ON THE DECOMPOSITION OF INFINITELY DIVISIBLE
CHARACTERISTIC FUNCTIONS WITH A CONTINUOUS
POISSON SPECTRUM

RYOICHI SHIMIZU

1. Introduction and summary

An infinitely divisible characteristic function ¢(t) has a unique ex-
pression,

(1.1) log ¢(t)=ﬁit—rt’+8:<e“”—1— 1’1”” )dM(ac)

xﬁ

o=z

where M(z) and N(x) are monotone non-decreasing right-continuous funec-
tions defined on (0,00), and (—oo, 0) respectively, and,

(i) M(oo)=N(—o0)=0

(ii) S: x’dM(x)-l—S 2'dN(x) < o0 for any a>0,

[}
(i) 7=0, —oco>p>c0.

We call y the normal factor, M(x) the positive and N(x) the negative
Poisson spectrum of ¢(t). When ¢,(t) and ¢,(t) are characteristic func-
tions (abbr. ch.f.’s), so is their product ¢(t)=¢i(t)-¢:i(t). ¢ and ¢, are
called the factors of ¢(f). A ch.f. is said to be indecomposable if it
has no factor except itself and 1. A ch.f. ¢(t) has no indecomposable
factor if and only if every factor of ¢(t) is infinitely divisible.

Yu. V. Linnik [4] gave a necessary condition for ¢(f) to have no
indecomposable factor when y>0: M(x) and N(z) are step functions, and
if w and v (0<u<v or v<u<0) are any two jump points of M(x) or of
N(x), then v/u is a positive integer. H. Cramér [1] showed that an
infinitely divisible ch.f. has an indecomposable factor if there exist posi-

1) In the sequel ch.f.’s ¢(#) and ebitp(¢) are identified (—oo<b< o).
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tive constants k and ¢ such that M'(x)=k in the interval (0, ¢). P. Lévy
[3] and D. A. Raikov® considered the problem when the Poisson spec-
trum M is a step function with finite steps and y=0.

The purpose of this paper is to generalize H. Cramér’s result stated
above. We consider only the case where M(zx) is continuous, y=0, and
N(x)=0, i.e., the ch.f. of the form,

1.2) o(t)= exp S:<em—1— 1:{”; : )dM(x) .

2. Preliminaries

The function ¢(t) of (1.2) can be a ch.f. even if M(x) does not satisfy
all the conditions stated in the previous section, i.e.,

(a) monotone non-decreasing (b) right-continuous in (0, o)
(c) M(o0)=0 (d) Sa w“dM(w)<oo for any a>0.

Let A be the class of all functions M(x) which satisfy the conditions
(b), (¢), and (d) and for which (1.2) is a ch.f. It is known that the
expression is unique. The subclass of functions of 4 which satisfy the
further condition (a) is denoted by M. An infinitely divisible ch.f. (1.2)
has an indecomposable factor if there exist M; ¢ A—M and M;e€ A such
that M=M,+M,. In this case we also say that M has an indecomposa-
ble factor.

Let X=(0, ©) and S be the o-algebra of Borel subsets of X. If
N(x) is 2 monotone non-decreasing right-continuous function on X, there
corresponds a unique o-finite measure g on (X, S) such that for any
interval A=(a, b], #(A)=N(b)—N(a+). We shall denote it by u(-).

A point « is called a point of increase of the monotone non-decreas-
ing function M(x) if M(x+¢)—M(x—e)>0 for any ¢>0. The set of all
points of increase of M(x) will be denoted by P(M).

A statement that holds for all points except possibly on a set of
p-measure zero is said to hold a.e.p.

Let g, ---, pn be non-zero (i.e., not identically zero) o-finite meas-
ures on (X, §). They are absolutely continuous with respect to the
o-finite measure p=g+---+p,, and their respective Radon-Nikodym
derivatives f;=dp,/dp satisfy

1=>fi(x)=0 a.e.n =1, -, m

and

2) See, e.g., [4], 249-252 or [5], 176-182.
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H@)+ - +Hfm)=1.  ae.pn.

We say that g, ---, #, are mutually non-singular if
¢ ({z; fu(2)fulw) - - - fulx)>0})>0,
or equivalently if x,(E)=0 implies z;(E")>0 (3, j=1, 2, - - -, »). If, further,

there exists a positive constant 7 such that
filx)=r>0 aep i=1,---,m,

then we say that g, ---, g, are similar. Now let Me M, and a,, ---,
a, € P(M) and let

0 I<r<a—e
2.2) M(x)={ M(z+a,—a)—M(a;—e) a—e=x<a+te
M(a;+¢)—M(a;—¢) ateZw

where

a=mina;>e>0.

Then M, .-+, M, are monotone non-decreasing right-continuous functions
and the corresponding measures g, =g, . are finite and vanish outside
the interval E=(a—¢, a+¢]. We shall say that the points a,, - - -, a, of
X are mutually non-singular if g, ,, - -+, g, . are non-singular for all ¢>0.
We say that they are similar (or the similar points of M) if for sufficient-
ly small €>0, p,,, ++-, pta,. are similar. The definition of similarity is
not ambiguous, since if ¢€=d>0 and if g, ., ---, #,,. are similar, so are

Hi,a9 *° %y Un,5

3. Generalizations of H. Cramér’s theorem
3.1 We shall first prove the following

THEOREM 1. Let Me M be a continuous function. If there exists a
positive constant a such that a, 2a, 4a and 5a are similar points of M,
then the ch.f.

3.1) o(t)= exij(e"“’-—l— 13’?; : >dM(w)

has an indecomposable factor.

PROOF. Without any loss of generality, we assume that a=1. Choose
1/2>¢>0 so small that finite measures g, p, s and g corresponding
to the monotone functions M (x)’s defined below ((8.2)) are similar. (2.2)
is reduced in this case to
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0 r<1—¢/3
(3.2) Mi(x)=1 Mx+i—1)—M(i—e/3) 1—¢/8<x<1+¢/3
M(i+¢/3)— M(i—¢/3) x=14¢/3
1=1,2,4,5

and p=p+p+p+p; is a finite measure on (X, S), which vanishes out-
side Fi=(1—¢/3, 1+¢/3].

If Y=(—o0, ) and if T is the os-algebra of Borel subsets of Y, a
o-finite measure g, on (Y, T) is defined by

mA)=3 WAwNF), AeT
where Apy={z; x—me A}.
Clearly we have for any A € S, p(A)=p(ANF,). Let, for any integer =,
F,=(n—¢/3, n+¢/3]
E.=(n—e, n+te].

It is easily verified that the set function v on 7T defined by

)= | 2uu+Odrdzat) AeT

FoFy

is a non-zero, finite measure on (Y, T) which vanishes outside E;. Some
lemmas are necessary.

LEMMA 1. If a finite measure py is defined by py(A)=p(ANF}),
then py and v are mutually mon-singular.

PROOF. It is enough to show that ASF; and p4(A)>0 imply v»(A4)>0.
Let

00 =0.(0)= | Lu(u+t}dps(w) .
Then we have
wa)={, atdpt).
Clearly g(t) is continuous, and g(0)=g Xa(uw)dps(u)=p4(A)>0. Hence there

exists a neighbourhood N of 0 such that g(¢)>0 whenever te N, and
u(A)gS g(t)du(t)>0. (Note that SNdpo(t)>O for all 6>>0.) q.e.d.
N
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LEMMA 2. There exist a o-finite measure v, on (Y, T) and an integer
n(>1) such that
(1) wANF)=v(A)
(ii) v(A)=vy(Awy) for all AeT and n
(iii) dp/di=1/n, a.e.4,

where 2,=p,+v, .
PROOF. Let A=py+v, Zo= {x; dy*/dlg-l—} (n=1,2, ---), and Z,=
n

{x; d,u*/d,2>0}=GZ,,. Then p*(Z3)=S ,%id,l:O, hence there exists
1 ZO

a positive integer n, such that »(Z,))>0, since otherwise u(Zo)gﬁu(Z,,)=0
1

contrary to the non-singularity of x4 and ». Since

p(Z)=| %wz=x<z,)=y*(zo+»(zo

Z,

and since sy is finite, we must have v(Z,)=0, and hence n,>1.
If vy is the finite measure defined for Borel set A, by v«(A)=v(AN Z,,),

if Ae=pgtvg and if Zy= {m; dy*/dl*g%}(gzno), then we have
0

(3.3) v(Z4)=0.
On the other hand,
d 1 1
YA =§ Cl% da s_—g die=——pZ%) .
vs(ZY%) 2 di, * = P P * oy 1s(Z%)

Since n,>1 and since p is finite, we have

(3.4) 1l Z%)=0.

(3.3) and (3.4) imply 2,(Z%)=0 or dp*/dl*g—%— a.e.y .

0

o-finite measure defined by
vi(4) =n—_-2.i:*(A(n))

satisfies the required conditions. q.e.d.
Remark. (iii) and m,>1 imply the non-singularity of g, and v,.

From lemma 2, we see that
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1=24() 2—1‘ a.e.d,
n,

0

1———1-_2_8,(90);0 a.e.l
Ty

Where El = dﬂo/dlq and 5’ = dvo/dlo .

Moreover the invariance property (under the transformation z—>x+n)
of p, and v, implies

(3.5) El@)=¢&lx+n)  (k=1,2) ae.l.
LEMMA 3. v, and hence 2, is absolutely continuous with respect to p,.
Especially if po(A)= _Zm‘. 2:i(Awy), then
dQOi/dpo;r>0 a.ed, .
PROOF. Suppose p(A)=3>] p(A,)=0, then

#(A(n))zﬂn(A(n)nE)=0 ’ n=--- -1, 07 L2 -.)
and

(AN F) = Samnm dyy= S%)nFI &(x)da(x)

< (1- L hdwn )= (1—L)ua(A<n) NF).
T N,

Since v(AwyNF)<oo, we have v(4umNF)=0 (n=--- —-1,0,1,2, --+).
Hence

v(A)= 3 v(Am)= 3 v(Au N Fy)=0. q.e.d.
Let
F@)= 3 h@)(z)
F@)=ré(2) 3 %(x)
where
h,,(x)={ réi(x) (n=1, 2, 4, 5)
—0r&y(®)é4() (n=3).
X.(x) is the indicator function of F), and >0 is chosen so small that
1-126>0
(3.6)

(1—28)r*—2r5>0 .
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The given Poisson spectrum M(x) can be docomposed as
M(x)= My(x)+ My(x)

where

M@)=—\__ Fedit)
(3.7

5

| T .

It is not so difficult to verify that M, e M, and M,¢ M. Hence the
theorem is proved if we can show that

(3.8) o(t)= exp S: (e”“’—— 1— l’ilt—afn ; >dM,(ac)

is a ch.f.

LEMMA 4. Suppose that M(x)= N,(x)— Ny(z) (N;, N, € M) is a bounded,
continuous function which vanishes outside some finite interval (0, c).
Define a sequence of continuous functions B,(x) on X recursively by

By(z)=My(z)— My(+0)
B(@)={ B.s—B().

The functi(m o(t) given by (3.8) is a ch.f. if By(x), By(x)+2B\(x) and Bj(x)
are monotone non-decreasing.

PROOF. From the definition of B(x)’s, we have for some r,,
| B(x) | <po<oo
| B(2) | =15 -
Hence the series

1
n!

B@)=3—-B,(x)

is absolutely and uniformly convergent in (0, oo).
Observing that '
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S: eits dBn(x)z <S: eila:dB‘(x)>n= <S" ei;zdlm(m)>n
0
we get

exp S” d“dMy(w) =1+ %(So e“’dM,,(x))n

0 1

1+ _LS‘” ¢*d B,(x)
1 n! Jo

8

=1+S ¢*dB() .
1]
Hence, putting

7=\~ dM(@),

1+2°
we have
o= exp | ( e —1— 2 _Jap (@)
=e - e‘“*(l + S: e"“”dB(a:))
=" ewan)
where

H(z)= { e~(e(x+7)+ B(x +7)) x> —7
0 r<-—7.
As is easily seen, H(—o0)=0, H(co)=¢(0)=1. Hence o(t) is a ch.f. if

H{x) is monotone non-decreasing.
It is easy to verify (using induction) that
B.(#)=\ B.{z—t)dB,t
0

is monotone non-decreasing in (0, o) whenever n>4. Hence

1
n!

B(z)=3} —B,(x)-+—B{2)+B(®)
is monotone non-decreasing in (0, o0) and H(z) is also monotone non-
decreasing in (—oo, o). q.e.d. .

M(x) defined by (3.7) is a bounded, continuous function which
vanishes outside the finite interval (0, 5+4¢). Hence for the proof of
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the theorem é it is enough to show that By(x), By(x)+2B,(x) and By(x)
are monotone non-decreasing, where

By(o)=| B, (s—t)}B,(t)= Ban(a—t)f)A() nzl.

x
0 0, z

Lemmas 5 and 6 below are easily verified, lemma 6 being the con-
sequence of the periodicity of &(x) (c.f. (8.5)) and the invariance property
of ,.

LEMMA 5. For y<z, denote by Ufy, x) the interval (y—t, x—t]. If
x¢ 1LOJ E, (resp. x ¢ lljs E.), there exists an open interval U containing x
n=2 n=

such that By(x) (resp. By(x)) is constant on U.

Moreover, if n—-%s<x<n+%e s

Bn)={ _Blo-0f®da0

(,

(3.10) -5 P f@daaa)

F‘SF"_‘nvt(o. x
B@=5 | Ba—07@aa0).

LEMMA 6. Let

n—ie§y<w§n+—4—e, 1+i=n,
3 3
and let
Joo=di 0= | F)fydaudig)
FJF U0 2
Then we have
( i ) ¢It, j=Jo,n ’

(i) if itith=n,
[, vt a—00F @@= Jy—t, —t) 010 .

LEMMA 7. By(x) is monotone non-decreasing.

PROOF. It is enough, because of lemma 5, to show that By(x)=By(y)
whenever
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y<z, y,zckE, (n=2,3, ..., 10)

and hence whenever

n——g—e<y<m<n+%e .

But then we have, using (3.10),

B@)-Bw)=3| | FOFEAWALE)

4 I Fp_NU Y, )

It is easily seen that there exists an integer i, such that 1<i,<
n—1, 1,#3 and n—14,#8. Suppose first that n+2, 3, 6. Then

(3.11) By(x)—Bi(y)=L+5L+1,

where

L= S S F@) F(OdA@)dA(E)
ix3 JF; JF, .NU,y, 2)

(3.12) gSF SF o, TR
=, (¥, )

(3.13) L=\, feredewde
2 —0Jo, +(y, %)

and

(3.14) r=|, | fesededo
= _5J;), n(yy x) .

From (3.12), (3.13) and (3.14), we have

(3.15) B(@)—B(W)2(1-20)J,..(y, 2)20.

When n=2, 8 or 6, (3.11) and I, are the same as before, while I, and
I, are replaced by

L=r={ | fas@aaedinzo

if n=6, and by L,=IL=0 if n=2 or 3. In any case (3.15) holds true. q.e.d.




INFINITELY DIVISIBLE CHARACTERISTIC FUNCTIONS 397

LEMMA 8. By(x)+2B(x) is monotone mon-decreasing.
PROOF. It is enough to show that B,(z)+2B(x)= By(y)+2B,(y) when
y<z, ¥y, v € Fy. Then, since F;E;, we have from (3.15)

B(z)~B{y) 2 (1200, s=(1-29)| |

0 S F3N U,

, S ftyda(u)da)

(3.16) =(1—26)'r’SF S £ (W))W dA(E)

FynUw, o

=a—20r| | dyn(u)dp(t)

Fy JFnuy, =
=(1—=20)r'w(Uy(y, @) .

On the other hand,

B@-Bw={ fedue

3 ol

(3.17) g—rag  E(OdA®)

FanUy,
=—rav(Uly, 7)) .
The result follows from (3.16), (3.17) and (3.6). q.e.d.

LEMMA 9. By(x) is monotone mon-decreasing.

PROOF. If n—_‘;_sgp<egn+ g e, (n=2,.--,10),

we have from (3.15)
(3.18) By(§)—By(7) = (1 —20)Js, o(7, §) .

On the other hand,
@19)  BO-Bw=%| | fersodaed

=X

1 Sri Srn_inv,(m )

<10J,, (7, §) .

F) Ft)daw)dat)

Now we shall show that By(x)=By(y) if x>y andify, x ¢ E, (n=3, « .-, 15),
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By(x)—By(y)

n—2

=5, Be-0-Bu-Nr0d0
2| (Be—9-Bay—o0) @)

+|, BE@—9-Ba-nr0ww
3
using (3.18), (3.19) with y—¢ and x—¢ in place of 7 and £,

2(1=20) Jousy—t, 2—0)/ (0000

~103| Jonsly—t, s~ ) f(Oda0)

3

=(1—125)g Jo (y—t, =) FO)AH)=0. qe.d.
Fy

PROOF OF THE THEOREM. The theorem follows immediately from
lemmas 4, 7, 8 and 9. q.e.d.

Remark. Finite measure v is in general not absolutely continuous
with respect to p,. If it is, we need not introduce either v, or A, and
the proof of the theorem will be much simpler.

This is the case if, in particular, finite measure z is similar to the
Lebesgue measure on F,.

COROLLARY (H. Cramér). If there exist positive constants k and c
such that M (€ M) has first derivative which is mot less than k in the
interval (0, ¢), then M has an indecomposable factor.

PROOF. Without any loss of generality we assume,

(3.20) M(w)={ I(;:.(x—c) O§w§c
rx>cC.

If 0<a<c/6, then a, 2a, 4a and 5a are similar points of M with r=1/4.
q.ed.

The theorem 1 can be extended to more general form: “If M is
a continuous positive Poisson spectrum, and if there exist a positive
constant a and vector (n, n,, -- -, %,) € V such that n,a, n,a, ---, n,a are

similar points of M, then M has an indecomposable factor,”” where V
is a set of finite dimensional vectors which satisfy some ‘‘ suitable con-
ditions.”” Theorem 1 states that the vector (1,2,4,5)is in V. The
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-similar argument as the proof of the theorem 1 can apply to show that
V contains the vector (2, 3, 5, 6). It can be shown that (0, 1, 8, 4) is
also in V (with suitable modification on the definition of similarity), if
M satisfies the further assumption

M(a+e)—M(a)>0 for all ¢>0.

Characterization of V is one of the problem to solve. A more general
problem is, of course, the characterization of 4.

The similar problem of characterization of V was solved by P. Lévy
[8], when M is a step function which has its jump points on the finite
positive integers. Note that all the points of increase are similar in this
case. According to Yu. V. Linnik [4], V is trivial when the normal
factor y is positive, since then M has always an indecomposable factor.
This means that ¥V can be any set (provided of course that M is con-
tinuous).

3.2 The following theorem is also a generalization of H. Cramér’s
theorem.

THEOREM 2. Let M€ M be continuous and suppose for any e >0,
there exist points of increase a, and a, of M which are mutually non-
singular and &>a;>a,/3>a,>0.

If there exist a finite interval (b, ¢c) and a positive number k such
that

M(x)—M(y)=zk-(x—y)
whenever

0<b=zy<z=<e<co,
then M has an indecomposable factor.

PROOF. Let
0<e,<b/5, (c—b)/5,
0<a, <3, <ay<a,+a;<¢e; ,
0<e<ay/10,

where a, and a, are points of increase of M which are mutually non-
singular. Let v, and v, be finite measures on (X, S) corresponding to
the non-decreasing, continuous functions

0 0<m<a1—5
M(x)=1 Mx+a;—a,)— M(a;—¢) g —e=x<a;+e
M(a;+¢)— M(a;—¢) atesx

1=1,2.
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Let £,(x) and &(z) be the Radon-Nikodym derivatives of v, and », with
respect to the finite measure v,=y,+v, and let

§(xw)=min (§,(x), &x(x))

E,=(a,—¢, a,+¢] (n=1, 2)
E,=(, ¢)

E={z; &x)>0}NE,.

Non-sigularity of v, and v, implies 0<v(E)=yv,(EN P(M)), and we assume
without any loss of generality that a,, a;€ ENP(M). Then the function

) §x—a)
g(x) £(z) Xg () + £ (z—a) Xg, (%) + Xz, ()

is defined a.e.y, and satisfies
1=2g9(x)=0 a.e.y, .

The function defined by

- L, _ IOdua(®+k-(—c)  w<b

k-(x—c) b<sx<ec
0 r=c

My(x)=

belongs to M with M—M,. a, and a, are similar points of M, with r=
1/2, i.e., if vy, and v,, are the measures corresponding to the monotone
functions defined by

0 r<a,—e
M*k(x)={ My (x+a;,—a,)— My(a,—e) a,—esx<a,+e
My (ai+e)— My(a—e), a,+eZx
k=1,2.
then we have
(3.21) Vi1 =y (=vy)
We shall show that M, has an indecomposable factor.

Let
0<a;<a;<ba,<b+e<as<b+2e¢
a=a;—a,, B=a, (a>28)
a=a;+a,

a5=a4+a=as+2a
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a;=a;+(a—p)=a;+3a—8
a=as+p=a;+3a

=+ (a—pB)=a;+4a—p
ay=a3+ pf=a;+4a

=03+ p=as+4a+B
a;=ay+a=a;+5a+ 8 (<c—¢)
E,=(a,—¢, a,+¢]

F.=(a,—¢/2, a,+¢/2] .

Let ¢ be the Lebesgue measure on (X, S) and v be the non-zero finite
measure defined by

(3.22) w(A)=vy(A)+v4(Aw)
where A={x; t—ac A},

and 2 be the o-finite measure A=p+v. Let

__g; it n=1,2
f(@) =1 idf;_ if n=3, nt’
—5 ga‘ %o, () if =17

where X, () is the indicator function of F, and ¢ is a positive number
such that

(3.23) A—0)(F)—26>0
1—46>0.
Let

F@) =33 Fiat(a)
Fon_ dy 2 _dﬁ 1
f@)=—2 S %@+ 3 ()

where X,(x) is the indicator function of E, (=1, 2, ---,11). Note that
we have

1gf(x)_2_0 a.e.l
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( f(x) z ¢ F,
f@y=1"" :

( —5f(x)=—ok zeF,
f(x)={ fx+a) x € E,

fx—a) xz e FE,
(c.f. (8.21) and (3.22)).

M, can now be written as
M. (x)=M(z)+ My(x)

where
N 0 Z0)

(z, o)

(3.24)

_ dy
My(2x)=— Xe(t) —f(O)(t) | dA(E)
| (G )

and Xz(x) is the indicator function of E=E,— GE,. . It is not difficult to
1

verify that M, e M and that M, ¢ M. We shall prove that ¢(t) of (3.8)
is a ch.f. by showing that B,(x), B,(x)+2B,(x) and By(x) are monotone
non-decreasing, where B,’s are defined as in the lemma 4. Let Q,=
{1,2,---,11}, =@, X Q, and =@, X Q. When (3, j) € Qy(resp. (¢, 7, k,) €
Q), write I, (I, , :) to denote the set of all elements (¢, §') € @, (¢, 7, k') €
Q;) such that

a,-+a,=a¢:+a,,
(a¢+a,+a,,=a¢, +aj' +a,,:) .

L, ; consists of at most 3 elements.

Write E; ;=(a;+a;,—2¢, a;+a,+2¢)

(B, ;, v=(a;+a;+a,—3e, a;+a;4a:+3e))
where (6, ) e@ ((4,5,k)eQy).
Clearly E.;=E. , (B, ,:+=Eu ;)
if and only if @, ek, ((V,7,F)el, ;).

Verification of the lemmas 10 and 11 below is not so difficult and is
omitted here.
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LEMMA 10. Ifx¢ U E;;(resp.x¢ U E, ; 1), there exists an open
G NeQ G 5 0 e Qq

wnterval U containing x such that By(x) (resp. Bs(x)) remains constant
on U. Moreover, if a;+a,—4tesy<x=a;+a;+4e, then we have

(%)  B@-Bw=3| (Be—t)-Bu—1)f0d0)

where the summation extends over all ke Q, such that for some l€Q,,
(l’ k)eIi, Je If y<x9 ?I, er,;, 7,k th'en

(326  B@-Bw=3 | Be-H-Bu-t)rede

where the summation extends over all k' € Q, such that for some (¢, j') €
@, (U5, k)L k.

LEMMA 11. For (4,5)€Q; and y,x € E; ,,

write

@2 J=dowa=| | Ffediuda) .
E; JE;nU, )

Then we have

(i) of (", 5)el,,; and of V<7, i<j (or V'>J, i>]), then J, ;=
S, goamd I . =d;0, 40,

(ii) S (©)da(u)da(t)

SEi SE_,nU‘(v, z

J., if i%7, j#7
={ —dJ, ; if 1=7, J#7 or 1#7, 3=7
A, if i=j=7,

(iii) suppose (1,7, k)€Qy, (¢, 5, K)€EL, 51, ¥y, TEE, ;4 1], V7
(or 1>7, V>7") and k=3, K'=3 (or k<3, k'<3), then we have

[, %=t s=0fOdO= ., 4=t s—)FO)G20) .

kl
LEMMA 12. B,x)=By(y) if a>¥.

PROOF. According to lemma 10, it is enough to prove only for y, x
€ E; (7, 7) €Q;), and hence for

ata;—desy<e=a;,+a;+4e.

Now we can find an element (%, 5,) of I, ; such that 4,<j, %,#7, and
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4,#7. Suppose first (7, r) € I, ; for some r €@, (r+7), then using (3.25)
we have

@28  B@-Bw=x | | fwsedede

| F(w)F(0)dAw)dA(E)
(@, qz));éi’ jVEp JEQNU Ly, D)
(3.29) > L+ L+ L+,
where

B=f, 5, e o SOOI, ,

L=, S  F@fOdAwd) =7,

Ty
=SE SW F@F Oz~
s I OOV O

Hence
(3.30) B{x)— B{y)=(1—3)(J;. ,+J,,)=0.

If for any r€Q,, (r, 7)¢ I, ,;, then (3.29) I, and I, are the same as be-
fore while L=1I,=0.
If (7,7) eI, ;, then I, and I, are replaced by

Is=I4=SE SE P OUAAO =0 20

In any case inequality (3.30) holds true. q.e.d.
LEMMA 13. By(x)+2B,(x)=Bi(y)+2B\(y), if >y .

PROOF. It is enough to consider the case y, x € F,. Since F,&E,S
E, ,;, we have by (3.30)

By(x)—By(y)=(1—0)(J,, 6+, )=(1—0), 6
(3.31) =(1—5)SE SE o @ Odwdae)

za-a, | kF()dgp(u)dact)

L JENT @, D
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=(1—5)kS S:: dudi(t)=(1—8)k- (@ —1)- A(F)

Fl v
=(1—0)k-(x—y)-v(F)) .
On the other hand,

(3.32) B,(x)—Bl(y)=SU( | Ftat)=—ot S:dt=—5k-(w——y).

o
The result follows from (3.23), (3.31) and (3.32). q.e.d.

LEMMA 14. By(x)=By(y) if x>vy.

ProoOF. If

a;+a;,—4e<y<éZa;+a;+4e,

we have from (3.30)
(3.33) By(&)—Bi(n)z2(1 =), {0, E)+J;, 1, €)) -
On the other hand,

By(§)—Bi(n) =% SE (By(§ —t)—By(n—1)) f(1)dA(?)

=, dn
(8.34) (o, <2y ; JE, JEgNUGL ©

asp

F (W) S (@)da(u)da(t)

- S S F)F(OdAU)dAE)
a, i);pli’j B, JEnU G, ©

=3(Js, s, H)+J;.n, €) .

Now let y, x e E; ; &, y<x. It is enough to consider the case (a, 8, 7) €
I, ; « for some (a, B) € Q;, since otherwise By(x)=Bj(y) is clear. Then we
can find an element (4, 5, k,) of I, ; . such that k,=3 and k,#7. Using
lemmas 10, 11 and 12 as well as the inequalities (3.33) and (3.34) (re-
placing » and ¢ by y—t and x—¢, respectively), we get

B@-B@)z|, (B(a—0—By—t)f i)
+{, Ba—t-B-nrowuE

210, Wiy 4W—t, 3=+, U—t, s—)F OO
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80, W sy—t, 5=0)+J, y—t, 2= O40)
=(1—45)SE o s+ d,, ) fOdAD)=0 . qe.d.

PROOF OF THE THEOREM. The theorem follows from lemmas 4, 12,
13 and 14. q.e.d.

COROLLARY 2. If there exists a positive number ¢ such that M(z) €
M has a positive and continuous first derivative in the interval (0, c),
then M has an tndecomposable factor.

3.3 The following theorem is another generalization of H. Cramér’s
result.

THEOREM 3. Let Mec M. If there exist three constants b, ¢ and k
such that 0<b<2b<c<co, k>0, and M(x)— M(y)=k-(x—y) whenever b<
y<x<e, then M has an indecomposable factor.

PrROOF. Without loss of generality, we assume
—k-(c—b) if 0<xr<d
M(x)={ —k-(c—x) if b=sx<e
0 if x=ec.
Let
c—2b=2a+3¢>0

a,;>a>0

e<af6, e<(a,—a)/6
a,=b+e

a=a,+a
a;=2(a;—a)
a,=2a,—«

a;=2a,

QG=a;+a

G=a;+a.

Let
£ (@) =K(S3 M) — 1)+ 3 %)

F@)=ks) 1,(2)
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g(x) =kXy(x)+ ok i(x)

where 2,(z) is the indicator function of the interval E,=(a.—¢/3, a.+¢/3)
if n=1 and of the set (b, ¢)— UE, if n=0.
nxb

The Poisson spectrum M(x) is decomposed as
M=M,+M,

where
x

M@=-\"red ¢m
Ml(a:)=—S°°g(t)dt eM .

The result follows from the essentially same argument as before.
The process is much simpler in this case and the further detail is
omitted.
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