ON THE DECOMPOSITION OF INFINITELY DIVISIBLE CHARACTERISTIC FUNCTIONS WITH A CONTINUOUS POISSON SPECTRUM

RYOICHI SHIMIZU

Introduction and summary

An infinitely divisible characteristic function $\varphi(t)$ has a unique expression,

(1.1)
$$\log \varphi(t) = \beta it - \gamma t^2 + \int_0^\infty \left(e^{itx} - 1 - \frac{itx}{1 + x^2} \right) dM(x) + \int_{-\infty}^0 \left(e^{itx} - 1 - \frac{itx}{1 + x^2} \right) dN(x)$$

where M(x) and N(x) are monotone non-decreasing right-continuous functions defined on $(0,\infty)$, and $(-\infty, 0)$ respectively, and,

(i)
$$M(\infty) = N(-\infty) = 0$$

(ii)
$$\int_0^a x^2 dM(x) + \int_{-a}^0 x^2 dN(x) < \infty \quad \text{for any} \quad a > 0$$
,

(iii)
$$r \ge 0, -\infty > \beta > \infty$$
.

We call γ the normal factor, M(x) the positive and N(x) the negative Poisson spectrum of $\varphi(t)$. When $\varphi_1(t)$ and $\varphi_2(t)$ are characteristic functions (abbr. ch.f.'s), so is their product $\varphi(t) = \varphi_1(t) \cdot \varphi_2(t)$. φ_1 and φ_2 are called the factors of $\varphi(t)$. A ch.f. is said to be indecomposable if it has no factor except itself and 1.¹⁾ A ch.f. $\varphi(t)$ has no indecomposable factor if and only if every factor of $\varphi(t)$ is infinitely divisible.

Yu. V. Linnik [4] gave a necessary condition for $\varphi(t)$ to have no indecomposable factor when $\gamma > 0$: M(x) and N(x) are step functions, and if u and v(0 < u < v or v < u < 0) are any two jump points of M(x) or of N(x), then v/u is a positive integer. H. Cramér [1] showed that an infinitely divisible ch.f. has an indecomposable factor if there exist posi-

¹⁾ In the sequel ch.f.'s $\varphi(t)$ and $e^{bit}\varphi(t)$ are identified $(-\infty < b < \infty)$.

tive constants k and c such that $M'(x) \ge k$ in the interval (0, c). P. Lévy [3] and D. A. Raikov²⁾ considered the problem when the Poisson spectrum M is a step function with finite steps and $\gamma = 0$.

The purpose of this paper is to generalize H. Cramér's result stated above. We consider only the case where M(x) is continuous, $\gamma=0$, and $N(x)\equiv 0$, i.e., the ch.f. of the form,

(1.2)
$$\varphi(t) = \exp \int_0^\infty \left(e^{itx} - 1 - \frac{itx}{1 + x^2} \right) dM(x) .$$

2. Preliminaries

The function $\varphi(t)$ of (1.2) can be a ch.f. even if M(x) does not satisfy all the conditions stated in the previous section, i.e.,

(a) monotone non-decreasing (b) right-continuous in $(0, \infty)$

(c)
$$M(\infty)=0$$
 (d) $\int_0^a x^2 dM(x) < \infty$ for any $a>0$.

Let A be the class of all functions M(x) which satisfy the conditions (b), (c), and (d) and for which (1.2) is a ch.f. It is known that the expression is unique. The subclass of functions of A which satisfy the further condition (a) is denoted by M. An infinitely divisible ch.f. (1.2) has an indecomposable factor if there exist $M_1 \in A - M$ and $M_2 \in A$ such that $M = M_1 + M_2$. In this case we also say that M has an indecomposable factor.

Let $X=(0, \infty)$ and S be the σ -algebra of Borel subsets of X. If N(x) is a monotone non-decreasing right-continuous function on X, there corresponds a unique σ -finite measure μ on (X, S) such that for any interval $A=(a, b], \ \mu(A)=N(b)-N(a+)$. We shall denote it by $\mu_N(\cdot)$.

A point x is called a point of increase of the monotone non-decreasing function M(x) if $M(x+\varepsilon)-M(x-\varepsilon)>0$ for any $\varepsilon>0$. The set of all points of increase of M(x) will be denoted by P(M).

A statement that holds for all points except possibly on a set of μ -measure zero is said to hold a.e. μ .

Let μ_1, \dots, μ_n be non-zero (i.e., not identically zero) σ -finite measures on (X, S). They are absolutely continuous with respect to the σ -finite measure $\mu = \mu_1 + \dots + \mu_n$, and their respective Radon-Nikodym derivatives $f_i = d\mu_i/d\mu$ satisfy

$$1 \ge f_i(x) \ge 0$$
 a.e. μ $i=1, \dots, n$

and

²⁾ See, e.g., [4], 249-252 or [5], 176-182.

$$f_1(x) + \cdots + f_n(x) = 1$$
. a.e. μ .

We say that μ_1, \dots, μ_n are mutually non-singular if

$$\mu(\{x; f_1(x)f_2(x)\cdots f_n(x)>0\})>0$$
,

or equivalently if $\mu_i(E)=0$ implies $\mu_j(E')>0$ $(i, j=1, 2, \dots, n)$. If, further, there exists a positive constant r such that

$$f_i(x) \ge r > 0$$
 a.e. μ $i=1, \dots, n$,

then we say that μ_1, \dots, μ_n are similar. Now let $M \in M$, and $a_1, \dots, a_n \in P(M)$ and let

$$(2.2) M_i(x) = \begin{cases} 0 & 0 < x < a - \varepsilon \\ M(x + a_i - a) - M(a_i - \varepsilon) & a - \varepsilon \leq x < a + \varepsilon \\ M(a_i + \varepsilon) - M(a_i - \varepsilon) & a + \varepsilon \leq x \end{cases}$$

where

$$a=\min_{i}a_{i}>\varepsilon>0$$
.

Then M_1, \dots, M_n are monotone non-decreasing right-continuous functions and the corresponding measures $\mu_i = \mu_i$, are finite and vanish outside the interval $E = (a - \varepsilon, a + \varepsilon]$. We shall say that the points a_1, \dots, a_n of X are mutually non-singular if μ_1, \dots, μ_n , are non-singular for all $\varepsilon > 0$. We say that they are similar (or the similar points of M) if for sufficiently small $\varepsilon > 0$, μ_1, \dots, μ_n , are similar. The definition of similarity is not ambiguous, since if $\varepsilon \ge \delta > 0$ and if μ_1, \dots, μ_n , are similar, so are $\mu_1, \varepsilon, \dots, \mu_n, \varepsilon$

3. Generalizations of H. Cramér's theorem

3.1 We shall first prove the following

THEOREM 1. Let $M \in M$ be a continuous function. If there exists a positive constant a such that a, 2a, 4a and 5a are similar points of M, then the ch.f.

(3.1)
$$\varphi(t) = \exp \int_0^\infty \left(e^{itx} - 1 - \frac{itx}{1 + x^2} \right) dM(x)$$

has an indecomposable factor.

PROOF. Without any loss of generality, we assume that a=1. Choose $1/2>\varepsilon>0$ so small that finite measures μ_1 , μ_2 , μ_4 and μ_5 corresponding to the monotone functions $M_i(x)$'s defined below ((3.2)) are similar. (2.2) is reduced in this case to

(3.2)
$$M_{i}(x) = \begin{cases} 0 & x < 1 - \varepsilon/3 \\ M(x+i-1) - M(i-\varepsilon/3) & 1 - \varepsilon/3 \le x < 1 + \varepsilon/3 \\ M(i+\varepsilon/3) - M(i-\varepsilon/3) & x \ge 1 + \varepsilon/3 \end{cases}$$

$$i = 1, 2, 4, 5$$

and $\mu = \mu_1 + \mu_2 + \mu_4 + \mu_5$ is a finite measure on (X, S), which vanishes outside $F_1 = (1 - \varepsilon/3, 1 + \varepsilon/3]$.

If $Y=(-\infty, \infty)$ and if **T** is the σ -algebra of Borel subsets of Y, a σ -finite measure μ_0 on (Y, T) is defined by

$$\mu_0(A) = \sum_{n=-\infty}^{\infty} \mu(A_{(n)} \cap F_1)$$
, $A \in T$

where

$$A_{(n)} = \{x; x-n \in A\}$$
.

Clearly we have for any $A \in S$, $\mu(A) = \mu_0(A \cap F_1)$. Let, for any integer n,

$$F_n = (n - \varepsilon/3, n + \varepsilon/3]$$

 $E_n = (n - \varepsilon, n + \varepsilon].$

It is easily verified that the set function ν on T defined by

$$\nu(A) = \int_{F_0F_3} \chi_A(u+t) d\mu_0(u) d\mu_0(t) \qquad A \in T$$

is a non-zero, finite measure on (Y, T) which vanishes outside E_3 . Some lemmas are necessary.

LEMMA 1. If a finite measure μ_* is defined by $\mu_*(A) = \mu_0(A \cap F_3)$, then μ_* and ν are mutually non-singular.

PROOF. It is enough to show that $A \subseteq F_3$ and $\mu_*(A) > 0$ imply $\nu(A) > 0$. Let

$$g(t) = g_A(t) = \int \chi_A(u+t) d\mu_*(u) .$$

Then we have

$$u(A) = \int_{F_0} g(t) d\mu_0(t) .$$

Clearly g(t) is continuous, and $g(0) = \int \chi_A(u) d\mu_*(u) = \mu_*(A) > 0$. Hence there exists a neighbourhood N of 0 such that g(t) > 0 whenever $t \in N$, and $\nu(A) \ge \int_N g(t) d\mu_0(t) > 0$. (Note that $\int_N d\mu_0(t) > 0$ for all $\delta > 0$.) q.e.d.

LEMMA 2. There exist a σ -finite measure ν_0 on (Y, T) and an integer $n_0(>1)$ such that

(i) $\nu_0(A \cap F_3) \leq \nu(A)$

(ii) $\nu_0(A) = \nu_0(A_{(n)})$ for all $A \in \mathbf{T}$ and n

(iii) $d\mu_0/d\lambda_0 \ge 1/n_0$ $a.e.\lambda_0$

where $\lambda_0 = \mu_0 + \nu_0$.

PROOF. Let $\lambda = \mu_* + \nu$, $Z_n = \left\{x; \ d\mu_*/d\lambda \ge \frac{1}{n}\right\}$ $(n=1, 2, \cdots)$, and $Z_0 = \{x; \ d\mu_*/d\lambda > 0\} = \bigcup_{1}^{\infty} Z_n$. Then $\mu_*(Z_0') = \int_{Z_0'} \frac{d\mu_*}{d\lambda} d\lambda = 0$, hence there exists a positive integer n_0 such that $\nu(Z_{n_0}) > 0$, since otherwise $\nu(Z_0) \le \sum_{1}^{\infty} \nu(Z_n) = 0$ contrary to the non-singularity of μ_* and ν . Since

$$\mu_*(Z_1) = \int_{Z_1} \frac{d\mu_*}{d\lambda} d\lambda = \lambda(Z_1) = \mu_*(Z_1) + \nu(Z_1)$$

and since μ_* is finite, we must have $\nu(Z_1)=0$, and hence $n_0>1$.

If ν_* is the finite measure defined for Borel set A, by $\nu_*(A) = \nu(A \cap Z_{n_0})$, if $\lambda_* = \mu_* + \nu_*$ and if $Z_* = \left\{x; \ d\mu_*/d\lambda_* \ge \frac{1}{n_0}\right\} (\supseteq Z_{n_0})$, then we have

(3.3)
$$\nu_*(Z'_*)=0$$
.

On the other hand,

$$\mu_*(Z'_*) = \int_{Z'_*} \frac{d\mu_*}{d\lambda_*} d\lambda_* \leq \frac{1}{n_0} \int_{Z'_*} d\lambda_* = \frac{1}{n_0} \mu_*(Z'_*) .$$

Since $n_0 > 1$ and since μ_* is finite, we have

(3.4)
$$\mu_*(Z'_*)=0$$
.

(3.3) and (3.4) imply
$$\lambda_*(Z'_*)=0$$
 or $d\mu_*/d\lambda_* \ge \frac{1}{n_0}$ a.e. λ_* .

 σ -finite measure defined by

$$u_0(A) = \sum_{n=-\infty}^{\infty} \nu_*(A_{(n)})$$

satisfies the required conditions. q.e.d.

Remark. (iii) and $n_0>1$ imply the non-singularity of μ_0 and ν_0 .

From lemma 2, we see that

$$1 \ge \xi_1(x) \ge \frac{1}{n_0} \qquad \text{a.e.} \lambda_0$$

$$1 - \frac{1}{n_0} \ge \xi_2(x) \ge 0 \qquad \text{a.e.} \lambda_0$$

where $\xi_1 = d\mu_0/d\lambda_0$ and $\xi_2 = d\nu_0/d\lambda_0$.

Moreover the invariance property (under the transformation $x\rightarrow x+n$) of μ_0 and ν_0 implies

(3.5)
$$\xi_k(x) = \xi_k(x+n)$$
 $(k=1, 2)$ a.e. λ_0

LEMMA 3. ν_0 and hence λ_0 is absolutely continuous with respect to μ_0 . Especially if $\mu_{0i}(A) = \sum_{n=0}^{\infty} \mu_i(A_{(n)})$, then

$$d\mu_{0i}/d\mu_0 \ge r > 0$$
 a.e. λ_0 .

PROOF. Suppose $\mu_0(A) = \sum \mu(A_{(n)}) = 0$, then

$$\mu(A_{(n)}) = \mu_0(A_{(n)} \cap F_1) = 0$$
, $(n = \cdots -1, 0, 1, 2, \cdots)$

and

$$\begin{split} \nu_0(A_{(n)} \cap F_1) &= \int_{A_{(n)} \cap F_1} d\nu_0 = \int_{A_{(n)} \cap F_1} \xi_2(x) d\lambda_0(x) \\ &\leq \left(1 - \frac{1}{n_0}\right) \lambda_0(A_{(n)} \cap F_1) = \left(1 - \frac{1}{n_0}\right) \nu_0(A_{(n)} \cap F_1) \; . \end{split}$$

Since $\nu_0(A_{(n)} \cap F_1) < \infty$, we have $\nu_0(A_{(n)} \cap F_1) = 0$ $(n = \cdots -1, 0, 1, 2, \cdots)$. Hence

$$\nu_0(A) = \sum \nu(A_{(n)}) = \sum \nu_0(A_{(n)} \cap F_1) = 0$$
. q.e.d.

Let

$$f(x) = \sum_{n=1}^{5} h_n(x) \chi_n(x)$$

$$\tilde{f}(x) = r\xi_1(x) \sum_{0}^{5} \chi_n(x)$$

where

$$h_n(x) = \begin{cases} r\xi_1(x) & (n=1, 2, 4, 5) \\ -\delta r\xi_1(x)\xi_2(x) & (n=3) \end{cases}.$$

 $\chi_n(x)$ is the indicator function of F_n and $\delta > 0$ is chosen so small that

The given Poisson spectrum M(x) can be docomposed as

$$M(x) = M_0(x) + M_1(x)$$

where

$$M_0(x) = -\int_{(x,\infty)} f(t) d\lambda_0(t)$$

(3.7)

$$M_{1}(x) = \int_{(x, \infty)} \left[h_{3}(t) - \sum_{\substack{n=1 \ n \neq 3}}^{5} \left(\frac{d\mu_{0, n}}{d\lambda_{0}} - r \right) \chi_{n}(t) \right] d\lambda_{0}(t) - \int_{(x, \infty)} \prod_{n=1}^{5} (1 - \chi_{n}(t)) d\mu_{M}(t) .$$

It is not so difficult to verify that $M_1 \in M$, and $M_0 \notin M$. Hence the theorem is proved if we can show that

(3.8)
$$\varphi(t) = \exp \int_0^\infty \left(e^{itx} - 1 - \frac{itx}{1 + x^2} \right) dM_0(x)$$

is a ch.f.

LEMMA 4. Suppose that $M_0(x) = N_1(x) - N_2(x)$ $(N_1, N_2 \in M)$ is a bounded, continuous function which vanishes outside some finite interval (0, c). Define a sequence of continuous functions $B_n(x)$ on X recursively by

$$B_1(x) = M_0(x) - M_0(+0)$$

 $B_n(x) = \int_0^x B_{n-1}(x-t)dB_1(t)$.

The function $\varphi(t)$ given by (3.8) is a ch.f. if $B_2(x)$, $B_2(x) + 2B_1(x)$ and $B_3(x)$ are monotone non-decreasing.

PROOF. From the definition of B(x)'s, we have for some γ_0 ,

$$|B_1(x)| \leq \gamma_0 < \infty$$

 $|B_n(x)| \leq \gamma_0^n$.

Hence the series

$$B(x) = \sum_{n=1}^{\infty} \frac{1}{n!} B_n(x)$$

is absolutely and uniformly convergent in $(0, \infty)$. Observing that

$$\int_0^\infty e^{itx} dB_n(x) = \left(\int_0^\infty e^{itx} dB_1(x)\right)^n = \left(\int_0^c e^{itx} dM_0(x)\right)^n$$

we get

$$\begin{split} \exp \int_{0}^{\infty} e^{itx} dM_{0}(x) &= 1 + \sum_{1}^{\infty} \frac{1}{n!} \left(\int_{0}^{c} e^{itx} dM_{0}(x) \right)^{n} \\ &= 1 + \sum_{1}^{\infty} \frac{1}{n!} \int_{0}^{\infty} e^{itx} dB_{n}(x) \\ &= 1 + \int_{0}^{\infty} e^{itx} dB(x) \; . \end{split}$$

Hence, putting

$$\eta = \int_0^\infty rac{x}{1+x^2} dM_{\scriptscriptstyle 0}(x)$$
 ,

we have

$$\varphi(t) = \exp \int_0^c \left(e^{itx} - 1 - \frac{itx}{1+x^2} \right) dM_0(x)$$

$$= e^{-r_0} \cdot e^{-it\eta} \left(1 + \int_0^\infty e^{itx} dB(x) \right)$$

$$= \int_{-\infty}^\infty e^{-itx} dH(x)$$

where

$$H(x) = \begin{cases} e^{-\tau_0} (\epsilon(x+\eta) + B(x+\eta)) & x > -\eta \\ 0 & x \le -\eta \end{cases}$$

As is easily seen, $H(-\infty)=0$, $H(\infty)=\varphi(0)=1$. Hence $\varphi(t)$ is a ch.f. if H(x) is monotone non-decreasing.

It is easy to verify (using induction) that

$$B_n(x) = \int_0^x B_{n-2}(x-t)dB_2(t)$$

is monotone non-decreasing in $(0, \infty)$ whenever $n \ge 4$. Hence

$$B(x) = \sum_{3}^{\infty} \frac{1}{n!} B_{n}(x) + \frac{1}{2} B_{2}(x) + B_{1}(x)$$

is monotone non-decreasing in $(0, \infty)$ and H(x) is also monotone non-decreasing in $(-\infty, \infty)$. q.e.d.

 $M_0(x)$ defined by (3.7) is a bounded, continuous function which vanishes outside the finite interval $(0, 5+\varepsilon)$. Hence for the proof of

the theorem Σ it is enough to show that $B_2(x)$, $B_2(x) + 2B_1(x)$ and $B_3(x)$ are monotone non-decreasing, where

$$B_n(x) = \int_0^x B_{n-1}(x-t)dB_1(t) = \int_{(0,x]} B_{n-1}(x-t)f(\lambda)d\lambda_0(t) \qquad n \ge 1.$$

Lemmas 5 and 6 below are easily verified, lemma 6 being the consequence of the periodicity of $\xi(x)$ (c.f. (3.5)) and the invariance property of λ_0 .

LEMMA 5. For y < x, denote by $U_t(y, x)$ the interval (y-t, x-t]. If $x \notin \bigcup_{n=2}^{10} E_n$ (resp. $x \notin \bigcup_{n=3}^{15} E_n$), there exists an open interval U containing x such that $B_2(x)$ (resp. $B_3(x)$) is constant on U.

Moreover, if
$$n - \frac{4}{3} \varepsilon < x < n + \frac{4}{3} \varepsilon$$
,

(3.10)
$$B_{2}(x) = \int_{(0, x]} B_{1}(x-t)f(t)d\lambda_{0}(t)$$

$$= \sum_{i=1}^{n-1} \int_{F_{i}} \int_{F_{n-i} \cap U_{t}(0, x)} f(u)f(t)d\lambda_{0}(u)d\lambda_{0}(t)$$

$$B_{3}(x) = \sum_{i=1}^{n-2} \int_{F_{i}} B_{2}(x-t)f(t)d\lambda_{0}(t).$$

LEMMA 6. Let

$$n - \frac{4}{3} \varepsilon \leq y < x \leq n + \frac{4}{3} \varepsilon, \quad i+j=n$$

and let

Then we have

- $(i) \quad J_{i,j} = J_{0,n},$
- (ii) if i+j+k=n,

$$\int_{F_k} J_{i,j}(y-t, x-t) \tilde{f}(t) d\lambda_0(t) = \int_{F_0} J_{0,n}(y-t, x-t) \tilde{f}(t) d\lambda_0(t) .$$

LEMMA 7. $B_2(x)$ is monotone non-decreasing.

PROOF. It is enough, because of lemma 5, to show that $B_2(x) \ge B_2(y)$ whenever

$$y < x$$
, $y, x \in E_n$ $(n=2, 3, \dots, 10)$

and hence whenever

$$n-\frac{4}{3}\varepsilon < y < x < n+\frac{4}{3}\varepsilon$$
.

But then we have, using (3.10),

$$B_{2}(x)-B_{2}(y)=\sum_{1}^{n-1}\int_{F_{1}}\int_{F_{n-1}\cap U_{t}(y,x)}f(u)f(t)d\lambda_{0}(u)d\lambda_{0}(t).$$

It is easily seen that there exists an integer i_0 such that $1 \le i_0 \le n-1$, $i_0 \ne 3$ and $n-i_0 \ne 3$. Suppose first that $n \ne 2$, 3, 6. Then

$$(3.11) B_{0}(x) - B_{0}(y) = I_{1} + I_{0} + I_{0}$$

where

$$I_{1} = \sum_{\substack{i \neq 3 \\ n-i \neq 3}} \int_{F_{i}} \int_{F_{n-i} \cap U_{i}(y, x)} f(u) f(t) d\lambda_{0}(u) d\lambda_{0}(t)$$

$$\geq \int_{F_{i_{0}}} \int_{F_{n-i_{0}} \cap U_{i}(y, x)} \tilde{f}(u) \tilde{f}(t) d\lambda_{0}(u) d\lambda_{0}(t)$$

$$= J_{0, n}(y, x)$$

$$I_{2} = \int_{F_{3}} \int_{F_{n-3} \cap U_{i}(y, x)} f(u) f(t) d\lambda_{0}(u) d\lambda_{0}(t)$$

$$(3.13)$$

$$(3.13) I_2 = \int_{F_3} \int_{F_{n-3} \cap U_t(y, x)} f(u) f(t) d\lambda_0(u) d\lambda_0(t)$$

$$\geq -\delta J_{0, n}(y, x)$$

and

$$(3.14) I_3 = \int_{F_{n-3}} \int_{F_3 \cap U_t(y, x)} f(u) f(t) d\lambda_0(u) d\lambda_0(t)$$

$$\geq -\delta J_{0, n}(y, x).$$

From (3.12), (3.13) and (3.14), we have

(3.15)
$$B_{2}(x)-B_{2}(y) \geq (1-2\delta)J_{0,n}(y,x) \geq 0.$$

When n=2, 3 or 6, (3.11) and I_1 are the same as before, while I_2 and I_3 are replaced by

$$I_{2} = I_{3} = \int_{F_{3}} \int_{F_{3} \cap U_{t}(y, x)} f(u) f(t) d\lambda_{0}(u) d\lambda_{0}(t) \ge 0$$

if n=6, and by $I_2=I_3=0$ if n=2 or 3. In any case (3.15) holds true. q.e.d.

LEMMA 8. $B_1(x) + 2B_1(x)$ is monotone non-decreasing.

PROOF. It is enough to show that $B_1(x)+2B_1(x) \ge B_2(y)+2B_1(y)$ when y < x, y, $x \in F_3$. Then, since $F_3 \subset E_3$, we have from (3.15)

$$B_{2}(x) - B_{2}(y) \ge (1 - 2\delta) J_{0, 3} = (1 - 2\delta) \int_{F_{0}} \int_{F_{3} \cap U_{t}(y, x)} \tilde{f}(u) \tilde{f}(t) d\lambda_{0}(u) d\lambda_{0}(t)$$

$$= (1 - 2\delta) r^{2} \int_{F_{0}} \int_{F_{3} \cap U_{t}(y, x)} \xi_{1}(u) \xi_{1}(t) d\lambda_{0}(u) d\lambda_{0}(t)$$

$$= (1 - 2\delta) r^{2} \int_{F_{0}} \int_{F_{3} \cap U_{t}(y, x)} d\mu_{0}(u) d\mu_{0}(t)$$

$$= (1 - 2\delta) r^{2} \nu_{0}(U_{0}(y, x)).$$

On the other hand,

$$(3.17) B_{1}(x) - B_{1}(y) = \int_{F_{3} \cap U_{0}(y, x)} f(t) d\lambda_{0}(t)$$

$$\geq -r\delta \int_{F_{3} \cap U_{0}(y, x)} \xi_{1}(t) d\lambda_{0}(t)$$

$$= -r\delta \nu_{0}(U_{0}(y, x)).$$

The result follows from (3.16), (3.17) and (3.6). q.e.d.

LEMMA 9. $B_3(x)$ is monotone non-decreasing.

PROOF. If
$$n-\frac{4}{3}\varepsilon \leq \eta < \xi \leq n+\frac{4}{3}\varepsilon$$
, $(n=2, \dots, 10)$,

we have from (3.15)

(3.18)
$$B_{i}(\xi) - B_{i}(\eta) \geq (1 - 2\delta) J_{0,n}(\eta, \xi)$$
.

On the other hand.

$$(3.19) B_{\mathfrak{z}}(\xi) - B_{\mathfrak{z}}(\eta) = \sum_{i=1}^{n-1} \int_{F_{i}} \int_{F_{n-i} \cap U_{\ell}(\eta, \xi)} f(u) f(t) d\lambda_{\mathfrak{z}}(u) d\lambda_{\mathfrak{z}}(t)$$

$$\leq \sum_{i=1}^{n-1} \int_{F_{i}} \int_{F_{n-i} \cap U_{\ell}(\eta, \xi)} \tilde{f}(u) \tilde{f}(t) d\lambda_{\mathfrak{z}}(u) d\lambda_{\mathfrak{z}}(t)$$

$$\leq 10 J_{\mathfrak{z}}, \eta, \xi .$$

Now we shall show that $B_3(x) \ge B_3(y)$ if x > y and if $y, x \in E_n$ $(n=3, \dots, 15)$,

$$egin{align*} B_{3}(x) - B_{3}(y) \ &= \sum_{1}^{n-2} \int_{F_{t}} \left(B_{2}(x-t) - B_{2}(y-t) \right) f(t) d\lambda_{0}(t) \ &\geq \int_{F_{1}} \left(B_{2}(x-t) - B_{2}(y-t) \right) f(t) d\lambda_{0}(t) \ &+ \int_{F_{3}} \left(B_{2}(x-t) - B_{2}(y-t) \right) f(t) d\lambda_{0}(t) \end{split}$$

using (3.18), (3.19) with y-t and x-t in place of η and ξ ,

$$\begin{split} & \geq (1-2\delta) \! \int_{F_1} \! J_{\scriptscriptstyle 0,\; n-1}(y-t,\; x-t) \tilde{f}(t) d\lambda_{\scriptscriptstyle 0}(t) \\ & -10\delta \! \int_{F_3} \! J_{\scriptscriptstyle 0,\; n-3}(y-t,\; x-t) \tilde{f}(t) d\lambda_{\scriptscriptstyle 0}(t) \\ & = (1-12\delta) \! \int_{F_0} \! J_{\scriptscriptstyle 0,\; n}(y-t,\; x-t) \tilde{f}(t) d\lambda_{\scriptscriptstyle 0}(t) \! \geq \! 0 \; . \quad \text{q.e.d.} \end{split}$$

PROOF OF THE THEOREM. The theorem follows immediately from lemmas 4, 7, 8 and 9. q.e.d.

Remark. Finite measure ν is in general not absolutely continuous with respect to μ_0 . If it is, we need not introduce either ν_0 or λ_0 and the proof of the theorem will be much simpler.

This is the case if, in particular, finite measure μ is similar to the Lebesgue measure on F_1 .

COROLLARY (H. Cramér). If there exist positive constants k and c such that $M(\in M)$ has first derivative which is not less than k in the interval (0, c), then M has an indecomposable factor.

PROOF. Without any loss of generality we assume,

(3.20)
$$M(x) = \begin{cases} k \cdot (x-c) & 0 < x \leq c \\ 0 & x > c \end{cases}.$$

If 0 < a < c/6, then a, 2a, 4a and 5a are similar points of M with r=1/4. q.e.d.

The theorem 1 can be extended to more general form: "If M is a continuous positive Poisson spectrum, and if there exist a positive constant a and vector $(n_1, n_2, \dots, n_r) \in V$ such that n_1a, n_2a, \dots, n_ra are similar points of M, then M has an indecomposable factor," where V is a set of finite dimensional vectors which satisfy some "suitable conditions." Theorem 1 states that the vector (1, 2, 4, 5) is in V. The

similar argument as the proof of the theorem 1 can apply to show that V contains the vector (2, 3, 5, 6). It can be shown that (0, 1, 3, 4) is also in V (with suitable modification on the definition of similarity), if M satisfies the further assumption

$$M(a+\varepsilon)-M(a)>0$$
 for all $\varepsilon>0$.

Characterization of V is one of the problem to solve. A more general problem is, of course, the characterization of A.

The similar problem of characterization of V was solved by P. Lévy [3], when M is a step function which has its jump points on the finite positive integers. Note that all the points of increase are similar in this case. According to Yu. V. Linnik [4], V is trivial when the normal factor γ is positive, since then M has always an indecomposable factor. This means that V can be any set (provided of course that M is continuous).

3.2 The following theorem is also a generalization of H. Cramér's theorem.

THEOREM 2. Let $M \in M$ be continuous and suppose for any $\varepsilon_1 > 0$, there exist points of increase a_1 and a_2 of M which are mutually non-singular and $\varepsilon_1 > a_2 > a_1/3 > a_1 > 0$.

If there exist a finite interval (b, c) and a positive number k such that

$$M(x)-M(y) \ge k \cdot (x-y)$$

whenever

$$0 < b \leq y < x \leq c < \infty$$
,

then M has an indecomposable factor.

PROOF. Let

$$0\!<\!arepsilon_1\!<\!b/5$$
 , $(c\!-\!b)/5$, $0\!<\!a_1\!<\!3a_1\!<\!a_2\!<\!a_1\!+\!a_2\!<\!arepsilon_1$, $0\!<\!arepsilon\!<\!a_1/10$,

where a_1 and a_2 are points of increase of M which are mutually non-singular. Let ν_1 and ν_2 be finite measures on (X, S) corresponding to the non-decreasing, continuous functions

$$M_i(x) = \left\{egin{array}{ll} 0 & 0 < x < a_1 - arepsilon \ M(x + a_i - a_1) - M(a_i - arepsilon) & a_1 - arepsilon \leq x < a_1 + arepsilon \ M(a_i + arepsilon) - M(a_i - arepsilon) & a_1 + arepsilon \leq x \ i = 1, \ 2 \end{array}
ight.$$

Let $\xi_1(x)$ and $\xi_2(x)$ be the Radon-Nikodym derivatives of ν_1 and ν_2 with respect to the finite measure $\nu_0 = \nu_1 + \nu_2$ and let

$$\xi(x) = \min (\xi_1(x), \xi_2(x))$$

$$E_n = (a_n - \varepsilon, a_n + \varepsilon] \qquad (n = 1, 2)$$

$$E_0 = (b, c)$$

$$E = \{x; \xi(x) > 0\} \cap E_1.$$

Non-sigularity of ν_1 and ν_2 implies $0 < \nu_0(E) = \nu_0(E \cap P(M))$, and we assume without any loss of generality that $a_1, a_2 \in E \cap P(M)$. Then the function

$$g(x) = \frac{\xi(x)}{\xi_1(x)} \chi_{E_1}(x) + \frac{\xi(x-\alpha)}{\xi_1(x-\alpha)} \chi_{E_2}(x) + \chi_{E_0}(x)$$

is defined a.e. ν_0 and satisfies

$$1 \ge g(x) \ge 0$$
 a.e. ν_0 .

The function defined by

$$M_{*}(x) = \left\{ egin{array}{ll} -\int_{(x, \infty)} g(t) d\mu_{\mathtt{M}}(t) + k \cdot (b-c) & x < b \ k \cdot (x-c) & b \leq x < c \ 0 & x \geq c \end{array}
ight.$$

belongs to M with $M-M_*$. a_1 and a_2 are similar points of M_* with r=1/2, i.e., if ν_{*1} and ν_{*2} are the measures corresponding to the monotone functions defined by

$$M_{**}(x) = \left\{ egin{array}{ll} 0 & x < a_1 - arepsilon \ M_*(x + a_k - a_1) - M_*(a_k - arepsilon) & a_1 - arepsilon \leq x < a_1 + arepsilon \ M_*(a_k + arepsilon) - M_*(a_k - arepsilon) & a_1 + arepsilon \leq x \ \end{array}
ight.$$

then we have

$$(3.21) v_{*1} = v_{*2} (= v_*).$$

We shall show that M_* has an indecomposable factor. Let

$$0 < a_1 < a_2 < 5a_2 < b + \varepsilon < a_3 < b + 2\varepsilon$$

 $\alpha = a_2 - a_1$, $\beta = a_1$ $(\alpha > 2\beta)$
 $a_4 = a_3 + \alpha$,
 $a_5 = a_4 + \alpha = a_3 + 2\alpha$

$$a_{5}=a_{5}+(\alpha-\beta)=a_{3}+3\alpha-\beta$$
 $a_{7}=a_{6}+\beta=a_{3}+3\alpha$
 $a_{8}=a_{7}+(\alpha-\beta)=a_{3}+4\alpha-\beta$
 $a_{9}=a_{8}+\beta=a_{3}+4\alpha$
 $a_{10}=a_{9}+\beta=a_{3}+4\alpha+\beta$
 $a_{11}=a_{10}+\alpha=a_{3}+5\alpha+\beta$ ($< c-\varepsilon$)
 $E_{n}=(a_{n}-\varepsilon,\ a_{n}+\varepsilon]$
 $F_{n}=(a_{n}-\varepsilon/2,\ a_{n}+\varepsilon/2]$.

Let μ be the Lebesgue measure on (X, S) and ν be the non-zero finite measure defined by

(3.22)
$$\nu(A) = \nu_*(A) + \nu_*(A_{(\alpha)})$$
where
$$A_{(\alpha)} = \{x: x - \alpha \in A\}.$$

and λ be the σ -finite measure $\lambda = \mu + \nu$. Let

$$f(x) = \begin{cases} \frac{d\nu}{d\lambda} & \text{if } n = 1, 2 \\ \frac{d\mu}{d\lambda} & \text{if } n \ge 3, n \ne 7 \\ -\delta \frac{d\mu}{d\lambda} \chi_{0, 7}(x) & \text{if } n = 7 \end{cases}$$

where $\chi_{0, \tau}(x)$ is the indicator function of F_{τ} and δ is a positive number such that

(3.23)
$$(1-\delta)\nu(F_1) - 2\delta > 0$$

$$1 - 4\delta > 0 .$$

Let

$$f(x) = \sum_{n=1}^{11} f_n(x) \lambda_n(x)$$
,
 $\tilde{f}(x) = \frac{d\nu}{d\lambda} \sum_{n=1}^{2} \lambda_n(x) + \frac{d\mu}{d\lambda} \sum_{n=1}^{11} \lambda_n(x)$

where $\chi_n(x)$ is the indicator function of E_n $(n=1, 2, \dots, 11)$. Note that we have

$$1 \ge \tilde{f}(x) \ge 0$$
 a.e. λ

$$f(x) = \begin{cases} \tilde{f}(x) & x \notin F_{1} \\ -\delta \tilde{f}(x) = -\delta k & x \in F_{2} \end{cases}$$

$$f(x) = \begin{cases} f(x+\alpha) & x \in E_{1} \\ f(x-\alpha) & x \in E_{2} \end{cases}$$

$$(c.f. (3.21) and (3.22)).$$

 M_* can now be written as

$$M_{\star}(x) = M_{0}(x) + M_{1}(x)$$

where

(3.24)
$$M_{0}(x) = -\int_{(x, \infty)} f(t)d\lambda(t)$$

$$M_{1}(x) = -\int_{(x, \infty)} \left(\frac{d\mu}{d\lambda} \chi_{E}(t) - f_{1}(t)\chi_{1}(t) \right) d\lambda(t)$$

and $\chi_E(x)$ is the indicator function of $E=E_0-\bigcup_1^{11}E_n$. It is not difficult to verify that $M_1\in M$ and that $M_0\notin M$. We shall prove that $\varphi(t)$ of (3.8) is a ch.f. by showing that $B_2(x)$, $B_2(x)+2B_1(x)$ and $B_3(x)$ are monotone non-decreasing, where B_n 's are defined as in the lemma 4. Let $Q_1=\{1,2,\cdots,11\}$, $Q_2=Q_1\times Q_1$ and $Q_3=Q_2\times Q_1$. When $(i,j)\in Q_3$ (resp. $(i,j,k,)\in Q_3$), write $I_{i,j}(I_{i,j,k})$ to denote the set of all elements $(i',j')\in Q_3$ ($(i',j',k')\in Q_3$) such that

$$a_i + a_j = a_{i'} + a_{j'}$$

 $(a_i + a_j + a_k = a_{i'} + a_{j'} + a_{k'})$.

 $I_{i.}$, consists of at most 3 elements.

Write
$$E_{i, j} = (a_i + a_j - 2\varepsilon, a_i + a_j + 2\varepsilon)$$
 $(E_{i, j, k} = (a_i + a_j + a_k - 3\varepsilon, a_i + a_j + a_k + 3\varepsilon))$ where $(i, j) \in Q_i$ $((i, j, k) \in Q_i)$. Clearly $E_{i, j} = E_{i', j'}$ $(E_{i, j, k} = E_{i', j', k'})$ if and only if $(i', j') \in I_{i, j}$ $((i', j', k') \in I_{i, j, k})$.

Verification of the lemmas 10 and 11 below is not so difficult and is omitted here.

LEMMA 10. If $x \notin \bigcup_{(i, j) \in Q_2} E_{i, j}$ (resp. $x \notin \bigcup_{(i, j, k) \in Q_3} E_{i, j, k}$), there exists an open interval U containing x such that $B_2(x)$ (resp. $B_3(x)$) remains constant on U. Moreover, if $a_i+a_j-4\varepsilon \le y < x \le a_i+a_j+4\varepsilon$, then we have

(3.25)
$$B_{2}(x) - B_{1}(y) = \sum_{k} \int_{E_{k}} (B_{1}(x-t) - B_{1}(y-t)) f(t) d\lambda(t)$$

where the summation extends over all $k \in Q_1$ such that for some $l \in Q_1$, $(l, k) \in I_{i, j}$. If y < x, y, $x \in E_{i, j, k}$, then

(3.26)
$$B_{3}(x) - B_{3}(y) = \sum_{k'} \int_{B_{k'}} (B_{2}(x-t) - B_{2}(y-t)) f(t) d\lambda(t)$$

where the summation extends over all $k' \in Q_1$ such that for some $(i', j') \in Q_2$, $(i', j', k') \in I_{i, j, k}$.

LEMMA 11. For $(i, j) \in Q_2$ and $y, x \in E_{i, j}$, write

(3.27)
$$J_{i,j} = J_{i,j}(y, x) = \int_{E_i} \int_{E_j \cap U_t(y, x)} \tilde{f}(u) \tilde{f}(t) d\lambda(u) d\lambda(t) .$$

Then we have

(i) if $(i', j') \in I_{i, j}$ and if $i' \leq j'$, $i \leq j$ (or i' > j', i > j), then $J_{i, j} = J_{i', j'}$ and $J_{j, i} = J_{j', i'}$,

(ii)
$$\int_{E_{i}} \int_{E_{j} \cap U_{t}(y, x)} f(u) f(t) d\lambda(u) d\lambda(t)$$

$$= \begin{cases} J_{i, j} & \text{if } i \neq 7, j \neq 7 \\ -\delta J_{i, j} & \text{if } i = 7, j \neq 7 \text{ or } i \neq 7, j = 7 \end{cases}$$

$$\delta^{2} J_{i, j} & \text{if } i = i = 7.$$

(iii) suppose $(i, j, k) \in Q_3$, $(i', j', k') \in I_{i, j, k}$, $y, x \in E_{i, j, k}$, $i \le j$, $i' \le j'$ (or i > j, i' > j') and $k \ge 3$, $k' \ge 3$ (or k < 3, k' < 3), then we have

$$\int_{E_k} J_{i, j}(y-t, x-t) \tilde{f}(t) d\lambda(t) = \int_{E_{k'}} J_{i', j'}(y-t, x-t) \tilde{f}(t) d\lambda(t) .$$

LEMMA 12. $B_2(x) \ge B_2(y)$ if x > y.

PROOF. According to lemma 10, it is enough to prove only for y, $x \in E_{i, j}((i, j) \in Q_2)$, and hence for

$$a_i + a_j - 4\varepsilon \leq y < x \leq a_i + a_j + 4\varepsilon$$
.

Now we can find an element (i_0, j_0) of $I_{i,j}$ such that $i_0 < j_0$, $i_0 \neq 7$, and

 $j_0 \neq 7$. Suppose first $(7, r) \in I_{i, j}$ for some $r \in Q_1(r \neq 7)$, then using (3.25) we have

(3.28)
$$B_{2}(x) - B_{2}(y) = \sum_{\substack{(p, q) \in I_{i, j} \\ p \leq q}} \int_{E_{p}} \int_{E_{q} \cap U_{t}(y, x)} f(u) f(t) d\lambda(u) d\lambda(t) + \sum_{\substack{(p, q) \in I_{i, j} \\ p > q}} \int_{E_{q} \cap U_{t}(y, x)} f(u) f(t) d\lambda(u) d\lambda(t)$$

$$(3.29) \geq I_{1} + I_{2} + I_{3} + I_{4}$$

where

$$\begin{split} I_1 &= \int_{E_{i_0}} \! \int_{E_{j_0} \cap U_t(y, x)} f(u) f(t) d\lambda(u) d\lambda(t) = J_{i_0, j_0} \\ I_2 &= \int_{E_{j_0}} \! \int_{E_{i_0} \cap U_t(y, x)} f(u) f(t) d\lambda(u) d\lambda(t) = J_{j_0, i_0} \\ I_3 &= \int_{E_{\tau}} \! \int_{E_{\tau} \cap U_t(y, x)} f(u) f(t) d\lambda(u) d\lambda(t) \geqq -\delta J_{\tau, \tau} \\ I_4 &= \int_{E_{\tau}} \! \int_{E_{\tau} \cap U_t(y, x)} f(u) f(t) d\lambda(u) d\lambda(t) \geqq -\delta J_{\tau, \tau} \,. \end{split}$$

Hence

(3.30)
$$B_{2}(x)-B_{2}(y) \geq (1-\delta)(J_{i,j}+J_{j,i}) \geq 0.$$

If for any $r \in Q_1$, $(r, 7) \notin I_{i, j}$, then (3.29) I_1 and I_2 are the same as before while $I_3 = I_4 = 0$.

If $(7, 7) \in I_{i, j}$, then I_3 and I_4 are replaced by

$$I_3 = I_4 = \int_{E_7} \int_{E_7 \cap U_t(y, x)} f(u) f(t) d\lambda(u) d\lambda(t) = \delta^2 J_{7, 7} \ge 0$$
.

In any case inequality (3.30) holds true. q.e.d.

LEMMA 13.
$$B_1(x) + 2B_1(x) \ge B_2(y) + 2B_1(y)$$
, if $x > y$.

PROOF. It is enough to consider the case y, $x \in F_1$. Since $F_1 \subseteq E_2 \subseteq E_1$, we have by (3.30)

$$(3.31) B_{2}(x) - B_{2}(y) \ge (1 - \delta)(J_{1, 6} + J_{6, 1}) \ge (1 - \delta)J_{1, 6}$$

$$= (1 - \delta) \int_{E_{1}} \int_{E_{6} \cap U_{t}(y, x)} f(u)f(t)d\lambda(u)d\lambda(t)$$

$$\ge (1 - \delta) \int_{F_{1}} \int_{E_{6} \cap U_{t}(y, x)} kf(t)d\mu(u)d\lambda(t)$$

$$= (1-\delta)k \int_{F_1} \int_{y-t}^{x-t} du d\lambda(t) = (1-\delta)k \cdot (x-y) \cdot \lambda(F_1)$$

$$\geq (1-\delta)k \cdot (x-y) \cdot \nu(F_1).$$

On the other hand,

(3.32)
$$B_1(x) - B_1(y) = \int_{U_0(y,x)} f(t) d\lambda(t) = -\delta k \int_y^x dt = -\delta k \cdot (x-y)$$
.

The result follows from (3.23), (3.31) and (3.32). q.e.d.

LEMMA 14. $B_3(x) \ge B_3(y)$ if x > y.

PROOF. If

$$a_i + a_i - 4\varepsilon \le \eta < \xi \le a_i + a_i + 4\varepsilon$$

we have from (3.30)

(3.33)
$$B_{2}(\xi) - B_{2}(\eta) \geq (1 - \delta)(J_{i,j}(\eta, \xi) + J_{j,i}(\eta, \xi)).$$

On the other hand,

$$(3.34) B_{2}(\xi) - B_{2}(\eta) = \sum_{k} \int_{E_{k}} (B_{2}(\xi - t) - B_{2}(\eta - t)) f(t) d\lambda(t)$$

$$= \sum_{\substack{(\alpha, \beta) \in I_{i, j} \\ \alpha \leq \beta}} \int_{E_{\alpha}} \int_{E_{\beta} \cap U_{\xi}(\eta, \xi)} f(u) f(t) d\lambda(u) d\lambda(t)$$

$$+ \sum_{\substack{(\alpha, \beta) \in I_{i, j} \\ \alpha > \beta}} \int_{E_{\alpha}} \int_{E_{\beta} \cap U_{\xi}(\eta, \xi)} f(u) f(t) d\lambda(u) d\lambda(t)$$

$$\leq 3(J_{i, j}(\eta, \xi) + J_{j, i}(\eta, \xi)).$$

Now let $y, x \in E_{i, j, k}$, y < x. It is enough to consider the case $(\alpha, \beta, 7) \in I_{i, j, k}$ for some $(\alpha, \beta) \in Q_3$, since otherwise $B_3(x) \ge B_3(y)$ is clear. Then we can find an element (i_0, j_0, k_0) of $I_{i, j, k}$ such that $k_0 \ge 3$ and $k_0 \ne 7$. Using lemmas 10, 11 and 12 as well as the inequalities (3.33) and (3.34) (replacing η and ξ by y-t and x-t, respectively), we get

$$\begin{split} B_{\mathfrak{z}}(x) - B_{\mathfrak{z}}(y) & \geq \int_{E_{k_0}} (B_{\mathfrak{z}}(x-t) - B_{\mathfrak{z}}(y-t)) f(t) d\lambda(t) \\ & + \int_{E_1} ((B_{\mathfrak{z}}(x-t) - B_{\mathfrak{z}}(y-t)) f(t) d\lambda(t) \\ \\ & \geq (1-\delta) \int_{E_{k_0}} (J_{i_0, j_0}(y-t, x-t) + J_{j_0, i_0}(y-t, x-t)) \widetilde{f}(t) d\lambda(t) \end{split}$$

$$-3\delta\!\!\int_{E_7} (J_{a,\,\beta}(y-t,\,x-t) + J_{\beta,\,a}(y-t,\,x-t)\tilde{f}(t)d\lambda(t)$$

$$= (1-4\delta)\!\!\int_{E_k} (J_{i,\,\beta} + J_{\beta,\,i})\tilde{f}(t)d\lambda(t) \! \ge \! 0 \; . \quad \text{q.e.d.}$$

PROOF OF THE THEOREM. The theorem follows from lemmas 4, 12, 13 and 14. q.e.d.

COROLLARY 2. If there exists a positive number c such that $M(x) \in M$ has a positive and continuous first derivative in the interval (0, c), then M has an indecomposable factor.

3.3 The following theorem is another generalization of H. Cramér's result.

THEOREM 3. Let $M \in M$. If there exist three constants b, c and k such that $0 \le b < 2b < c < \infty$, k > 0, and $M(x) - M(y) \ge k \cdot (x - y)$ whenever b < y < x < c, then M has an indecomposable factor.

PROOF. Without loss of generality, we assume

$$M(x) = \begin{cases} -k \cdot (c-b) & \text{if } 0 < x < b \\ -k \cdot (c-x) & \text{if } b \leq x < c \\ 0 & \text{if } x \geq c \end{cases}.$$

Let

$$c-2b \ge 2\alpha + 3\varepsilon > 0$$

 $a_1 > \alpha > 0$
 $\varepsilon < \alpha/6, \quad \varepsilon < (a_1 - \alpha)/6$
 $a_1 = b + \varepsilon$
 $a_2 = a_1 + \alpha$
 $a_3 = 2(a_1 - \alpha)$
 $a_4 = 2a_1 - \alpha$
 $a_5 = 2a_1$
 $a_6 = a_5 + \alpha$
 $a_7 = a_6 + \alpha$.

Let

$$f(x) = k \left(\sum_{1}^{4} \chi_{n}(x) - \delta \chi_{s}(x) + \sum_{0}^{7} \chi_{n}(x)\right)$$

$$\tilde{f}(x) = k \sum_{1}^{7} \chi_{n}(x)$$

$$g(x) = k\chi_0(x) + \delta k\chi_s(x)$$

where $\chi_n(x)$ is the indicator function of the interval $E_n = (a_n - \varepsilon/3, a_n + \varepsilon/3)$ if $n \ge 1$ and of the set $(b, c) - \bigcup_{n \ge 5} E_n$ if n = 0.

The Poisson spectrum M(x) is decomposed as

$$M = M_0 + M_1$$

where

$$M_0(x) = -\int_x^\infty f(t)dt \quad \notin M$$
 $M_1(x) = -\int_x^\infty g(t)dt \quad \in M .$

The result follows from the essentially same argument as before.

The process is much simpler in this case and the further detail is omitted.

THE INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

- [1] H. Cramér, "On the factorization of certain probability distributions," Arkiv för Mathematik, Band 1, Nr. 7 (1949), 61-65.
- [2] P. R. Halmos, Measure Theory, 2nd ed., D. van Nostrand Comp., New York, 1951.
- [3] P. Lévy, "Sur les exponentielles de polynomes et sur l'arithmétique des produits de lois de Poisson," Ann. Ecole. norm. sup., 73 (1937), 231-292.
- [4] Yu. V. Linnik, Decomposition of the Probability Laws, Izdat. Leningrad Univ., Leningrad, 1960, (in Russian).
- [5] E. Lukacs, Characteristic Functions, Griffin's Stat. Mono., London, 1960.