then [,=0. Now suppose
that there is a set of solutions of the system of equations concerned such
that [,#0. Consider any such a set of solutions a,, as, I}, l;, [;., From (18),
19), (9), (10), (11), and (12) we have
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(20) { La,Ua/+1;,=0,
l1a1 Ual’ + lg =O .

Noticing that ,#0, we have a,Ua,/’=a,Uay. Then from (17) we get

(21) aUa/=a,Ua)= VT,.
(20) and (21) give
(22) lzz—ll “E .

From (18), (19), and (21) we have

Vij(a+a)U= ll(al+ a)U+l(a+a) 4+ l(a,+a)4,
VE(al - ag) U=l1(a3 - al) U+ lg(az - al)A + ls(al - ag)A .

These relations together with (22) give

(23) (Vi, =)@ +a)U= Vi (VI —l)(a+a)4
(24) (VI +l)a—a)U= 'Jl—a‘( Vi, +l)a;—a))4

where a,*+a,#0 because of (9), (10), and (11). If 7 =l, then Vi, +
;#0, so from (24) we conclude that 4/, is an eigenvalue of the charac-
teristic equation

(25) aU=yad.

In the case +/7;#l, it is obvious from (23) that /7, is an eigenvalue
of (25). Thus, when [,#0, 4/, is always a non-zero eigenvalue of (25).
On the other hand a,, a, satisfy (21) and (9), (10). Therefore, we can
conclude that a, and a; are characteristic vectors of (25) belonging to
the same non-zero eigenvalue y= /7.

Now we assume that all of the non-zero eigenvalues of (25) are
simple roots, and denote them by {y;}. Moreover, we assume that the
rank of D is not less than two, so (25) has at least two non-zero eigen-
values whether U=DD’ or U=A4,,.

The above simple root assumption implies that for a;, and a,, a,4a,’+
0 which contradicts (11). Thus the only solution of I, I, is I,=I,=0.
Therefore, (18) and (19) become

l
18) U=—2 a4,
(18) a, (@Ua,) a,
l
19y U=—2% _q.
( ) a; (@ Ual’) a,



436 TOSIO UEMATU

ls .
(26) @Ua)
@7) by

for any pair of non-zero eigenvalues y;, r; of (25). Here y; and 7, must
be different, for if y,=y, it follows from the simple root assumption
that for the corresponding solution a, and a,, a,4a,’+0, contradicting (11).
Taking all combinations of different y;, 7, and the corresponding charac-
teristic vectors a;, a, which are normalized so as to satisfy (9) and (10),
and putting

(28) ls =Tili>

we get all of the sets of solutions of the system of equations concerned.

Now the minimum of r in the case U=4, and the maximum of r
in the case U=DID' are easily obtained. Noting r=1[; from (13) and (17),
we get the minimum or maximum of z as follows, under the assump-
tions previously stated. Let 7,<p:<--:<7¢-1<rx (k=2 from our assump-
tions) be all of the non-zero eigenvalues of (25), where k equals to p or
s—1 according as U=4, or U=DD' (in the quantification problem p is
to be substituted by p—t). Then minc=y7,, or max =y, . Hence
max A=1—py; or max A*=p._;. Coefficients a;, @; of (1) in the case
m=2 are determined as the corresponding characteristic vectors of (25)
to 71, 73 OF 74_1, 7. We remark that, when we use 2%, s=3 is neces-
sary.

5. In the quantifying method in [2], the response patterns are not
added, but are used in the original dimension in order to make the clas-
sification more effective. In the application of the present method to
quantification, however, the response patterns are added. Instead, this
addition is carried out in more than one way and a multidimensional
discriminator is obtained, in order to make the classification more effec-
tive. It is easily seen that, under the same dimension and the use of
2, the present method can give larger value of 2, hence is more effective.
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C. Hayashi and Mr. M. Isida.
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