ON THE ASYMPTOTIC DISTRIBUTION OF THE LIKELIHOOD RATIO
UNDER THE REGULARITY CONDITIONS DUE TO DOOB*

JUNJIRO OGAWA AND SADAO IKEDA

Summary

The concepts of the asymptotic maximum likelihood estimates—AMLEs
in short—and their asymptotic identity are introduced in section 1. They
seem to be more adequate than the usual one for uses in the large sample
theory. The AMLE is a slightly weakened version of the usual maxi-
mum likelihood estimate and therefore it should have a bit wider applica-
bility than the original one. The asymptotic normality of a consistent
AMLE and Wilks’ theorem concerning the asymptotic distribution of the
statistic —2log 4, where 1 is the likelihood ratio, ecan be obtained under
the regularity conditions due to Doob in section 2. A set of conditions
which assure the existence of a unique and consistent AMLE is presented
in section 3 and in the final section 4 the proof of the existence of the
unique and consistent AMLE under those conditions is given.

1. Introduction

Let the basic space of the distribution be a certain os-finite measure
space (R, S, p), where R is an abstract space, S is a o-field of subsets
of R, and g is a o-finite measure defined over the measurable space (R,
S), which is an abstract counterpart of, for instance, the space R of all
non-negative integers with the counting measure p defined over the o-
field S consisting of all subsets of R, or the Euclidean space R of any
dimensions with the Lebesgue measure z defined over the Borel field S
of subsets of R containing all Borel sets of R, etc.

Let us consider a family of probability measures defined over (R, S),

(1.1) P={Pf; 66},

where the labeling parameter 6'=(4,, ---, 6,) ranges over an open do-
main 6 of the s-dimensional Euclidean space whose closure is compact,

* This work has been motivated by the work of Ogawa, Moustafa and Roy [3].
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and X designates an observable random variable—possibly a random
vector. Here we assume that (i) these probability measures are ab-
solutely continuous with respect to g, and (ii) the ranges of these prob-
ability measures are equal to each other up to a g-null set.

By the assumption (i), for every Pf e & the generalized probability
density function f(z, ) with respect to x is uniquely determined up to
p-equivalence so that

(1.2) Ps"(A)=SAf(w, O)dy

for any subset A belonging to S. The carriers of f(x, 8)’s are, by the as-
sumption (ii) above, the same up to a g-null set, and therefore, there
will be no loss of generality in assuming that they are identical with
the whole space R.

Suppose that n independent observations Xj, ---, X, are made on X.
Then the vector variable X,=(X, ---, X,) is distributed over the prod-

uct measure space (R,, S,, ,u,,)-—-ﬁ(R, S, ) with the probability measure
P;» having the generalized probability density function with respect to g,

(1.3) L(x», 0)=]1@s, 6)

for every 8¢ 6.

These are basic assumptions which will be laid throughout the pre-
sent paper.

Now we give a definition of the asymptotic maximum likelihood esti-
mate which is a slightly modified version of the usual maximum likeli-
hood estimate.

DEFINITION 1.1. Suppose that there exists a sequence of statistics

énzé,,(X,.), n=1,2, --., where é,,(x,.) is defined almost everywhere (p,)
on R, and ranges over a subset containing © of the s-dimensional Euclid-
ean space. If

1.4) L(x,, én)zs'ug L(x,, 6)
for all x, belonging to a certain subset C, of R, for which

(1.5) P (C)—>1 as nm—soo

for every 8¢ O, then the statistic én is said to be the n-th approximation
of the asymptotic maximum likelihood estimate—designated as AMLE
hereafter—for 6,
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DEFINITION 1.2. Two sequences T,=#X,), n=1,2, ---, and T*=

t*(X,), n=1,2, ..., of random vectors are said to be asymptotically
identical if

(1.6) P {T,=T}}—>1 as n—oo

for every @ ¢ 0.
The limiting distributions of measurable functions 9.(T) and g.(T¥),

provided that they exist, must be the same if 7, and T* are asymptoti-
cally identical.

J. L. Doob [1] showed the asymptotic normality of the variable
vn (é,,—o), for the usual maximum likelihood estimate @, under certain
regularity conditions. He also gave the multi-parametric version of his
theorem. In these theorems the existence of the MLE’s is assumed.
However, it is difficult to ascertain their existence. Now, those theorems
hold true for AMLE, too, and the existence of AMLE can be seen without
difficulty as shown in sections 3 and 4. On the other hand, S. S. Wilks
[4] stated that the statistic —21log 1, where 2 is the likelihood ratio, con-

verges in law to a chi-square distribution as the sample size tends to
infinity.

In the following we shall treat the Wilks theorem and the AMLE.
2. Asymptotic normality of a consistent AMLE and the Wilks theorem
for AMLE

The necessary assumptions on the generalized probability density
functions under consideration are listed below. They are due to Doob [1].
(I) For any fixed point 8, € ©, there exists a neighbourhood of @,

U, «)=1{6;6—a, | <&l ,

where ¢, can be chosen arbitrarily small but independently of 8,, such
that, for every 6 € U(,, ¢,), the function f(z, @) is expressed in the form

2.1) log f(x, 8)=log f(x, 6,)+(6—6,)a(x, 8,

+%(0—0«)’ﬁ(x, 0,)(0—8,)+o(x, 6,, ),

for almost all (#) « in R, where the functions

—al(xy 00)—
a(x, 6,)= and Bz, 6,)= [ B:s(z, 6) ],
_a(®, 8,)_| - B:(x, 0,)=PB;:(x, 6,)
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are measurable (S) and integrable (Pfo), and p(x, 8,, 8) has partial deriva-
tives

0

Ti(x’ 00’ 0)= 60 p(x’ 00’ 0)! i=19 2! ) S 1)

at all @ € U(8,, ¢) and for almost all (¢) z in R.
(II) Each component of the vector

~ P, 6,)

2.2 g, 0)= : with ¢z, 8)= sup 1@ 0n O]
: 0cU@, ) |0—8,|*
_$o(x, 6,)_|

7::1; 2: 0, 8,

is integrable (P;‘;).
(III) The function dé(x, 8,, 8) defined by

@3)  f(@ 0)=1(, 0){1+(0—0)alz, 0)
+ 5 (O—0)1B, 0)+a(, 0)a'(, 6))(0—0)+0(a, 6, 6)} ,

satisfies the condition

EioX, 6, 0 _

2.4) la-l—lo?ll—-o |6 —6,

where E;‘; denotes the expectation with respect to P;:.
(IV) The symmetric matrix

(2.5) V(6)=—E7[B(X, 6)]

of order s is positive definite for every @ in 6.
Now one can state the AMLE version of the Doob theorem in the
following form.

PROPOSITION 2.1. Under the conditions (I) through (III), we have

(2.6) Efla(X, 6)]=0,
and
(2.7) Erla(X, 8)a'(X, 8,)]=V(6,)

Jor any fixed 6, ¢ 6.
Under the conditions (I) through (IV), for a consistent AMLE 6,,
if it exists at all, Jn—(én—ﬁo) converges in law (Pi) to the s-dimensional
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normal distribution N(O, V(6,)"") as n—>co.

The proof runs with a slight modification in the original proof (see
Doob [1]).
Let us consider the problem of testing a composite null-hypothesis

H;) : 0l=0ll)n tt 0r=02-, ('r<3) ,

where &, ---, # are given values. The subset of & which specifies the
null-hypothesis H, is denoted by w,={0; 6,=6, ---, 6,=6}}. The likeli-
hood ratio statistic 4 is defined by

(2.8) A(X:)=sup L(X,, 6)/sup L(X,, 6) .

The AMLE version of the Wilks theorem is as follows:

PROPOSITION 2.2. Under the conditions stated in the previous prop-
osition (i.e., assuming the existence of consistent AMLESs for o, and for
0) the statistic —2log A(X,) converges in law (P};) to the chi-square dis-
tribution of r degrees of freedom as n—>oo for every 6, ¢ w,.

3. Consistency and uniqueness of the ALS

In this section, we shall be concerned with the solution of the like-
lihood equation and consider its consistency and uniqueness up to the
asymptotic identity.

Let us consider the likelihood equation in 8, i.e.,

d _
3.1) 3 log L{x,, 8)=0,

and suppose that there exists a function 5n=5n(x,,), defined almost every-
where (¢,) on R,, such that

0 Ay
(3.2) -a—o—- log L(x,,, 0,.)—0

for all x, belonging to a certain set C, € S, for which
P (C)>1 as n—oo,

for all @ € 6. Then we shall say that the statistic é,,:é,,(X,,) is an asymp-
totic likelthood solution—ALS, in short—for 6.

Now, in addition to the conditions (I) through (IV) in the preced-
ing section, we impose further two conditions as follows:
(V) In the expansion (2.1), the function p(z, 6,, @) is twice partially
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differentiable with respect to the components of @. for almost all (x) =
in B. If we put

2
¢ij(x’ 00)= SUD Irij(x’ 001 0) I ) Tij(x: 007 0)= a P(w, 00: 0) ’
8elU 00, so) aﬂ,aﬁj
then
(3.3) MO)=max Ei[g.,(X, 6)1<v(6) /5",

where v(6,) is the minimum characteristic root of V{(8,).
(VI) For any fixed 6,, the Kullback-Leibler mean information

6,)
16,: 0)=Ef | log LU0V ]
6,:6) 5,| 108 7(X, 0)
which is once partially differentiable with respect to each component of
6 at 6, by the conditions (I) and (II), satisfies the following condition :
for any given ¢>0, there exists a positive constant & such that

3.4) wa‘?e—I(Bo: B)I >d for every @ outside of U(6,, ¢).

As for the consistency of the likelihood solution, it is shown that

LEMMA 38.1. Under the conditions (I) through (VI), any ALS for ©,
if it exists, is consistent.

ProOOF. Since E’}o [(9/00) log f(X, 0)]= —(9/00)I(8,: 6), (1/n)(d/d6) log L
(X., 0) converges in probability (P;’;) to —(0/00)1(0, : 8) as n—oo, for every
6 €0, due to the Khinchin theorem. Hence we can put

1 a J
3. — v O)=——"1(6,:6 u 0o, 0)
(3.5) o 08 Lixw 0)=——2-1(0,: 6)+3(x., 6,, 6)

for almost all (z,) x,€ R, and for every 8 €6. u(X,, 6,, 6) converges in
probability (Pﬁ“)) to the null-vector for every & ¢ ®. Therefore, if we put

Di(8,, )= {x:; |¥(x., 8, 0)| < 21,

then, it follows that
(3.6) P};n(Dn(ﬁu, 0))—1 as n—oo for every 6 €6.
By the condition (3.4) and (8.5), it is seen that

1 9 P
3. = % log L(x,, 6)|>-2-
(3.7 w5 108 (x )>2
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for every 6 ¢ U(8,, ¢) and for every x,c D(8,, 8). Let
B(6,, €)= {xa; |0,—0,| Ze} NC,.

Then, if x, € B.(8,, ¢)\D.(8,, 8) for some 8 ¢ U(8,, ¢), it cannot hold true
that

F;] A
'—_1 L ny 071 n 0°
=g 108 Lix, 0.(x.))#

This means that B,(8,, ) \D.(6,, 6)=@, and hence, on account of (3.6),
that P;‘on (B.(8,, €))>0 as n—>oo. In other words, if we put

A0y, )=CiN\ (x5 6,—6,] <e},
then
(3.8) P;‘;n(A,,(ﬁ.,, e)—>1 as n-—>oo,
which shows the consistency of the ALS 6,.
For the later use we give
LEMMA 3.2. If @ and B are s-dimensional vectors such that
a=AB,

where A 18 a symmetric and positive definite matrix of order s, with
characteristic roots a,<a,< --- <a,, then

la|<| s -a-|B].

As for the uniqueness of the ALS, one can show that

LEMMA 3.3. Under the conditions (I) through (VI), if there are two
ALSs for O, then they are asymptotically identical as n—>co.

PROOF. What is required is to show that
(3.9) P {6,=63)>1 as n—co for every fixed 6, €6
for two ALSs 6, and 6%.

Since
—a% log L(x., 8,)=0 for every x,€¢C,,

and

.a%log L(x,, 65)=0 for every x,e€C¥
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with

P;n(C)—>1 and Pin(C¥)—1 as n—oco,

and by lemma 8.1, 6, and ox converge in probability (P;‘;) to 6,, we
obtain

38.10) L Sa@, 6)+ [
n

k=1

1 ” A 1 n A
=31 6@ 000,00+ L S5z, 6, 6)=0

and

1 » 1 = N 1 » R
B1) - Sialm, 00+ 33 flen 00|62 -0)+-L 3176, 6, b1)=0

k=1
for every x,¢€ C,(6,), where C,(8,) is defined by
C8)=C.N\CEN(x.; |6,—8,] <e, and [6F—6,] <e},
for which

3.12) P};n (Cu(8))—>1 as m—>oo.
From (3.10) and (3.11) it follows that

1 2 A A 1 =2 A A
(3.13) [7 > B, 0«)] (0n—0,’f)+7 2 [r(@s, 64, 6,)—7(@s, 6,, 67)]=0
for every x,€C,8,). The condition (V) gives us

iz, 6, én)_Ti(x: 6, é:)=§711(x9 6, 0:)(&;/—:’:‘1), =1, ..., s,

where 8} is a point on the line segment @:g,‘!‘ and hence it belongs to
U(é,, ¢,) for every x, e C,8,). Therefore

| 7(x, 6, 6.)—7(z, 8, 6%)| < «/i jz 8z, 8,) - | 0, —6%],
,J=1
and consequently

s
=32
i, J=

1

(25 6w, 00) 16,021,

1

(3.14) |1 S [r(a, 0, )71, 6., 6]

for all x, € C,(8,).

Since (1/n) X3%_.¢:,(Xk, 8,) converges in probability (P3) to E;[4:4(X, 6,)]
as n—>oo, one can find, for any given ¢>0, a subset C,.(8,) of C,(8,) such
that

Pin(Cu(0))—>1 as m—oo
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and

n

S [7(xe, 60, 0.2)— (s, 65, 6)]

k=1

(3.15) {% <8(h(0)+¢) | ,— %1,

for every x, € C..(8,).
Now, by (3.13), we have

(3.16) 6,—01=[-—1% pw., 00| (L e, 0, 61, 6., 691)

for every x, ¢ C,,(0,) defined by

Cal8)=Cu @ {2 det| —L 5 p(a, )] >0}
for which P7»(C,(6,))—>1 as n—>oo. Since all the characteristic roots of
(—1/n) 3L,B(Xy, 6,) converge in probability (P;‘;) to the corresponding

characteristic roots of ¥(6,) as n—>oo, by lemma 3.2, (8.15) and (3.16),
one obtains

(3.17) 16,— 63| < SLBO)Ee) |5 Gx
v(0,)—e

for every x, belonging to a certain subset A,(8,) of C.(8,) such that
(3.18) Pin(A(6,))—>1 as n—oo.

(6) —s""h(8))

Since ¢ can be chosen arbitrarily small, i.e., e< o]
s

one

gets

s*(h(8,)+¢)
Tl -

due to the condition (V). Then the inequality (8.17) is impossible unless
8,=6%* for every x,€ A.(8,), which proves the lemma.

4. Existence of the AMLE

In this last section, we shall show the existence of a unique and
consistent AMLE under the conditions (I) through (VI). The proof is
divided into four steps.

LEMMA 4.1. Let 8, be an arbitrarily fixed point in 6. Then, under
the conditions (I) through (VI), the likelihood equation for 6 belonging
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to U(8,, &) has a solution é"=én(xn, 6,) which s defined on a subset C,(8,)
of R, such that

4.1) P;‘;n(C,,(a.,))—él as m—>co .

PROOF. We shall prove the lemma by the method of successive ap-
proximation.

Under the situation being considered, the likelihood equation (3.1)
becomes

42 L Sa, 0)+ [i S B, 00)] O—0)+-1 (., 6, 6)=0
n n n k=1

k=1 k=1

for 6 € U(4,, ).

We start from the following equation in & as the oth approximation

4.3) 1 Sa., o.,)+[iiﬁ(wk, oo)](a—au)=0
n n k=t

k=1
which has a solution 8% given by
A(O) _ _1 n -1 1 n
(4°4) 071 —00— - Eﬁ(xk) oo) _Ea(xkv 00)
n k=1 n k=1 /

for all x, for which det. [(—1/n)> 2. B(xx, 6,)]#0. Since (—1/n)>:".8(Xx,
6,) and (1/n)>:2a(X,, 6,) converge in probability (P;‘;) to V(8,) and the
null-vector respectively as n—>oco, one can find a subset C,(@,, ¢) such
that

P;‘;n (Co(8,, €))>1 as n—o>oo,

and

(4'5) Iég))—oﬂl < J? = %(00, 5) say, for X, € COn(ao’ E) ’

() —e

where ¢ is any small positive number. Thus if one takes ¢>0 so small
that

(4.6) (0, €)<ei<ey, (5,<1),

then, from (4.5), it is seen that é;"’ belongs to U(8,, &) for all x, € C,(8,, ¢).
Next consider the equation

@D - Sa 00+ 33 s, 6)] (0—0)+1- 35w, 6, 69)=0
n n k=1 n k=1

k=1
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for x,€ Cy(0,, ¢). Then this equation has a solution 6 given by

A n -1 n n A
4.8) 69—6,= [——1 1 B(@, oo)] [—1— 3 al@e, 00+ 3 p(e, O, 053))] ,
n k=1 n k=1 n k=1

and, on account of (4.6)
(4.9) 6—69=[~L 31 B, 0)] (- 3 7(a, 0., 67)
n k=1 n k=1

for x, € Co(B,, €). Since (1/n)Z:%.@(X;, 6,) converges in probability (P7)
to E;“G[¢(X, 8,)] as n—oo, there exists a subset A,6,) of R, such that

’%z B(s, 8)| <m(8,) for all x,c A8,

with P;‘;n (A4.(8,))—>1 as m—>o0, where m(8,) is a certain positive constant.
Now, by the condition (II), one can see that
|69 —6,[<m(8,)| 6°—8,*

(4.10) l—l— 3 1@, 8, B0)| < ‘Lé B(r 6,)
n k=1 n k=t

for x, € Ci(8,, €)=A(8,)N\Cyi(8,, €), for which
(4.11) Pn(Cif(6, €)1 as m—>oo .
Hence, from (4.8), (4.9) and (4.10), it follows that

4.12 69—8,| <q\(8,, &)1 Y 5™ g Vs M) o) e
412) | | San o+ L q(0’6)<<1+_—v(0.,)—e &)e,

for x, € C.(0,, ¢). Since ¢ can be chosen arbitrarily small, one can put

[ AEme)
(4.13) 2(0, e)_(1+-v(07__€_eo)sogeo ,

and therefore 6 belongs to U(8,, ¢,) for every x, € Cin(8,, ¢).
Then by a similar argument to that of lemma 3.3, one has

(4.14) —:L—z 7@, 6y, 6)| =

k=1

1 2 A
Tkgl Gy (xx, 6,, 0)— y(x2, 6,, 6,))

<303 (e, 00|69 —6, |

i, =1

for all x, € C(8,, ¢). Let

( » ..
Bn(aoy 5): 1xn ; %kz;llsbij(mky 00)<h(00)+6, 1, ‘7=1’ R} S} y
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and C,(8,, €)=B.(8,, &) \Ci(8,, ). Then, by the condition (V) and (4.11),
it is seen that

(4.15) P;‘;n (Cu(8,, €))>1 as m—>oo,

and, for every x, € C,(8,, ¢), it follows from (4.14) that
== 5 1, 6, 69)| <800 +4) | 690,
for x,¢e C,(8,, ¢). Hence, by (4.9), one obtains

(4.16) [6D—0P | <q(8,, €)| 60 —86,| for x,€Cub, ¢),

where

_ 8"(h(6,) +¢)
q(8,, o) = W .

By the condition (V), one can choose ¢ so small that

(4.17) q(6y, 6)<1.
We define the vth approximation é&’=é$,"’(x,,, 6,) successively by
(4.18) L3 a, 0)+ 133 pGa, 0)| 6906
n k=1 n k=1

+- L 51 @, 6, 65)=0.
n k=1

Suppose that oo, 6o, ..., 6~ have been already defined for every x, €
C.(8,, ¢) such that

(4.19) |6©—6,] <e,, £=0,1, ---, v—1,
and
(4.20) |69 — 65| <q(B,, ¢) | 65 —052|, k=1, -++, v—1,

for every x,¢€ C,(8,, ¢), where é;“’:ﬂ,, . Then

N . n -1 n n A
@20 89—0,=| = 518, 0)| [ - D atw, 0)+-1 S5, 0, 65)]
n k=1 n k=1 n k=1

and

A A — n -1 n A
4.22)  6P—fy-o— [——1— 31 Bz, 0.,)] [i 3 (7@, Bs, 65-)
n k=1 n k=1

— (@5, O, és:-”))]
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for every x,e€ Cu(0, ¢). By an analogous argument as above, one can
see easily that

(4.23) 169—8,] <e,
and
(4.24) |69 —65-"| <q(8,, ¢) | 8s0—0572],
for every x,¢€ Cu(0,, ¢). This means that one can define a sequence 6%,
y=0, 1, 2, ---, for every x,€ C,(8,, ¢), which is independent of v, and for
which (4.15) holds true.

Now, put

. 69+ 3 (69—857), for x, € Cul6y, <) ,
(4.25) 0n=0n(xm 0o)= =t

arbitrary, elsewhere.

Then, by (4.24), we get

én_ésl») < [ 0*5:) 0(,—1) < , et
16,691 < 5 | | <500 9

for all x,¢€C,(8,, ¢), and, on account of (4.17), it follows that

(4.26) 16,—69| >0 as v—oo

for every x,c C. 6, ¢). By the continuous differentiability of the like-
lihood function, it follows from (4.26) that

a A n n A
2 tog Lz, 6)=-1 3 ata., 0)+[-1- 2 f(w., 0)](6.—0)

é (xky 001 an)=0

k=1

s[»—a s

for all x, € C.(8,, ). This proves the lemma.

LEMMA 4.2. Under the conditions (I) through (VI), there exists an
ALS for 6.

PROOF. There exists a countable subset w={6.}, 1=1,2, ---, of &
which is everywhere dense in 6. For each point of w, 6, there cor-

responds, by lemma 4.1, a solution én(xn, 0,) satisfying the likelihood
equation for every x,¢€ C,(8;) such that

(4.27) P;‘;n(C,,(Oi)) > 1 as n—>oo,
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Let

Au=¢, Au=UC0)-UCL0), i=1,2, -,
and let
(4.28) b.(x,) = f} Xa, (%:)0u(s 6)

where 2, (x,) is the indicator function of the set A. Then it is clear

that 9,, is defined for all x, belonging to A4,=\/7-.4,; and it satisfies the
likelihood equation for 6, i.e.,

—a% log L(x,, é,,)zO for all x,€ A..

It is also clear that

P;‘;n(A,,) -1 as mo>o
for each 6, € w. Since, for fixed value of n, Py=(A,) is continuous in &
everywhere in 6, it is easy to see that

(4.29) Pi2(A,) > 1 as nm—ooo

for any € ¢ 6. This means that 6, given by (4.28) is an ALS for 6.

Now, in order to show that the ALS 8, given by (4.28) is an AMLE
for ©, one has to show the following

LEMMA 4.3. Under the conditions (I) through (VI), for any fixed
6,¢c 0, the matric

& (1
M0,0=E’;"n[ <_ ,,,0)}
@, =33 | gy log LUX., )

18 megative definite for every 6 € U(8,, ¢,).
PROOF. Writing
20, O)=E;[r. (X, 6, 0)] and A(6,, 6)=|2.46,, 6)1l ,
we have
(4.30) M8, 6)=—V(8,)+ A6, 8)

for every 8 ¢ U(8,, ¢,). Since V(8,) is positive definite, there exists an
orthogonal matrix P(8,) such that
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v4(6,) (0]
P@,)v,)P (6. =D,(6,) = K . ’
v,(6,)

where v,(6,), - - -, v,(0,) are the characteristic roots of V(8,). Hence, by
(4.30), we get

—P(6,)M(6,, O)P(6,)
(4.31) =D.(6,)— P(6,)4(8,, 6)P(6,)
=D 5 (0)L;— D v5(60)7'P(6,)A(6,, 6)P(6,)' D 5 (6,)'1D v (6,)

where

v v1(6,) 0
Dﬁ;’(oo): R
0 ~/vs(00)
Therefore, it will be sufficient to show that the characteristic roots of
D 5(0,)7'P(6,)4(8,, 6)P(6,)D,+(6,)" are all less than unity.
Let w be any characteristic root of DA-PAP'D/; and let 2/=
(21, +++, %), 2z=1, be the corresponding characteristic vector. Then

g S PuPjihi (6., 6)
w= V4% T AN 7a N
Ic,l2=l * li,12'=1 vi(60)v(6,)

’

where p;;=p;,(6,)’s are elements of P(8,). Hence, by the condition (V),
it is easy to see that

[w|§sM<1,

v(6,)

which proves the lemma.
By this lemma, one can show the following

LEMMA 4.4. The ALS for 6, 8,, given by (4.28) is an AMLE for 6.
PROOF. One has only to show that

& (L log L(x,, é,,)) is negative definite, for every
26,00,

n
x, belonging to a certain subset C, of R,, for which

(4.82)  L(x,, 0.)=

Pi(C) > 1 as m—>oo, for all 6¢6.

Let, as before, w={6;}, i=1,2, ---, be a subset of 6 which is
everywhere dense in 6. Since, for each 8; € w, (3*/06,00,) (1/n) log L(X,, 6)
converges in probability (P,"i) to M(8;, ) as m—>oo, there exists, by



384 JUNJIRO OGAWA AND SADAO IKEDA

lemma 4.3, a subset A4,(8;) of R, such that
Pin(A(0.))—>1 as n—oo

and

(4.33) H A <~1_ log L(x., 0))

is negative definite
00,00, \ n

for all @€ U(8,, ) and for every x,c A.(6,) .

Since, by lemma 8.1, 6, is consistent, one can see, on account of
(4.33), that

(4.34) L(x,, é,,) is negative definite
for every x, € Cy(6;)=A,(0,)N\B,(8;), where

B(6)={x.; |6,—6,| <a},
for which it is seen that

Pin(Bu(6:))>1 as m—oo,
and hence
(4.35) Pi(C6:))>1 as m—oo.

Put
Cu=\UCW(0)) .
Then (4.34) holds true for every x,€C,, and, on account of (4.35), one
can see that
Pl (C,)—>1 as n—>oo, for all 8¢,

This proves the lemma.

Summarizing the results thus obtained in the last two sections, one
can state the following

THEOREM. Under the conditions (I) through (VI) given in the pre-
ceding sections, there exists a unique (up to the asymptotic identity) and
consistent AMLE for 6.
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