THE SWEEPING-OUT OF ADDITIVE FUNCTIONALS AND PROCESSES ON THE BOUNDARY

MINORU MOTOO

1. Introduction

In this paper we shall consider the sweeping-out of additive functionals in Markov processes, and its application to processes on the boundary (U-processes). In sections 3 and 4 we define the sweeping-out of additive functionals and investigate their properties. In section 5, we consider a special additive functional (i.e. a time additive functional) and its inverse function. In section 6, using the additive functional defined in section 5, we transform the original process by the time change, and obtain a certain form of the process on the boundary (U-process) introduced by T. Ueno [9]. We show that this process is sufficiently regular if the original one is so. This paper is an introductory part of the investigation of U-processes. More detailed arguments of U-processes and their application to the boundary value problems are treated in [8]. The author wishes to express his gratitude to Mr. K. Sato and Mr. T. Ueno for their helpful advices and encouragements.

2. Definitions and notations

Let S be a locally compact separable Hausdorff space and $S^*=S\cup\{\partial\}$ its one point compactification. (If S is compact we consider $\{\partial\}$ an isolated point.) Let B be the topological Borel field generated by the open sets in S^* and M(S) the set of all bounded non-negative measures μ on B. We define $F = \bigcap_{\mu \in M(S)} B^{\mu}$ where B^{μ} is the μ -completion of B. Let C(S), B(S) and F(S) be the sets of all bounded continuous functions, bounded B-measurable functions and bounded F-measurable functions on S, respectively. We always extend any function f defined on S to the one defined on S^* by setting $f(\partial)=0$ unless particularly mentioned. Path space W is the set of all mappings w from $[0,\infty]$ into S^* which satisfies the following properties:

- (W. 1) w(t) is right continuous and has a left limit in $[0, \infty)$
- $(W. 2) \quad w(\infty) = \partial$

(W. 3) There exists $\zeta = \zeta(w)$ such that

$$w(t) \in S$$
 if $t < \zeta$,
 $w(t) = \partial$ if $t \ge \zeta$.

We shall write $w(t)=x_t(w)$ or simply x_t . For any $w \in W$ and $t \in [0, \infty]$, we define w_t^+ such that $x_s(w_t^+)=x_{s+t}$ $(0 \le s \le \infty)$. Let \mathfrak{B}_t be a Borel field generated by the cylinder sets $\{w: x_s(w) \in A\}$ $(s \le t, A \in B)$ and $\mathfrak{B}=\mathfrak{B}_{\infty}$.

Let $M = \{P_x\}_{x \in S^*}$ be a system of probability measures on \mathfrak{B} which satisfies:

- (P. 1) $P_x(x_0=x)=1$ for any $x \in S^*$
- (P. 2) $P_x(\mathfrak{A})$ is **B**-measurable function in $x (x \in S^*)$ for any $\mathfrak{A} \in \mathfrak{B}$. For any $\mu \in M(S)$, we write

$$P_{\mu}(\mathfrak{A}) = \int P_x(\mathfrak{A}) \mu(dx)$$
 $E_x(F(w)) = \int F(w) dP_x$ $E_{\mu}(F(w)) = \int F(w) dP_{\mu}$

where $\mathfrak{A} \in \mathfrak{B}$ and F(w) is any (bounded) \mathfrak{B} -measurable function. Let $\mathfrak{F}_t^* = \bigcap_{\mu \in M(S)} \mathfrak{B}_t^{\mu}$ where \mathfrak{B}_t^{μ} is the P_{μ} -completion of \mathfrak{B}_t and $\mathfrak{F} = \mathfrak{F}_x^* = \bigcap_{\mu \in M(S)} \mathfrak{B}^{\mu}$. We say an event \mathfrak{A} in \mathfrak{F} occurs almost everywhere P_x (a.e. P_x) if and only if $P_x(\mathfrak{A}) = 1$ for any x in S^* .

A $[0, \infty]$ -valued function $\sigma = \sigma(w)$ on W is called Markov time if $\{\sigma < t\} \in \mathcal{F}_t^{*1}$, and we set

$$\mathfrak{F}_{\sigma} = \{\mathfrak{A} : \mathfrak{A} \in \mathfrak{F} \mid \mathfrak{A} \cap \{\sigma < t\} \in \mathfrak{F}_{t}^{*} \text{ for any } t\}.^{2}$$

For any (nearly) Borel set A in S (or S^*), set

$$\sigma_A = \left\{ egin{array}{ll} \inf \ t: & t > 0, \ x_t \in A \ \\ \infty & \hbox{if there is not such t.} \end{array}
ight.$$

Then σ_A is a Markov time which is called a first passage time to A. For any f in F(S), we set

$$H_{\sigma}^{\alpha}f(x) = E_x(e^{-\alpha\sigma}f(x_{\sigma}))$$

Without using (P. 3), (P. 4) and (P. 5) below, we see that if $\{\sigma_n\}$ be a monotone sequence of Markov times and $\sigma = \lim \sigma_n$, then σ is also Markov time (c.f. section 6).

²⁾ In general, Fi* CFi.

$$G_{\scriptscriptstylelpha}f(x)\!=\!E_x\!\!\left(\int_{\scriptscriptstyle0}^{\scriptscriptstyle\infty}\!e^{-lpha t}f(x_t)dt
ight)\!=\!\int_{\scriptscriptstyle0}^{\scriptscriptstyle\infty}e^{-lpha t}H_{\scriptscriptstyle\,t}^{\scriptscriptstyle0}f(x)dt$$
 ,

where $\alpha \ge 0$.

For the system M, we further assume the following:

(P. 3) (Strong Markov property) Let σ be any Markov time, for any $\mathfrak{A} \in \mathfrak{F}$ and $x \in S^*$,

$$P_x(w_\sigma^+ \in \mathfrak{A} \mid \mathfrak{F}_\sigma) = P_{x\sigma} (w \in \mathfrak{A})$$
 a.e. P_x .

(P. 4) (Property of quasi-left continuity) Let σ_n be an increasing sequence of Markov times and $\sigma = \lim_{n \to \infty} \sigma_n$. Then for w such as $\sigma(w) < \infty$,

$$x_{\sigma} = \lim x_{\sigma_n}$$
 a.e.

That is,

$$P_x(x_\sigma = \lim x_{\sigma_n}, \ \sigma < \infty) = P_x(\sigma < \infty)$$

for any x in S^* .

(P. 5) (Existence of reference measure) There exists an ν_0 in M(s) which has the following property: For any $A \in B$, $P_{\nu_0}(\sigma_A < \infty) = 0$ implies $P_x(\sigma_A < \infty) = 0$ for any x in S^* .

We call ν_0 a reference measure of M. Under (P. 4), $\mathfrak{F}_t^* = \mathfrak{F}_t$. Under (P. 5), Green operator G_{α} can be written in the form ([7]):

$$G_{\alpha}f(x) = \int g_{\alpha}(x, y)f(y)\nu_{1}(dy)$$

where $\nu_1(A) = \int G_{\alpha_0}(x, A) \nu_0(dx)$, and ν_0 is a reference measure of M (α_0 is a fixed positive number). From this we can easily see:

PROPOSITION 2.1. For any $f \in F(S)$, $G_{\alpha}f$ is in B(S).

PROPOSITION 2.2. Let f be in F(S), and if $\lim_{t\downarrow 0} H_t^{\alpha} f = f$, then f is in B(S).

PROOF. Since $f = \lim_{\beta \to \infty} \beta \int_0^{\infty} e^{-\beta t} H_t^{\alpha} f dt = \lim_{\beta \to \infty} \beta G_{\alpha+\beta} f$ and $G_{\alpha+\beta} f$ is in B(S) by (2.1), f is in B(S).

The non-negative **F**-measurable function $u\left(u(\partial)=0\right)$ is called α -excessive if and only if

 $(E_{\alpha}. 1)$ $H_t^{\alpha} u(x) \leq u(x)$ for any x in S and t,

 $(E_a. 2) \lim_{t \to 0} H_t^a u(x) = u(x).$

A function u is called α -potential in class D if and only if u is α -excessive and

 $(E_a. D_p)$ for any increasing sequence $\{\sigma_n\}$ of Markov times such as $\lim \sigma_n \geq \zeta$,

$$\lim_{n\to\infty}H^{\alpha}_{\sigma_n}u(x)=0.$$

A function u is called regular α -potential if and only if u is α -excessive and

 $(E_a. R)$ for any increasing sequence $\{\sigma_n\}$ of Markov times, if $\sigma = \lim \sigma_n$, then

$$\lim_{n\to\infty}H^{\alpha}_{\sigma_n}u(x)=H^{\alpha}_{\sigma}u(x)^{3)}.$$

From (2.2) and $(E_{\alpha}.2)$, α -excessive function is **B**-measurable.

A $[0, \infty]$ -valued function A(t, w) on $[0, \infty] \times W$ is called (non-negative right continuous) additive functional, when it satisfies the following properties:

- (A. 1) $0 \le A(t, w) \le \infty$
- (A. 2) A(t, w) is right continuous in t
- (A. 3) A(t, w) is continuous at $t=\zeta$ and $A(t)=A(\zeta)$ for $t \ge \zeta$
- (A. 4) A(t, w) is \mathcal{F}_{t} -measurable in w for any fixed t
- (A. 5) $A(t, w) + A(s, w_t^+) = A(t+s, w)$
- (A. 6) $A(t, w) < \infty$ for all $t < \infty$ a.e.

Two additive functionals A and B are equivalent if and only if

$$A(t, w) = B(t, w)$$
 for all t a.e.,

and in this case we use the notation $A \sim B$. We also write $A \ll B$ if $A(t, w) \leq B(t, w)$ for all t a.e. For a non-negative \mathfrak{F} -measurable function f, we define

$$f \cdot A(t, w) = \int_{(0, t]} f(x_s(w)) dA(s, w) .$$

Then, for a suitable version, $f \cdot A$ is an additive functional if $f \cdot A$ satisfies condition (A. 6). Let \mathfrak{U} (unicity class) be the set of all additive functionals whose discontinuity points are continuity points of $x_i(w)$, and \mathfrak{C} be the set of all additive functionals which are continuous (in t). Let \mathfrak{U}_a be a set of all additive functionals which are in \mathfrak{U} and

$$u_{\scriptscriptstyle a}(x) \equiv u_{\scriptscriptstyle aA}(x) = E_x \Big(\int_0^\infty e^{-at} dA(t, w) \Big)$$

⁸⁾ As to these definitions, see Meyer [6]. The regular α -potential in class D in [6] is simply called regular α -potential in this paper.

is finite. We define $\mathbb{C}_{\alpha} = \mathbb{C} \cap \mathfrak{U}_{\alpha}$, $\overline{\mathfrak{u}} = \bigcap_{\alpha>0} \mathfrak{U}_{\alpha}$ and $\overline{\mathbb{C}} = \bigcap_{\alpha>0} \overline{\mathbb{C}}_{\alpha}$. It is easily seen that $u_{\alpha,A}$ satisfies the equation similar to the resolvent equation:

PROPOSITION 2.3. If $A \in \overline{\mathbb{C}}$, then for any $\alpha, \beta > 0$

$$u_{\alpha,A}-u_{\beta,A}+(\alpha-\beta)G_{\alpha}u_{\beta}=0$$

We define the time additive functional T as follows:

$$T(t, w) = \begin{cases} t & \text{if } t < \zeta(w) \\ \zeta & \text{if } t \ge \zeta(w) \end{cases}.$$

Then T is in $\overline{\mathbb{C}}$ and in \mathbb{C}_0 if and only if G_01 is finite. We set

$$g_{\alpha}(x) \equiv u_{\alpha,T}(x) = G_{\alpha}1(x)$$
.

If $A \in \mathfrak{U}_{\alpha}$, $u_{\alpha,A}$ is an α -potential in class D, and if $A \in \mathfrak{C}_{\alpha}$, $u_{\alpha,A}$ is a regular α -potential. On the other hand, for any α -potential u in class D, there corresponds A in \mathfrak{U}_{α} such as $u=u_{\alpha,A}$. If u is a regular α -potential, then the above A is in $\mathfrak{C}_{\alpha}^{5}$. A is determined uniquely by u (except equivalence) ([6]).

3. Sweeping-out of the additive functional

Throughout this paper we shall fix a Borel set V in S. We set

$$\sigma\!\equiv\!\sigma_{\scriptscriptstyle V},\;\;H^{\scriptscriptstyle lpha}\!\equiv\!H^{\scriptscriptstyle lpha}_{\scriptscriptstyle \sigma_{\scriptscriptstyle V}}\;, \ G^{\scriptscriptstyle 0}_{\scriptscriptstyle lpha}f(x)\!=\!E_x\left(\int_{\scriptscriptstyle 0}^{\sigma}\!e^{-lpha t}f(x_t)dt
ight) \qquad (lpha\!\geq\!0)\;,$$

where f is in F(S), and for A in $\bar{\mathfrak{u}}$

$$u_{lpha}^{\scriptscriptstyle 0}=u_{lpha,A}^{\scriptscriptstyle 0}\left(x
ight)\!=\!E_{x}\!\left(\int_{\scriptscriptstyle 0}^{\sigma}\!e^{-lpha t}dA
ight) \ g_{lpha}^{\scriptscriptstyle 0}\left(x
ight)\!=\!E_{x}\!\left(\int_{\scriptscriptstyle 0}^{\sigma}\!e^{-lpha t}dT
ight)\!=\!G_{lpha}^{\scriptscriptstyle 0}\,1\!\left(x
ight) \quad \left(lpha\!>\!0
ight).$$

⁴⁾ For $A \in \mathfrak{C}$, see Dynkin [2]. But in this special case, the proof is almost the same as that of resolvent equation even in the discontinuous case.

⁵⁾ It is noticed that, if u is a regular α -potential, we can choose A in \mathfrak{C}_{α} to be \mathfrak{B} -measurable. If u is uniformly α -excessive, noting u is B-measurable and following the construction of Volkonskii and Tanaka ([10], [5]), we see A can be chosen \mathfrak{B} -measurable. In general case, since u(x) is a limit of strongly increasing sequence of uniformly α -excessive functions, A is a (almost everywhere) uniform limit of increasing sequence of \mathfrak{B} -measurable functionals, and so we can choose A to be \mathfrak{B} -measurable. The above fact also shows that, if $A \in \mathfrak{C}_{\alpha}$, there exists an equivalent functional which is \mathfrak{B} -measurable. We shall use this remark.

For the later use, we state the following equalities, which are easily proved. For positive α and β ,

$$(3.1) H^{\alpha} - H^{\beta} + (\alpha - \beta)G_{\alpha}^{0}H^{\beta} = 0,$$

$$(3.2) u_{\alpha,A} = u_{\alpha,A}^0 + H^{\alpha} u_{\alpha,A}^{(6)},$$

$$G_{\alpha} = G_{\alpha}^{0} + H^{\alpha}G_{\alpha}.$$

Since, for any A in $\bar{\mathfrak{u}}$ and $\alpha>0$, $H^{\alpha}u_{\alpha,A}$ is α -excessive ([3]) and dominated by $u_{\alpha,A}$ which is α -potential in class D, $H^{\alpha}u_{\alpha,A}$ is also a potential in class D. Therefore, there exists a unique additive functional $\tilde{A}_{(\alpha)}$ in \mathfrak{u}_{α} such that

$$u_{lpha,\, \widetilde{A}_{(lpha)}} \!=\! H^{lpha} u_{lpha,\, A} \ E_x\!\left(\int_0^\infty\! e^{-lpha t} d ilde{A}_{(lpha)}
ight) \!=\! E_x\!\left(\int_\sigma^\infty\! e^{-lpha t} dA
ight)$$

for any x in S. We shall call $\tilde{A}_{(a)}$ the α th order sweeping-out of A^{7} . In general, $\tilde{A}_{(a)}$ depends on α .

PROPOSITION 3.4. For $0 < \alpha < \beta$

PROOF.
$$E_{x}\left(\int_{0}^{\infty}e^{-\beta t}d\tilde{A}_{(a)}\right)=u_{\beta,\ \tilde{A}_{(a)}}$$

$$=u_{\alpha,A_{(a)}}+(\alpha-\beta)G_{\beta}u_{\alpha,A_{(a)}} \qquad (by\ (2.3))$$

$$=H^{a}u_{\alpha}+(\alpha-\beta)G_{\beta}H^{a}u_{\alpha} \qquad (by\ (3.1))$$

$$=H^{\beta}u_{\alpha}+(\alpha-\beta)H^{\beta}G_{\beta}H^{\alpha}u_{\alpha} \qquad (by\ (3.3))$$

$$=H^{\beta}u_{\alpha}+(\alpha-\beta)H^{\beta}G_{\beta}H^{\alpha}u_{\alpha} \qquad (by\ (3.3))$$

$$=H^{\beta}u_{\beta}+(\beta-\alpha)(H^{\beta}G_{\beta}u_{\alpha}-H^{\beta}G_{\beta}H^{\alpha}u_{\alpha}) \qquad (by\ (3.2))$$

$$=H^{\beta}u_{\beta}+(\beta-\alpha)H^{\beta}G_{\beta}u_{\alpha}^{0}(x) \qquad (by\ (3.2))$$

$$=u_{\beta,\tilde{A}_{(\beta)}}+(\beta-\alpha)u_{\beta\cdot(u_{\alpha}^{0}\cdot T)_{(\beta)}}$$

$$=E_{x}\left(\int_{0}^{\infty}e^{-\beta t}(d\tilde{A}_{(\beta)}+(\beta-\alpha)d(u_{\alpha}^{0}\cdot T)_{(\beta)})\right)$$

which proves the proposition.

From this proposition we can easily see

$$\widetilde{A}_{(0)}(t) = \lim_{\alpha \downarrow 0} \widetilde{A}_{(\alpha)}(t)$$

if the limit in the right hand side is finite for finite t a.e. For example, this is the case when $u_0^0(x)$ is bounded. $(u_0(x))$ may be infinite.)

⁶⁾ c.f. Meyer [6].

⁷⁾ It is natural to define the 0th order sweeping-out $\widetilde{A}_{(0)}$ of A as

COROLLARY 3.5. $\tilde{A}_{(a)}$ increases as α decreases, and $\tilde{A}_{(a)}$ is in $\bar{\mathfrak{u}}$ $(\alpha>0)$.

PROPOSITION 3.6. If $A, B \in \overline{\mathfrak{u}}$ and $A \ll B$, then

$$\tilde{A}_{\alpha} \ll \tilde{B}_{\alpha}$$
 for any $\alpha > 0$.

PROOF. By the assumption $u_{\alpha,B}-u_{\alpha,A}$ is α -excessive, so $H^{\alpha}(u_{\alpha,B}-u_{\alpha,A})=u_{\alpha,\widetilde{B}(\alpha)}-u_{\alpha,\widetilde{A}(\alpha)}$ is also α -excessive and dominated by u_{α} . Thus, $\widetilde{B}_{(\alpha)}(t)-\widetilde{A}_{(\alpha)}(t)$ is equal to a certain (non-negative) additive functional a.e.

PROPOSISION 3.7. If $A, B \in \overline{\mathfrak{u}}$ and k is a non-negative constant, then

$$(\widetilde{A+B})_{(\alpha)} = \widetilde{A}_{(\alpha)} + \widetilde{B}_{(\alpha)}$$

 $(\widetilde{kA})_{(\alpha)} = k\widetilde{A}_{(\alpha)}$.

PROOF. The above relations are only versions of the relations

$$H^{\alpha}(u_{\alpha,A}+u_{\alpha,B})=H^{\alpha}u_{\alpha,A}+H^{\alpha}u_{\alpha,B}$$

 $H^{\alpha}(ku_{\alpha,A})=kH^{\alpha}u_{\alpha,A}$.

In general, we can not say $\tilde{A}_{(a)} \in \overline{\mathbb{C}}$, even if $A \in \overline{\mathbb{C}}$. For example, let us consider the uniform motion on the real line and P is a fixed point on the real line and $V = \{P\}$. Then $\tilde{T}_{(a)}$ has a jump of height $1/\alpha$ at 6P, where T is the time additive functional. In the following we shall consider the condition for $\tilde{A}_{(a)} \in \overline{\mathbb{C}}$.

LEMMA 3.8. For any $t \ge 0$, $\varphi(x) = P_x(\sigma \le t)^{(s)}$ is B-measurable.

PROOF. Since $P_x(\sigma=0) = \lim_{t \downarrow 0} P_x(\sigma \leq t)$, it is sufficient to prove the lemma when t > 0. Because

$$\{\sigma(w_u^+) \leqq t\} \subset \{\sigma \leqq t + s\}$$

for any $s \ge u$, we have

$$\varlimsup_{\stackrel{}{u\downarrow 0}} \{\sigma(w_u^+) \leq t\} \subset \bigcap_{s>0} \{\sigma \leq t+s\} = \{\sigma \leq t\}.$$

On the other hand, if $\sigma(w) < t$ (t>0), there exists s_0 such as $0 < s_0 < t$ and $x_{s_0} \in V$, and so we have $\sigma(w_s^+) \le t$ for all $s < s_0$. If $\sigma(w) = t > 0$, then $\sigma(w_s^+) \le t$ for all s < t. Therefore, we have

$$\lim_{u\downarrow 0} \{\sigma(w_u^+) \leq t\} \supset \{\sigma \leq t\}.$$

That is,

⁸⁾ $\sigma = \sigma_v$.

$$\lim_{u\downarrow 0} \{\sigma(w_u^+) \leq t\} \text{ exists} = \{\sigma \leq t\}.$$

Therefore,

$$\lim_{u\downarrow 0} H_u\varphi(x) = \lim E_x(P_{x_u}(\sigma \leq t))$$

$$= \lim P_x(\sigma(w_u^+) \leq t)$$

$$= P_x(\sigma \leq t) = \varphi(x).$$

By this and (2.2) $\varphi(x)$ is in B(S). We set

$$V_0 = \{x: x \in \overline{V} \text{ and } P_x(\sigma > 0) = 1\}$$

$$V_r = \{x: P_x(\sigma = 0) = 1\}$$

$$V' = V \setminus V_r$$

where \bar{V} is the closure of V. Then these sets are **B**-measurable and $\bar{V}-V_0=V_r$ since $P_x(\sigma=0)=0$ or 1. Now we set the following assumption.

Assumption R. $\sigma_{V_0} = \infty$ a.e.⁹⁾

THEOREM 3.9. Under the assumption R, $A \in \overline{\mathbb{Q}}$ implies that $\widetilde{A}_{(\alpha)} \in \overline{\mathbb{Q}}$ for any $\alpha > 0$.

PROOF. It is sufficient to prove that $H^{\alpha}u$ is a regular α -potential where $u=u_{\alpha,A}$. Let $\{\tau_n\}$ be any increasing sequence of Markov times and $\tau=\lim \tau_n$, and $\hat{\tau}_n=\tau_n+\sigma(w_{\tau_n}^+)$, $\hat{\tau}=\tau+\sigma(w_{\tau_n}^+)$.

- 1) If $\tau = \infty$, then $\lim \hat{\tau}_n \ge \lim \tau_n = \tau = \infty$ and $\hat{\tau} \ge \tau = \infty$. Therefore, $\lim \hat{\tau}_n = \hat{\tau} = \infty$.
- 2) If $\hat{\tau}_{n_0} > \tau$ for some n_0 , then $\tau_{n_0} \le \tau_n \le \tau < \hat{\tau}_{n_0}$ for all $n \ge n_0$. Therefore, $\hat{\tau}_{n_0} = \hat{\tau}_n = \hat{\tau}$ for all $n \ge n_0$ which shows $\hat{\tau} = \lim \hat{\tau}_n$.
- 3) If $0=\tau$ and $\hat{\tau}_n \leq \tau$ for all n, then $\tau_n = \tau = 0$ and $\hat{\tau} = \hat{\tau}_n$ for all n. Hence, we have $\lim \hat{\tau}_n = \hat{\tau} = 0$.
- 4) Finally if $0 < \tau < \infty$ and $\hat{\tau}_n \le \tau$ for all n, then $\tau \ge \lim \hat{\tau}_n \ge \lim \tau_n = \tau$ or $\lim \hat{\tau}_n = \tau$. Noting $x\hat{\tau}_n \in \overline{V}$ and $x_{\tau} = \lim x\hat{\tau}_n$ a.e. by (P. 4), we have $x_{\tau} \in \overline{V}$ a.e. Moreover, by the assumption R, $x_{\tau} \notin V_0$ a.e. (since $\tau > 0$). Therefore for any x in S, we have

$$\begin{split} P_x(\hat{\tau} = & \lim \hat{\tau}_n, \ 0 < \tau < \infty, \ \hat{\tau}_n \leqq \tau \ \text{ for all } \ n) \\ = & P_x(\tau = \hat{\tau}, \ 0 < \tau < \infty, \ \hat{\tau}_n \leqq \tau \ \text{ for all } \ n) \\ = & P_x(\tau = \hat{\tau}, \ 0 < \tau < \infty, \ x_\tau \in \bar{V} - V_0, \ \hat{\tau}_n \leqq \tau \ \text{ for all } \ n) \\ = & E_x(P_x(\sigma = 0) : 0 < \tau < \infty, \ x_\tau \in \bar{V} - V_0, \ \hat{\tau}_n \leqq \tau \ \text{ for all } \ n) \end{split}$$

⁹⁾ If V is closed, the assumption R follows from the condition H of Hunt [4]. For, $V_0 = V - V_r$ has any regular point, which is negligible.

$$=P_x(0< au<\infty$$
, $x_{ au}\in ar{V}-V_{ exttt{0}}$, $\hat{ au}_n\leqq au$ for all n)
 $=P_x(0< au<\infty$, $\hat{ au}_n\leqq au$ for all n)

since $P_x(\sigma=0)=1$ if $x\in \overline{V}-V_0$. The above equality shows that, if $0<\tau<\infty$ and $\hat{\tau}_n\leq \tau$ for all n, then $\lim \hat{\tau}_n=\hat{\tau}$ a.e. From (1), (2), (3) and (4) we conclude that $\lim \hat{\tau}_n=\hat{\tau}$ a.e. Noting u itself is a regular α -potential, we can see that

$$H_{r_n}^{\alpha}H^{\alpha}u=H_{\hat{r}_n}^{\alpha}u$$
 tends to $H_r^{\alpha}H^{\alpha}u=H_{\hat{r}}^{\alpha}u$,

which proves the theorem.

In the remainder of this section, we shall consider the condition for $A \sim \tilde{A}_{(a)}$ when $A \in \mathfrak{C}$. Let

$$U_{\delta}\!=\!\left\{\!x\!:\!g_{a}^{\scriptscriptstyle{0}}(x)\!=\!E_{x}\!\left(\int_{0}^{\sigma}e^{-at}d\,T
ight)\!\geqq\!\delta\!
ight\}$$

for any α and $\delta > 0$, and $\rho_{\delta} = \sigma_{U_{\delta}}$.

LEMMA 3.10. Let $\rho_0 = 0$

$$\sigma_n = \rho_{n-1} + \sigma(w_{\rho_{n-1}}^+), \ \rho_n = \sigma_n + \rho_{\delta}(w_{\sigma_n}^+), \ n = 1, 2, \cdots.$$

Then

$$\lim_{n\to\infty}\rho_n=\lim_{n\to\infty}\sigma_n=\infty.$$

PROOF. Since $g_a^0(x)=g_a(x)-H^ag_a(x)$ is the difference of two α -excessive functions, $g_a^0(x_t, w)$ is right continuous in $t \in [0, \infty)$ (c.f. Hunt [3]). Hence, $g_a^0(x_{\rho_n}) \geq \delta$. Let $\bar{\rho} = \lim_{n \to \infty} \rho_n$. Then

$$\lim_{n o\infty} E_x\!\!\left(\int_0^{
ho_n}\!\!e^{-lpha t}dT
ight)\!=\!E_x\!\!\left(\int_0^{ar
ho}\!\!e^{-lpha t}dT
ight)\!\leqqrac{1}{lpha}$$
 ,

since T(t) is continuous in t. Noting $\rho_n \leq \sigma_{n+1} \leq \bar{\rho}$, we have $\lim_{n \to \infty} E_x \left(\int_{\rho^n}^{\sigma_{n+1}} e^{-at} dT \right) = 0$. However,

$$\begin{split} E_x\!\left(\int_{\rho_n}^{\sigma_{n+1}}\!e^{-at}d\,T\,\right) &= E_x\!\left(e^{-a\rho_n}E_{x_{\rho_n}}\!\left(\int_0^{\sigma}e^{-at}d\,T\,\right)\right) \\ &= E_x\!\left(e^{-a\rho_n}g_a^0\left(x_{\rho_n}\right)\right) \geq \delta E_x\!\left(e^{-a\rho_n}\right) \;. \end{split}$$

Thus

$$E_x(e^{-aar
ho})\!=\!\lim_{n o\infty}E_x(e^{-a
ho_n})\!\leqq\!rac{1}{\delta}\lim_{n o\infty}E_x\!\!\left(\!\int_{
ho^n}^{\sigma_{n+1}}\!\!e^{-at}d\,T\,
ight)\!=\!0$$
 ,

which proves the lemma.

We can now prove the following theorem:

THEOREM 3.11. If $A \in \overline{\mathbb{C}}$, then the following four conditions are equivalent for any $\alpha > 0$.

- (1) $A \sim \tilde{A}_{\scriptscriptstyle (a)}$
- (2) $A \sim \chi_{v_x} \cdot A$
- (3) $A \sim \chi_{v} \cdot A$
- (4) $A(\sigma)=0$ a.e.

PROOF.

(i) $A(\sigma) = 0$ if and only if

$$egin{aligned} E_x\!\!\left(\int_0^\infty e^{-lpha t}d ilde A_{(lpha)}
ight) &= H^lpha u_{lpha,A}\!(x) = E_x\!\!\left(\int_\sigma^\infty \!\!e^{-lpha t}dA
ight) \ &= E_x\!\!\left(\int_0^\infty \!\!e^{-lpha t}dA
ight)\,. \end{aligned}$$

Thus (1) and (4) are equivalent.

- (ii) If $A \sim \chi_{\nu_r} \cdot A$, then $\chi_{\nu_r} A \sim \chi_{\nu_r} \cdot A \sim \chi_{\nu_r} \cdot A \sim A$, which shows that (2) implies (3).
- (iii) Noting $\sigma = \sigma_{V'}$ a.e. (c.f. Dynkin [1]) and A(t) is continuous, if $A \sim \chi_{V'} \cdot A$, we have

$$A(\sigma) = \int_0^{\sigma} \chi_{V'} \cdot dA = \int_{(0, \sigma_{V'})} \chi_{V'} \cdot dA = 0 \quad \text{a.e.,}$$

which shows that (3) implies (4).

(iv) Finally, if $A(\sigma)=0$ a.e., let ρ_n and σ_n be as in lemma 4.2, and we have

$$\begin{split} E_x & \Big(\int_0^\infty e^{-at} \chi_{U_{\delta}} dA \Big) \\ &= E_x \Big(\sum \int_{\rho_n}^{\sigma_{n+1}} \chi_{U_{\delta}} \cdot dA \Big) + E_x \Big(\sum \int_{\sigma_n}^{\rho_n} \chi_{U_{\delta}} \cdot dA \Big) \\ &= E_x \Big(\sum \int_{\rho_n}^{\sigma_{n+1}} e^{-at} \chi_{U_{\delta}} \cdot dA \Big) \quad \text{(since } x_t \notin U_{\delta} \quad \text{if } \quad t \in (\sigma_n, \ \rho_n) \text{)} \\ &\leq E_x \Big(\sum e^{-a\rho_n} E_{x_{\rho_n}} \Big(\int_0^\sigma e^{-at} dA \Big) \Big) = 0 \; . \end{split}$$

Thus $\chi_{U_{\delta}} \cdot A \sim 0$. Noting $\chi_{U_{\delta}} \uparrow \chi_{S-V_{r}}$ as $\delta \rightarrow 0$, we have

$$\chi_{s-v_r} \cdot A \sim 0$$
 or $\chi_{v_r} \cdot A \sim A$,

which shows that (4) implies (2).

LEMMA 3.12. Under the assumption R, $\sigma < \infty$ implies $x_{\sigma} \in V_{\tau}$ a.e.

PROOF. If $x \in V_r$, then $\sigma = 0$ a.e. P_x and therefore $x_\sigma = x_0 \in V_r$ a.e. P_x .

If $x \notin V_r$, then $\sigma > 0$ a.e. P_x and by the assumption R, $x_{\sigma} \in \overline{V} - V_0 = V_r$ a.e.

THEOREM 3.13. Under the assumption R, if $A \in \overline{\mathbb{Q}}$, then $\widetilde{A}_{(\alpha)}$ satisfies the conditions (1), (2), (3) and (4) of theorem 3.11 for any $\alpha > 0$.

PROOF. Let $\hat{\sigma} = \sigma + \sigma(w_{\sigma}^{+})$. Then by lemma 3.12 $x_{\sigma} \in V_{\tau}$ a.e. and therefore $\sigma(w_{\sigma}^{+}) = 0$ a.e., that is, $\sigma = \hat{\sigma}$ a.e. Therefore, $H^{\alpha}H^{\alpha} = H^{\alpha}$ and $H^{\alpha}u_{\alpha,\tilde{A}_{(\alpha)}} = u_{\alpha,\tilde{A}_{(\alpha)}}$ which shows $\tilde{A}_{(\alpha)} = (\tilde{A}_{(\alpha)})_{(\alpha)}$. Since $\tilde{A}_{(\alpha)} \in \mathbb{C}$ by theorem 3.9, theorem 3.13 follows from theorem 3.11.

4. The approximation theorem

Throughout this section we shall assume the assumption R without referring.

LEMMA 4.1. Let τ be any Markov time and $A \in \overline{\mathfrak{u}}$. If $x_{\tau} \in \overline{V}$ a.e., then

$$E_{arepsilon}\!\left(\int_{0}^{ au}e^{-lpha t}dA
ight)\!=\!E_{arepsilon}\!\left(\int_{0}^{ au}e^{-lpha t}d ilde{A}_{(lpha)}
ight)$$

for any ξ in V_r ($\alpha > 0$).

PROOF. Noting $P_{\varepsilon}(\tau=0)=0$ or 1, we have $x_{\varepsilon}=\xi\in V_r$ if $\tau=0$ a.e. P_{ε} and by the assumption R, $x_{\varepsilon}\in V_r=\bar{V}-V_0$ a.e. P_{ε} if $\tau>0$ a.e. P_{ε} . Therefore

$$H^{\alpha}_{\tau} H^{\alpha} u(\xi) = E_{\xi}(e^{-\alpha \tau} H^{\alpha} u(x_{\tau}))$$

 $= E_{\xi}(e^{-\alpha \tau} u(x_{\tau}))$
 $= H^{\alpha}_{\tau} u(\xi)$,

and $H^{\alpha}u(\xi)=u(\xi)$ since $\xi \in V_r$, where $u=u_{\alpha,A}$. We have

$$\begin{split} E_{\xi}\!\left(\int_{0}^{\tau} e^{-at} dA\right) &= u(\xi) - H_{\tau}^{\alpha} u(\xi) \\ &= H^{\alpha} u(\xi) - H_{\tau}^{\alpha} H^{\alpha} u(\xi) \\ &= E_{\xi}\!\left(\int_{0}^{\tau} e^{-at} d\tilde{A}_{(\alpha)}\right) \,. \end{split}$$

LEMMA 4.2. Let ρ be any Markov time, $A \in \overline{\mathbb{G}}$, and $\overline{\rho} = \rho + \sigma(w_{\rho}^+)$. Then for any x in S

$$E_x\!\!\left(\int_0^{
ho}\!e^{-lpha t}d ilde{A}_{(lpha)}\!
ight)\!=\!E_x\!\!\left(\int_0^{ ilde{
ho}}\!e^{-lpha t}d ilde{A}_{(lpha)}\!
ight)$$
 , $(lpha\!>\!0)$.

PROOF. By the assumption R and theorem 3.13, we have $\tilde{A}_{(\sigma)}(\sigma) = 0$ a.e. Therefore

$$E_x\!\!\left(\int_{
ho}^{ ilde{
ho}}e^{-lpha t}d ilde{A}_{(lpha)}\!
ight)\!=\!E_x\!\!\left(E_{x_
ho}\left(\int_{0}^{\sigma}e^{-lpha t}d ilde{A}_{(lpha)}
ight)
ight)\!=\!0$$
 ,

which proves the lemma.

In the remainder of this section we shall assume V is closed.

Let D=S-B and $\{D_k\}$ be a sequence of open sets in D such as $\bar{D}_k \subset D_{k+1}$ and $D=\lim_{k\to\infty} D_k$. Since D is open, such $\{D_k\}$ exists. Let $\{\rho(k)\}$ be a decreasing sequence of Markov times which satisfies the condition:

$$\rho(k) \leq \frac{1}{k} \cap \sigma_{D_k}.$$

And we set

$$ho_0(k) = 0$$
 , $\sigma_n(k) =
ho_{n-1}(k) + \sigma(w^+_{
ho_{n-1}(k)})$, $ho_n(k) = \sigma_n(k) +
ho(k)(w^+_{\sigma_n(k)})$,

for $n=1, 2, \cdots$. Omitting the suffix k, we shall often write ρ for $\rho(k)$, ρ_n for $\rho_n(k)$ and σ_n for $\sigma_n(k)$.

LEMMA 4.3. For any α , $\beta > 0$ and $A \in \overline{\mathbb{C}}$.

$$E_x(\sum_{n=1}^{\infty}e^{-\alpha\sigma_n}u^0_{\beta}(x_{\rho_n}))\leq e^{(\alpha+\beta)/k}v_{\alpha,\beta}(x)$$

for any x in S, where

$$egin{align} u^{\scriptscriptstyle 0}_{\scriptscriptstyleeta}(x) = & u^{\scriptscriptstyle 0}_{\scriptscriptstyleeta,\,A}(x) = E_xigg(\int_0^\sigma e^{-eta t}dAigg) \ & v_{\scriptscriptstylelpha,\,eta}(x) = & u_{\scriptscriptstylelpha,\, ilde{A}_{(eta)}}(x) = E_xigg(\int_0^\infty e^{-lpha t}d ilde{A}_{(eta)}igg) \;. \end{split}$$

PROOF. If $\xi \in V_r$, $\rho_0 = \sigma_1 = 0$, $\rho_1 = \rho$ and $\sigma_2 = \rho + \sigma(w_\rho^+)$ a.e. P_{ξ} . By lemma 3.12 if $\sigma_n < \infty$ $(n=1, 2, \cdots)$ a.e. $x_{\sigma_n} \in V_r$. Noting these facts, we have

$$\begin{split} E_x(\sum e^{-a\sigma_n} u^0_\beta\left(x_{\rho_n}\right)) \\ &= E_x \Big(\sum e^{-a\sigma_n} E_{x_{\rho_n}} \Big(\int_0^\sigma e^{-\beta t} dA\Big)\Big) \\ &= E_x \Big(\sum e^{-a\sigma_n} E_{x_{\sigma_n}} \Big(e^{\beta\rho} \int_\rho^{\sigma_2} e^{-\beta t} dA\Big)\Big) \\ &\leq e^{\beta/k} E_x \Big(\sum e^{-a\sigma_n} E_{x_{\sigma_n}} \left(\int_0^{\sigma_2} e^{-\beta t} dA\right)\Big) \end{split}$$

$$\begin{split} &= e^{\beta/k} E_x \Big(\sum e^{-\alpha \sigma_n} E_{x_{\sigma_n}} \left(\int_0^{\sigma_2} e^{-\beta t} d\tilde{A}_{(\beta)} \right) \Big) \qquad \text{(by (4.1))} \\ &= e^{\beta/k} E_x \Big(\sum e^{-\alpha \sigma_n} E_{x_{\sigma_n}} \left(\int_0^{\rho} e^{-\beta t} d\tilde{A}_{(\beta)} \right) \Big) \qquad \text{(by (4.2))} \\ &\leq e^{\beta/k} E_x \Big(\sum e^{-\alpha \sigma_n} E_{x_{\sigma_n}} \left(e^{\alpha \rho} \int_0^{\rho} e^{-\alpha t} d\tilde{A}_{(\beta)} \right) \Big) \\ &\leq e^{(\alpha+\beta)/k} E_x \Big(\sum e^{-\alpha \sigma_n} E_{x_{\sigma_n}} \left(\int_0^{\rho} e^{-\alpha t} d\tilde{A}_{(\beta)} \right) \Big) \\ &\leq e^{(\alpha+\beta)/k} E_x \Big(\int_0^{\infty} e^{-\alpha t} d\tilde{A}_{(\beta)} \Big) \end{split}$$

which proves the lemma.

THEOREM 4.4. The assumption R and $V = \overline{V}$ are assumed. Let A be in $\overline{\mathbb{C}}$ and $\chi_{V_r} \cdot A \sim 0$. Let $\{\rho(k)\}$ be a sequence of Markov times satisfying the condition (*) and $\lim_{n \to \infty} \rho_n(k) = \lim_{n \to \infty} \sigma_n(k) = \infty$ a.e. Then, for any f in B(S) such that $f(x_{t-}) = \lim_{n \to \infty} f(x_s)$ exists for all $t < \infty$ a.e. and that $|f(x_t) - f(x_0)| \le 1/k$ if $0 \le t < \rho(k)^{10}$, we have

$$egin{aligned} &\lim_{k o\infty} E_x(\sum_{n=1}^\infty e^{-lpha
ho_{m n}(k)}f(x_{
ho_{m n}(k)-})u^0_eta(x_{
ho_{m n}(k)}))\ &=E_xigg(\int_0^\infty e^{-lpha t}f(x_t)d ilde A_{(eta)}igg)\,, \qquad for \ any \ lpha, \ eta{>}0 \ . \end{aligned}$$

PROOF.

(i) Noting
$$\rho_n - \sigma_n \le 1/k$$
 and $|f(x_{\rho_n}) - f(x_{\sigma_n})| \le 1/k$, we have
$$|E_x(\sum_{n=1}^{\infty} e^{-\alpha \rho_n} f(x_{\rho_n}) u_{\beta}^0(x_{\rho_n})) - E_x(\sum e^{-\alpha \sigma_n} f(x_{\sigma_n}) u_{\beta_0}(x_{\rho_n}))|$$

$$\le E_x(\sum |e^{-\alpha \rho_n} - e^{-\alpha \sigma_n}||f(x_{\rho_n})(u_{\beta}^0(x_{\rho_n}))$$

$$+ E_x(\sum e^{-\alpha \sigma_n}||f(x_{\rho_n}) - f(x_{\sigma_n})||u_{\beta}^0(x_{\rho_n}))$$

$$\le \{(1 - e^{-\alpha/k})||f|| + 1/k\} E_x(\sum e^{-\alpha \sigma_n} u_{\beta}^0(x_{\rho_n}))$$

$$\le \{(1 - e^{-\alpha/k})||f|| + 1/k\} e^{(\alpha + \beta)/k} v_{\alpha, \beta}(x)$$

where $||f|| = \sup_{\alpha} |f(x)|$ and $v_{\alpha,\beta}$ is the same as defined in lemma 4.3.

If f is a bounded continuous or bounded excessive function, set $\rho'(k) = \begin{cases} \inf t \colon x_t \in D_k \text{ or } |f(x_t) - f(x_0)| \ge 1/k \\ \infty & \text{if there is no such } k \end{cases}$ and $\rho(k) = \min \left(\rho'(k), 1/k \right)$. Then, these f and $\{\rho(k)\}$ satisfy the conditions of the theorem.

The right hand side of this inequality tends to zero as k tends to infinity.

(ii) Since

$$egin{aligned} E_x(\sum e^{-lpha\sigma_n}f(x_{\sigma_n})e^{-eta(
ho_n-\sigma_n)}u^0_{eta}(x_{
ho_n}))\ =&E_x\Bigl(\sum e^{-lpha\sigma_n}f(x_{\sigma_n})E_{x_{\sigma_n}}\Bigl(\int_{
ho}^{\sigma_2}e^{-eta t}dA\Bigr)\Bigr) \end{aligned}$$

we have

$$\begin{split} \big| E_x \Big(\sum e^{-\alpha \sigma_n} f(x_{\sigma_n}) u^0_\beta(x_{\rho_n}) \Big) - E_x \Big(\sum e^{-\alpha \sigma_n} f(x_{\sigma_n}) E_{x_{\sigma_n}} \left(\int_0^{\sigma_2} e^{-\beta t} dA \right) \Big) \Big| \\ & \leq (1 - e^{-\beta/k}) \, || \, f \, || \, E_x (\sum e^{-\alpha \sigma_n} u^0_\beta(x_{\rho_n})) \\ & + || \, f \, || \, E_x \Big(\sum e^{-\alpha \sigma_n} E_{x_{\sigma_n}} \left(\int_0^{\rho} e^{-\beta t} dA \right) \Big) \, \, . \end{split}$$

Since $x_i \notin D_k$ for $0 \le t < \rho$,

$$egin{aligned} E_x\Big(\sum e^{-a\sigma_n}E_{x_{\sigma_n}}\Big(\int_0^{
ho}e^{-eta t}dA\Big)\Big) \ &=E_x\Big(\sum e^{-a\sigma_n}E_{x_{\sigma_n}}\Big(\int_0^{
ho}e^{-eta t}\chi_{D_k^{f c}}(x_t)dA\Big)\Big) \ &\leq E_x\Big(\int_0^{\infty}e^{-at}d(\chi_{D_k^{f c}}\cdot A)\Big) \;, \ &\chi_{D_k^{f c}}\cdot A \ll A \quad ext{and} \quad \chi_{D_k^{f c}}\cdot A(t)\downarrow \chi_{f v}\cdot A(t) \quad ext{as} \quad k o\infty \;, \end{aligned}$$

and since $P_x(x_t \in V - V_r, \ t > 0) = 0$ by the assumption R, $\chi_r \cdot A \sim \chi_{V_r} \cdot A \sim 0$ by the assumption of the theorem. Therefore, $\lim_{k \to \infty} E_x \Big(\int_0^\infty e^{-at} d(\chi_{D_k^c} \cdot A) \Big) = 0$. Thus, the right hand side of the inequality (**) is dominated by

$$(1-e^{\beta/k}) \mid\mid f \mid\mid e^{(\alpha+\beta)/k} v_{\alpha,\beta}(x) + \mid\mid f \mid\mid E_x \left(\int_0^\infty e^{-\alpha t} d(\mathbf{X}_{D_k^c} \cdot A) \right)$$

which tends to zero as k tends to infinity.

(iii) Since $x_{r_n} \in V_r$ a.e. (by lemma 3.11), using (4.1) and (4.2) we have

$$\begin{split} E_x & \Big(\sum e^{-\alpha \sigma_n} f(x_{\sigma_n}) E_{x_{\sigma_n}} \left(\int_0^{\sigma_2} e^{-\beta t} dA \right) \Big) \\ &= E_x \Big(\sum e^{-\alpha \sigma_n} f(x_{\sigma_n}) E_{x_{\sigma_n}} \left(\int_0^{\sigma_2} e^{-\beta t} d\tilde{A}_{(\beta)} \right) \Big) \\ &= E_x \Big(\sum e^{-\alpha \sigma_n} f(x_{\sigma_n}) E_{x_{\sigma_n}} \left(\int_0^{\rho} e^{-\beta t} d\tilde{A}_{(\beta)} \right) \Big) \ . \end{split}$$

And

$$\begin{split} \left| E_x \Big(\sum e^{-\alpha \sigma_n} f(x_{\sigma_n}) E_{x_{\sigma_n}} \left(\int_0^\sigma e^{-\beta t} d\tilde{A}_{(\beta)} \right) \Big) \right. \\ \left. - E_x \Big(\sum e^{-\alpha \sigma_n} f(x_{\sigma_n}) E_{x_{\sigma_n}} \left(\int_0^\rho e^{-\alpha t} d\tilde{A}_{(\beta)} \right) \Big) \right| \\ \leq \left(e^{(\alpha+\beta)/k} - 1 \right) \parallel f \parallel E_x \Big(\sum e^{-\alpha \sigma_n} E_{x_{\sigma_n}} \left(\int_0^\rho e^{-\alpha t} d\tilde{A}_{(\beta)} \right) \Big) \\ = \left(e^{(\alpha+\beta)/k} - 1 \right) \parallel f \parallel E_x \left(\sum_{n=1}^\infty \int_{\sigma_n}^{\rho_n} e^{-\alpha t} d\tilde{A}_{(\beta)} \right) \\ \leq \left(e^{(\alpha+\beta)/k} - 1 \right) \parallel f \parallel e^{(\alpha+\beta)/k} v_{\alpha,\beta}(x) , \end{split}$$

which tends to zero as k tends to infinity.

(iv) Now,

$$\begin{split} E_x & \Big(\sum e^{-a\sigma_{\mathbf{n}}} f(x_{\sigma_{\mathbf{n}}}) E_{x_{\sigma_{\mathbf{n}}}} \Big(\int_0^{\rho} e^{-at} d\tilde{A}_{(\beta)} \Big) \Big) \\ = & E_x \Big(\sum f(x_{\sigma_{\mathbf{n}}}) \int_{\sigma_{\mathbf{n}}}^{\rho_{\mathbf{n}}} e^{-at} d\tilde{A}_{(\beta)} \Big) \;. \end{split}$$

Noting (since $\tilde{A}_{(\beta)}(\sigma) = 0$)

$$\begin{split} \left| E_x \left(\sum_{n=0}^{\infty} \int_{\rho_n}^{\sigma_{n+1}} e^{-\alpha t} f(x_t) d\tilde{A}_{(\beta)} \right) \right| \\ &\leq \| f \| E_x \left(\sum e^{-\alpha \rho_n} E_{x_{\rho_n}} \left(\int_0^{\sigma} e^{-\alpha t} d\tilde{A}_{(\beta)} \right) \right) = 0 , \end{split}$$

we have (since $\lim \rho_n = \lim \sigma_n = \infty$)

$$E_x\!\!\left(\int_0^\infty e^{-at}f(x_t)d ilde{A}_{(eta)}\!
ight)\!=\!E_x\!\!\left(\sum\!\!\int_{\sigma_n}^{
ho_n}e^{-at}f(x_t)d ilde{A}_{(eta)}
ight)\,.$$

On the other hand, (since $|f(x_t)-f(x_n)| \le 1/k$ for $\sigma_n \le t < \rho_n$), we have

$$\begin{split} \left| E_x \left(\sum f(x_{\sigma_n}) \int_{\sigma_n}^{\rho_n} e^{-\alpha t} d\tilde{A}_{(\beta)} \right) - E_x \left(\sum_{n=1}^{\infty} \int_{\sigma_n}^{\rho_n} e^{-\alpha t} f(x_t) d\tilde{A}_{(\beta)} \right) \right| \\ & \leq \frac{1}{k} E_x \left(\sum \int_{\sigma_n}^{\sigma_{n+1}} e^{-\alpha t} d\tilde{A}_{(\beta)} \right) \leq \frac{1}{k} v_{\alpha, \beta}(x) \;, \end{split}$$

which tends to zero as k tends to infinity.

(i), (ii), (iii) and (iv) prove the theorem.

This theorem shows $\sum e^{-a\rho_n}u^0_{\beta}(x_{\rho_n})$ approximates $\int e^{-at}d\tilde{A}_{(\beta)}$ in a certain sense. The approximation in other forms may be given¹¹⁾. The

For example, under sufficiently regular conditions for M and A, we can prove the convergence is in $L^2(P_x)$ -sense and almost everywhere if we choose a suitable subsequence.

theorem is useful for the investigation of the process on the boundary ([8]).

5. Properties of Φ_{α} and μ_{α}

In this section we shall also assume the assumption R and that V is closed, and only consider the functional T and its sweeping-out Φ_{α} : $\Phi_{\alpha} = \tilde{T}_{(\alpha)}$. By theorem 3.9 $\Phi_{\alpha} \in \bar{\mathbb{G}}$ for any $\alpha > 0$.

 $W_i^* = \{w : \text{ there exists such } t \text{ as } x_t(w) \in V\}$,

and

$$W_1 = \{w: w \in W_1^* \text{ and } \sup \{t: x_t \in V\} = \infty\}.$$

Let

$$ho \! = \! 1 \! + \! \sigma \! \left(w_{\scriptscriptstyle 1}^+
ight)$$
 , $ho_{\scriptscriptstyle 0} \! = \! 0$, $ho_{\scriptscriptstyle n+1} \! = \!
ho_{\scriptscriptstyle n} \! + \!
ho \! \left(w_{\scriptscriptstyle
ho_{\scriptscriptstyle n}}^+
ight)$.

Then

$$W_1 = \{ \rho_n < \infty \text{ for all } n \}$$
,

for $\rho_{n+1} \ge \rho_n + 1$ and $x_{\rho_n} \in V$ (since V is closed). Therefore, W_1 is \mathfrak{F}_{∞} -measurable. In the first, we note,

PROPOSITION 5.1. $w \in W_1$, then $\zeta = \infty$.

THEOREM 5.2. If $w \in W_1$, then $\Phi_a(\infty, w) = \infty$ a.e. for any $\alpha > 0$, that is, $P_r(\Phi_a(\infty) = \infty, W_1) = P_x(W_1) \quad \text{for any } x \text{ in } S.$

PROOF. Let $\beta > \text{Max}(1, \alpha)$ and $X = \int_0^{\beta} e^{-\beta t} d\Phi_{\beta}$.

(i) If $\xi \in V_r$ and $P_{\xi}(\zeta > \rho) \ge 1/2$, then noting $x_{\rho} \in V$, we have

$$egin{align} E_{arepsilon}(X) &= E_{arepsilon} \left(\int_0^{
ho} e^{-eta t} doldsymbol{arphi}_{eta}
ight) \ &= E_{arepsilon} \left(\int_0^1 e^{-eta t} dT
ight) \ &\geq E_{arepsilon} \left(\int_0^1 e^{-eta t} dT
ight) \ &\geq E_{arepsilon} \left(\int_0^1 e^{-eta t} dt; \; \; \zeta \! > \!
ho \! \geq \! 1
ight) \end{split}$$

$$\geq \frac{1}{eta} (1 - e^{-eta}) P_{\epsilon}(\zeta >
ho)$$
 $\geq \frac{1}{2eta} (1 - e^{-eta}) = q$

where q is a positive number independent of ξ . Also we have

$$egin{align} E_{\epsilon}(X^{z}) = & 2E_{\epsilon}\Bigl(\int_{0}^{r}e^{-eta t}doldsymbol{arphi}_{eta}(t)\!\int_{t}^{r}e^{-eta s}doldsymbol{arphi}_{eta}(s)\Bigr) \ & \leq & 2E_{\epsilon}\Bigl(\int_{0}^{r}e^{-eta t}H^{eta}\!g_{eta}(x_{t})dt\Bigr) \ & \leq & rac{2}{eta}E_{\epsilon}(X) \; , \end{split}$$

since $H_{\beta}g_{\beta}(\xi) \leq g_{\beta}(\xi) \leq 1/\beta$. Therefore,

$$\begin{split} E_{\epsilon}(e^{-X}; \; \zeta > \rho) &\leq 1 - E_{\epsilon}(X) + \frac{1}{2} E_{\epsilon}(X^{\mathfrak{s}}) \\ &\leq 1 - \left(1 - \frac{1}{\beta}\right) E_{\epsilon}(X) \\ &\leq 1 - \left(1 - \frac{1}{\beta}\right) q \; . \end{split}$$

(ii) If $P_x(\zeta > \rho) < 1/2$, it is easily seen that

$$E_x(e^{-x}; \zeta > \rho) < \frac{1}{2}$$
.

Therefore, for any $\xi \in V_r$, we have

$$E_{\varepsilon}(e^{-X}; \zeta > \rho) \leq p < 1,$$

where

$$p = \operatorname{Max}\left(\frac{1}{2}, 1 - \left(1 - \frac{1}{\beta}\right)q\right)$$
.

(iii) Since $x_{\rho_n} \in V_r$ a.e. by (3.12) and $\Phi_{\beta}(\rho) \ge X$ $E(\rho^{-\Phi_{\beta}(\infty)}, W) = E(\rho^{-\Phi_{\beta}(\infty)}, W, \zeta = \infty)$

$$\begin{split} E_{x}(e^{-\pmb{\phi}_{\beta}(\infty)}: \ W_{1}) &= E_{x}(e^{-\pmb{\phi}_{\beta}(\infty)}: \ W_{1}, \ \zeta = \infty) \\ &\leq E_{x}(e^{-\pmb{\phi}_{\beta}(\rho_{n})}: \ \zeta > \rho_{n}) \\ &= E_{x}(e^{-\pmb{\phi}_{\beta}(\rho_{n-1})}E_{x_{\rho_{n-1}}}(e^{-\pmb{\phi}_{\beta}(\rho)}: \ \zeta > \rho): \ \zeta > \rho_{n-1}) \\ &\leq pE_{x}(e^{-\pmb{\phi}_{\beta}(\rho_{n-1})}: \ \zeta > \rho_{n-1}) \quad (n=2, \ 3, \ 4, \ \cdots) \ . \end{split}$$

Therefore, by induction,

$$E_r(e^{-\boldsymbol{\theta}_{\beta}(\infty)}; W_1) \leq p^{n-1} \qquad (n=2, 3, \cdots)$$

which shows that

$$E_x(e^{-\phi_{\beta}(\infty)}; W_1) = 0$$
 or $P_x(\Phi_{\beta}(\infty) < \infty, W_1) = 0$.

Noting $\Phi_{\alpha}(\infty) \geq \Phi_{\beta}(\infty)$ (since $\alpha < \beta$), we have the theorem.

COROLLARY 5.3. If **M** is conservative (that is, $\zeta = \infty$ a.e.) and $\sigma < \infty$ a.e. then $\Phi_{\sigma}(\infty) = \infty$ a.e.

We define the inverse function $\tau_a(s, w)$ of $\Phi_a(t, w)$ as follows:

$$\tau_{\alpha}(s, w) = \sup t : \Phi_{\alpha}(t) \leq s$$
.

Then, it is easily seen ([10]).

Proposition 5.4.

- (1) $\tau_a(s, w)$ is a Markov time for a fixed s.
- (2) $\tau_a(s, w)$ is a right continuous increasing function in s.
- (3) $\tau_{\alpha}(s+t, w) = \tau_{\alpha}(s, w) + \tau_{\alpha}(t, w_{\tau_{\alpha}(s)}^{+})$.

For the later use, we shall prove the following lemmas.

LEMMA 5.5. $P_{\varepsilon}(\tau_{\alpha}(0)=0)=1$ for any ξ in V_r .

PROOF. Since $\tau_{\alpha}(s)$ is a Markov time, $g_{\alpha} \ge H^{\alpha}g_{\alpha}$ and $H^{\alpha}g_{\alpha}(\xi) = g_{\alpha}(\xi)$,

$$\begin{split} 0 = & E_{\varepsilon} \left(\int_{0}^{\tau_{\alpha}(0)} e^{-\alpha t} d\Phi_{\alpha} \right) = & H^{\alpha} g_{\alpha} \left(\xi \right) - H^{\alpha}_{\tau_{\alpha}(0)} H^{\alpha} g_{\alpha} \\ = & g_{\alpha} \left(\xi \right) - H^{\alpha}_{\tau_{\alpha}(0)} g_{\alpha} (\xi) \\ = & E_{\varepsilon} \left(\int_{0}^{\tau_{\alpha}(0)} e^{-\alpha t} dT \right) \geq 0 \end{split}$$

where $g_{\alpha}(x) = E_x \left(\int_0^{\infty} e^{-at} dT \right)$. Thus, $T(\tau_{\alpha}(0)) = \text{Min}(\tau_{\alpha}(0), \zeta) = 0$ a.e. P_{ξ} , namely $\tau_{\alpha}(0) = 0$ a.e. P_{ξ} (since $P_{\xi}(\zeta > 0) = 1$).

LEMMA 5.6. $\tau_a(0) = \sigma \ a.e.$

PROOF. By theorem 3.13 $\Phi_a(\sigma) = 0$ a.e. and therefore $\tau_a(0) \ge \sigma$ a.e. On the other hand, noting $x_{\sigma} \in V_r$ a.e. by (3.12), we have

$$\begin{split} P_x(\tau_a(0) > \sigma) = & P_x(\tau_a(0, \ w_\sigma^+) > 0, \ \varPhi_a(\sigma) = 0, \ \sigma < \infty) \\ = & E_x(P_{x_\sigma}(\tau_a(0) > 0); \ \varPhi_a(\sigma) = 0, \ \sigma < \infty) \\ = & 0 \qquad \text{(by (5.5))}. \end{split}$$

Thus, $\tau_{\alpha}(0) = \sigma$ a.e.

THEOREM 5.7. $x_{\tau_{\alpha}(s)} \in V$ for any s such as $0 \le \tau_{\alpha}(s) < \infty$ a.e. In other words, $P_x(x_{\tau_{\alpha}(s)} \notin D$ for all s) = 1 for any x, where $D = S - V^{12}$.

PROOF. Since V is closed, V = V' and by theorem 3.13 $\Phi_{\alpha} \sim \chi_{\nu} \cdot \Phi_{\alpha}$. We consider the only w which satisfies $\Phi_{\alpha}(t) = \int_{0}^{t} \chi_{\nu}(x_{s}) d\Phi_{\alpha}$ for all t, which occurs for almost every w. If $x_{u} \in D$, then

$$\Phi_{\alpha}(u + \sigma(w_u^+)) = \Phi_{\alpha}(u) + \int_u^{u + \sigma(w_u^+)} \chi_v(x_t) d\Phi_{\alpha}$$

$$= \Phi_{\alpha}(u)$$

and $\sigma(w_u^+) > 0$ since V is closed. Therefore, u can not be equal to $\tau(s, w)$ for any s. The theorem is proved.

Let G be any open set in S. For any positive ε and k, we define

$$\rho_{{\scriptscriptstyle{\boldsymbol{\epsilon}}},k}\!(G)\!=\!\Big\{\begin{array}{ll} \inf_{\boldsymbol{\epsilon}}\;t\!\!:\;t\!\geqq\!\varepsilon,\quad x_{{\scriptscriptstyle{\boldsymbol{\epsilon}}}}\!\in\!G,\quad \varPhi_{\scriptscriptstyle{\boldsymbol{\alpha}}}\!(t)\!-\!\varPhi_{\scriptscriptstyle{\boldsymbol{\alpha}}}\!(t\!-\!\varepsilon)\!<\!k\\ \infty & \text{if there is no such }t. \end{array}$$

Then, from the right continuity of x_t and $\Phi_a(t)$ in t, we have

$$\{\rho_{\epsilon,k}(G) < t\} = \bigcup_{\substack{\epsilon \le r < t \\ r : \text{ rational}}} \{x_r \in G, \ \varPhi_a(r) - \varPhi_a(r - \varepsilon) < k\}$$

for any $t \in [0, \infty)$. Therefore, $\rho_{\epsilon,k}(G)$ is a Markov time. Let $\{D_n\}$ be a decreasing sequence of open sets which contains V and $\bigcap \bar{D}_n = V^{13}$. Set

$$ho_{ullet,n} =
ho_{ullet, \ 1/n}(D_n)$$
 $ho_{ullet} = \left\{egin{array}{ll} \inf t: & t \geqq arepsilon, & x_t \in V, & arPhi_a(t) - arPhi_a(t - arepsilon) & < k \ \infty & ext{if there is not such } t. \end{array}
ight.$

The sequence $\{\rho_{\epsilon,n}\}$ is an increasing sequence of Markov times and $\rho_{\epsilon,n} \leq \rho_{\epsilon}$. Let $\overline{\rho} = \lim_{n \to \infty} \rho_{\epsilon,n}$. Then $x_{\overline{\rho}} = \lim_{n \to \infty} x_{\rho_{\epsilon},n}$ a.e. on $\overline{\rho} < \infty$ (by $(P.\ 4)$) and $\overline{\rho} \leq \rho_{\epsilon}$. On the other hand, since $x_{\rho_n} \in \overline{D}_n$ and $\Phi_{\alpha}(\rho_{\epsilon,n}) - \Phi_{\alpha}(\rho_{\epsilon,n} - \epsilon) \leq 1/n$, we have $x_{\overline{\rho}} \in V$ if $\overline{\rho} < \infty$ a.e. $\Phi_{\alpha}(\overline{\rho}) - \Phi_{\alpha}(\overline{\rho} - \epsilon) = 0$. Thus $\overline{\rho} \geq \rho_{\epsilon}$ a.e., and so $\rho_{\epsilon} = \overline{\rho}$ a.e. is a Markov time. Moreover, since $x_{\rho_{\epsilon}} \in V$ if $\rho_{\epsilon} < \infty$ and $\rho_{\epsilon} \geq \epsilon$, $x_{\rho_{\epsilon}} \in V_r$ if $\rho_{\epsilon} < \infty$ a.e. by the assumption R. Let

$$\rho_0 = 0, \qquad \rho_{n+1} = \rho_n + \rho_i(w_{\rho_n}^+).$$

Then $x_{\rho_n} \in V_r$ if $\rho_n < \infty$ a.e. and $\Phi_{\alpha}(\rho_n) = \Phi_{\alpha}(\rho_n - \varepsilon)$. Also we have

¹²⁾ If $\tau_{\alpha}(s) < \infty$, then $\tau_{\alpha}(s) < \zeta$. For, if $\tau_{\alpha}(s) \ge \zeta$, then $\Phi_{\alpha}(\zeta) = \Phi_{\alpha}(\tau_{\alpha}(s)) = \Phi_{\alpha}(\infty) = s$ and $\tau_{\alpha}(s) = \infty$.

¹³⁾ Such $\{D_n\}$ exists since V is closed.

$$P_x(\tau_a(0, w_{\rho_n}^+) > 0, \rho_n < \infty) = E_x(P_{x_{\rho_n}}(\tau_a(0) = \sigma > 0); \rho_n < \infty)$$

$$= 0 \qquad \text{(by (5.6))}.$$

Hence, $\Phi_{\alpha}(s) > \Phi_{\alpha}(\rho_n)$ for any $s > \rho_n$ $(n=1, 2, \cdots)$ a.e. Therefore, for any x in S, except the subset of W of P_x -measure 0, the following assertion holds: If $\rho_{n-1} < t \le \rho_{n+1}$, $\varepsilon \le t < \infty$, $x_t \in V$ and $\Phi_{\alpha}(t) = \Phi_{\alpha}(t-\varepsilon)$, then $t-\varepsilon \ge \rho_{n-1}$ $(n=1, 2, \cdots)^{(1)}$ and $t=\rho_n$ or $\Phi_{\alpha}(s) > \Phi_{\alpha}(t) = \Phi_{\alpha}(t-\varepsilon)$ for any s > t. Noting $\lim \rho_n = \infty$ (since $\rho_{n+1} \ge \rho_n + \varepsilon$), we have proved the following lemma.

LEMMA 5.8. Let

$$\mathfrak{A}_{\iota} = \left\{ \begin{array}{ccc} w: & there \ exist \ t \ and \ s \ such \ as \ s > t \ , \\ & x_{t} \in V \ and \ \Phi_{a}(s) = \Phi_{a}(t - \varepsilon) \ . \end{array} \right\}$$

Then

$$P_x(\mathfrak{A}_s)=0$$
 for any x in S .

THEOREM 5.9. Let

$$\mathfrak{A} = \left\{ egin{array}{ll} w: & \textit{there exists } t, \ s \ \textit{and} \ u \ \textit{such as} \ s \! > \! t \! > \! u \ , \\ x_t \in V \ \textit{and} \ \varPhi_a(s) \! = \! \varPhi_a(u) \ . \end{array}
ight.$$

Then

$$P_x(\mathfrak{A})=0$$
 for any x in S .

PROOF. Since $\mathfrak{A} = \bigcup_{n} \mathfrak{A}_{1/n}$, the theorem follows from the lemma 5.8. Roughly speaking, $\Phi_{a}(t)$ can not be constant near t where $x_{t} \in V$ a.e.

THEOREM 5.10. Let

$$\overline{\zeta} = \left\{ egin{array}{ll} \sup t: & x_t \in V \\ 0 & if \ there \ is \ no \ such \ t \ . \end{array}
ight.$$

Then

- (1) $\bar{\zeta} = \inf t$: $\Phi_{\alpha}(t) = \Phi_{\alpha}(\infty)$ $(t \leq \infty)$ a.e.
- (2) $\bar{\zeta} = \infty$ if and only if $\Phi_{\alpha}(\infty) = \infty$ a.e.

PROOF. We confine our attention to the event that $x_{\tau_a(s)} \in V$ for any s such as $\tau_a(s) < \infty$ and $x_t \notin V$ if there exist s and u such as s > t > u and $\Phi_a(s) = \Phi_a(u)$. This event occurs almost everywhere by theorems (5.7) and (5.9). Let $\rho = \inf t : \Phi_a(t) = \Phi_a(\infty)$ ($t \le \infty$). If $\Phi_a(\overline{\zeta}) < \Phi_a(\zeta)$, then

¹⁴⁾ If n=1, $t-\epsilon \ge 0$ is obvious, and if $n \ge 2$, then $\Phi_{\alpha}(t) = \Phi_{\alpha}(t-\epsilon) > \Phi_{\alpha}(\rho_{n-1})$ and $t-\epsilon > \rho_{n-1}$.

for any s in $\Phi_a(\overline{\zeta}) < s < \Phi_a(\infty)$, we have $\overline{\zeta} < \tau_a(s) < \infty$ and $x_{\tau_a(s)} \in V$ which contradicts the definition of $\overline{\zeta}$. Therefore, $\Phi_a(\overline{\zeta}) = \Phi_a(\infty)$ or $\overline{\zeta} \ge \rho$. On the other hand, since $\Phi_a(\rho) = \Phi_a(\infty)$, $x_t \notin V$ if t is in $(\rho, \infty]$. Therefore $\overline{\zeta} \le \rho$. The first part of the theorem is proved. If $\overline{\zeta} = \infty$, then $\Phi_a(\infty) = \infty$ a.e. by theorem 5.2. If we note that $\rho = \overline{\zeta}$ a.e., the converse is obvious by the definition of ρ .

6. Properties of U-process

Changing the time scale of the process M by $\Phi_{\alpha}(t)$, we shall get a certain form of the process on the boundary given by T. Ueno [9] (that is, U-process). We shall show this process is a Markov process on V in the sense of section 2. Throughout this section, we shall assume

Assumption R^* . V is closed and any point in V is regular to V^{15} , that is, $V = \bar{V} = V_*$. V^{15}

Noting $\Phi_a(t, w)^{17}$ can be chosen so as it is \mathfrak{B} -measurable (c.f. remark in section 1), we can consider

$$\tau_a(s, w) = \sup \{r : r \text{ is rational and } \Phi_a(r) \leq s\}$$

is also \mathfrak{B} -measurable for fixed t. Therefore, we have

PROPOSITION 6.1. $x_{\tau_{\sigma}(s, w)}$ is \mathfrak{B} -measurable for fixed t.

It is obvious that

PROPOSITION 6.2. $x_{r_{a}(s, w)}$ is right continuous in t, and $x_{r_{a}(s)} = \partial$ if s is in $[\Phi_{a}(\infty), \infty]$.

Now, we set

$$\mathfrak{A}_1 = \{ w : x_{r_{\sigma}(s)} \notin D, \text{ for any } s \}$$
,

$$\mathfrak{A}_2 = \{ w : \quad \varPhi_{\alpha}(\infty) = \infty, \text{ or there exists such } \overline{\zeta}(w) \text{ as } \overline{\zeta} < \infty \}$$

and $\varPhi_{\alpha}(t) = \varPhi_{\alpha}(\infty) \text{ for } t \ge \overline{\zeta} \}$,

and $\mathfrak{A}_0 = \mathfrak{A}_1 \cap \mathfrak{A}_2$. Then, by theorems (5.7) and (5.10), $P_x(\mathfrak{A}_0) = 1$ for any x in S, and

$$\mathfrak{A}_1 = \{w: x_{r_{a}(r)} \notin D \text{ for any rational } r\}^{18)}$$

$$\mathfrak{A}_2 = \{ \Phi_a(\infty) = \infty \} \cup \{ \Phi_a(r) = \Phi_a(\infty) \text{ for some rational } r \}$$

 $^{^{15)}}$ x is regular to V if and only if $P_x(\sigma_V\!=\!0)\!=\!1.$

Obviously the assumption R^* implies the assumption R.

In this section a positive number $\alpha > 0$ is fixed (except the last remark of this section).

¹⁸⁾ For, $V \cup \{\partial\}$ is closed in S^* and $x_{\tau_{\alpha}(s)}$ is right continuous in S.

are \mathfrak{B} -measurable. Moreover, for any $w \in \mathfrak{A}_2$, let $\{s_n\}$ be an increasing sequence of non-negative numbers such as $s=\lim s_n < \infty$. Then (1) $\tau_a(s_n) \le \tau_a(s) < \infty$ if $s < \Phi_a(\infty)$, (2) $\tau_a(s_n) < \overline{\zeta} < \infty$ for all n if $s = \Phi_a(\infty)$ and $s_n < \Phi_a(\infty)$ for all n, and (3) $\tau_a(s_n) = \infty$ for $n \ge n_0$ if $s \ge \Phi_a(\infty)$ and $s_{n_0} \ge \Phi_a(\infty)$ for some n_0 . Therefore $\lim_{n \to \infty} x_{\tau_a(s_n)}$ exists in any case.

PROPOSITION 6.3. If $w \in \mathfrak{A}_{2}$, $x_{\tau_{\alpha}(s, w)}(w)$ has a left limit in s which is in $[0, \infty)$.

We shall define the fields of sets, the sets of functions and the path space etc. on V in the same way as in section 2 in which we replace S by V. To distinguish the new notations from the original notations, we add the wave marks, that is, \tilde{B} is a topological Borel fields on V and \tilde{W} is the space of all paths on V^{*19} which satisfies (W. 1), (W. 2) and (W. 3), etc.

We define a mapping π_{α} of W into \tilde{W} as follows:

$$\xi_s(\pi_a(w)) = \begin{cases} x_{\tau_a(s, w)}(w) & \text{if } w \in \mathfrak{U}_0 \\ \partial & \text{if } w \notin \mathfrak{U}_0 \end{cases}$$

where $\xi_s(\tilde{w}) = \tilde{w}_s^{20}$. We shall often write \tilde{w}_a for $\pi_a(w)$. We can assure $\tilde{w}_a \in \tilde{W}$ by definition of \mathfrak{A}_0 , (6.2) and by (6.3) if $w \in \mathfrak{A}_0$, and by the definition if $w \notin \mathfrak{A}_0$. Moreover,

Proposition 6.4.

- (1) $P_x(\xi_s(\tilde{w}_a)=x_{\tau_{-}(s)} \text{ for all } s)=1 \text{ for any } x \text{ in } S.$
- (2) $\pi_{\alpha}^{-1}(\widetilde{\mathfrak{A}}) \in \mathfrak{B}$ for any $\widetilde{\mathfrak{A}} \in \widetilde{\mathfrak{B}}$.

PROOF. The first assertion follows from the equality $P_x(\mathfrak{A}_0)=1$ a.e. Since \mathfrak{A}_0 is \mathfrak{B} -measurable, the second assertion is obtained by (6.1).

Now we define a system of probability measures $\tilde{M}^{(\alpha)} = \{\tilde{P}_{\xi}^{(\alpha)}\}_{\xi \in V^*}$ on $\tilde{\mathfrak{B}}$ (and therefore on $\tilde{\mathfrak{F}}$) as follows:

$$\tilde{P}_{\varepsilon}^{(\alpha)}(\tilde{\mathfrak{A}}) = P_{\varepsilon}(\pi_{\alpha}^{-1}(\tilde{\mathfrak{A}}))$$

for any $\xi \in V^*$. We shall often drop the suffix α , that is, $\tilde{\pmb{M}} = \tilde{\pmb{M}}^{(\alpha)}$ $\hat{P}_{\xi} = \hat{P}_{\xi}^{(\alpha)} \pi = \pi_{\alpha} \tau = \tau_{\alpha}$ and $\Phi = \Phi_{\alpha}$.

THEOREM 6.5. $\tilde{\textit{M}}$ satisfies the conditions:

$$(\tilde{P}, 1)$$
 $\tilde{P}_{\xi}(\xi_0 = \xi) = 1.$

¹⁹⁾ $V^* = V \cup \{\partial\}$.

By the definition, we have $\widetilde{\zeta}(\widetilde{w}_{\alpha}) = \Phi_{\alpha}(\infty)$ if $w \in \mathfrak{A}$ and $\widetilde{\zeta}(\widetilde{w}_{\alpha}) = 0$ if $w \in \mathfrak{A}$.

 $(\tilde{P}, 2)$ For any $\tilde{\mathfrak{A}} \in \tilde{\mathfrak{B}}$. $P_{\epsilon}(\mathfrak{A})$ is a $\tilde{\mathbf{B}}$ -measurable function in ξ .

PROOF. Since $\xi \in V = V_r$ by the assumption R^* , $P_{\xi}(\tau(0) = 0) = 1$, which proves $(\tilde{P}, 1)$. Since $\pi^{-1}(\tilde{\mathfrak{A}}) \in \mathfrak{B}$ by (6.4) and $P_x(\pi^{-1}(\tilde{\mathfrak{A}}))$ is **B**-measurable in x, restricting x on V, we obtain $(\tilde{P}, 2)$.

PROPOSITION 6.6. $\pi^{-1}(\tilde{\mathfrak{B}}_t) \subset \mathfrak{F}_{\tau(t)} \cap \mathfrak{B}$.

PROOF. By (6.4) $\pi^{-1}(\tilde{\mathfrak{B}}_t)\subset \mathfrak{B}$. For any $A\in \tilde{\boldsymbol{B}}\subset \boldsymbol{B}$ and $s\leq t$, $\{w:\xi_s(\tilde{w})\in A\}=\{w:x_{\tau(s)}\in A\}$ a.e. The right side of this equality is $\mathfrak{F}_{\tau(t)}$ -measurable. Noting that \mathfrak{F}_t is generated by $\{\xi_s\in A\}$ $(s\leq t,\ A\in \tilde{\boldsymbol{B}})$, we obtain the proposition.

LEMMA 6.7. Let $\widetilde{\mathfrak{A}}$ be in \mathfrak{B} and μ be in M(S). Then $\widetilde{P}_{\widetilde{\iota}}(\widetilde{\mathfrak{A}}) = 0$ implies $P_{\mu}(\pi^{-1}(\widetilde{\mathfrak{A}})) = 0$, where $\widetilde{\iota}(A) = \int_{s^*} \mu(dx) P_x(x_s \in A)$ for $A \in \widetilde{\boldsymbol{B}} \subset \boldsymbol{B}$.

PROOF. For any $\varepsilon > 0$, there exists

$$\widetilde{\mathfrak{A}}_{\iota} = \bigcup_{n} \{ \xi_{t_{1}^{n}} \in A_{1}^{n}, \dots, \xi_{t_{in}^{n}} \in A_{in}^{n} \}$$

such that $\tilde{\mathfrak{A}}_{\iota} > \tilde{\mathfrak{A}}$ and $\tilde{P}_{\iota}(\tilde{\mathfrak{A}}_{\iota}) < \varepsilon$, where A_{j}^{n} 's are in $\tilde{\mathbf{B}}$. Since, by (6.6)

$$\tau(t, w) = \tau(0) + \tau(t, w_{\tau(0)}^+)$$

$$= \sigma + \tau(t, w_{\sigma}^+) \text{ a.e.},$$

we have

$$\begin{split} P_{\boldsymbol{\mu}}(\boldsymbol{\pi}^{-1}(\tilde{\mathfrak{A}}_{\boldsymbol{\epsilon}})) &= P_{\boldsymbol{\mu}}(\bigvee_{n} X_{\boldsymbol{\epsilon}(t^n_j)} \in A^n_j, \ j = 1, \ 2, \ \cdots, \ i_n\}) \\ &= P_{\boldsymbol{\mu}}(\bigvee_{n} \{X_{\boldsymbol{\epsilon}(t^n_j, \boldsymbol{w}^+_{\boldsymbol{\sigma}})}(\boldsymbol{w}^+_{\boldsymbol{\sigma}}) \in A^n_j, \ j = 1, \ 2, \ \cdots, \ i_n\}) \\ &= E_{\boldsymbol{\mu}}(P_{x_{\boldsymbol{\sigma}}}(\bigvee_{n} \{X_{\boldsymbol{\epsilon}(t^n_j)} \in A^n_j, \ j = 1, \ 2, \ \cdots, \ i_n\})) \\ &= P_{\boldsymbol{\nu}}(\boldsymbol{\pi}^{-1}(\tilde{\mathfrak{A}}_{\boldsymbol{\epsilon}})) = \tilde{P}_{\boldsymbol{\nu}}(\tilde{\mathfrak{A}}_{\boldsymbol{\epsilon}}) < \varepsilon \ . \end{split}$$

Since $\pi^{-1}(\widetilde{\mathfrak{A}})\subset\pi^{-1}(\widetilde{\mathfrak{A}}_{\epsilon})$, the proposition follows.

LEMMA 6.8. $\pi^{-1}(\tilde{\mathfrak{F}}_t^*) \subset \mathfrak{F}_{\tau(t)}^{21}$.

PROOF. For any $\widetilde{\mathfrak{A}} \in \widetilde{\mathfrak{F}}_t^*$ and $\mu \in M(S)$, if we define $\widetilde{\nu}(A) = \int \mu(dx) P_x(x_s \in A)$ $(A \in \widetilde{B})$, there exists $\widetilde{\mathfrak{A}}'$ and $\widetilde{\mathfrak{A}}''$ in $\widetilde{\mathfrak{B}}_t$ such that

$$\widetilde{\mathfrak{A}} \cap \widetilde{\mathfrak{A}} = (\widetilde{\mathfrak{A}} \cap \widetilde{\mathfrak{A}}'^{\circ}) \setminus /(\widetilde{\mathfrak{A}}^{\circ} \cap \widetilde{\mathfrak{A}}') \subset \widetilde{\mathfrak{A}}'' \text{ and } \widetilde{P}_{\widetilde{\mathfrak{a}}}(\widetilde{\mathfrak{A}}'') = 0.$$

Before proving $(\widetilde{P}, 3)$, we can not yet know $\widetilde{\mathfrak{F}}_t^* = \widetilde{\mathfrak{F}}_t$ where $\widetilde{\mathfrak{F}}_t^* = \bigcap \widetilde{\mathfrak{F}}_t \widetilde{\mathfrak{M}}(s)$ and $\widetilde{\mathfrak{F}}_t = \{A: A \in \widetilde{\mathfrak{F}}_\infty^*, A \cap \{t < s\} \in \widetilde{\mathfrak{F}}_s^* \text{ for any } s\}.$

But $\pi^{-1}(\widetilde{\mathfrak{A}}') \in \mathfrak{F}_{\mathfrak{r}(t)}$ by (6.6) and $P_{\mu}(\pi^{-1}(\widetilde{\mathfrak{A}}'')) = 0$ by (6.7), and $\pi^{-1}(\widetilde{\mathfrak{A}} \ominus \pi^{-1}(\widetilde{\mathfrak{A}}') \subset \pi^{-1}(\widetilde{\mathfrak{A}}'')$. Therefore $\pi^{-1}(\widetilde{\mathfrak{A}})$ is in the μ -completion $\mathfrak{F}''_{\mathfrak{r}(t)}$ of $\mathfrak{F}_{\mathfrak{r}(t)}$. Since μ is arbitrary and $\mathfrak{F}_{\mathfrak{r}(t)} = \bigcap_{\mu \in M(S)} \mathfrak{F}''_{\mathfrak{r}(t)}$, we obtain the lemma.

PROPOSITION 6.9. Let $\tilde{\rho}$ be any Markov time (with respect to \tilde{M}). Then $\tau(\rho(\tilde{w}), w)$ is a Markov time (with respect to M) and $\pi^{-1}(\tilde{\mathfrak{F}}_{\tilde{\rho}})\subset \mathfrak{F}_{\tau(\rho(\tilde{w}), w)}$.

PROOF.

(i) Let $T_1 = \{r_n\}$ be a countable set in $[0, \infty]$ and the values of $\tilde{\rho}$ be in T_1 . Then $\{\tilde{\rho} = r_n\} \in \bigcap_{\epsilon>0} \widetilde{\mathfrak{F}}_{r_n+\epsilon}^*$, so $\{\tilde{\rho}(\tilde{w}) = r_n\} \in \bigcap_{\epsilon>0} \pi^{-1}(\widetilde{\mathfrak{F}}_{r_n+\epsilon}^*) = \bigcap_{\epsilon>0} \widetilde{\mathfrak{F}}_{r(r_n+\epsilon)} = \mathfrak{F}_{\epsilon(r_n)}$ by (6.8) and the right continuity of $\tau(s)$. Therefore

$$\{ au(\tilde{
ho}(\tilde{w}), w) < t\} = \bigcup_{n} \{\tilde{
ho}(\tilde{w}) = r_n\} \cap \{ au(r_n, w) < t\} \in \mathfrak{F}_t$$
 ,

which shows that $\tau(\tilde{\rho}) = \tau(\tilde{\rho}(\tilde{w}), w)$ is a Markov time (M). Moreover, if $\tilde{\mathfrak{A}} \in \tilde{\mathfrak{F}}_{\tilde{\rho}}$, then for any $\varepsilon > 0$,

$$\widetilde{\mathfrak{A}} \cap \{\widetilde{\rho} = r_n\} = \widetilde{\mathfrak{A}} \cap \{\widetilde{\rho} = r_n\} \cap \{\widetilde{\rho} < r_n + \varepsilon\} \in \widetilde{\mathfrak{F}}_{r_n + \varepsilon}^*,$$

and by using (6.8)

$$\pi^{-1}(\widetilde{\mathfrak{A}}) \cap \{\widetilde{\rho}(\widetilde{w}) = r_n\} \in \bigcap_{\epsilon > 0} \mathfrak{F}_{\tau(r_n + \epsilon)} = \mathfrak{F}_{\tau(r_n)}.$$

Therefore,

$$\pi^{-1}(\widetilde{\mathfrak{A}}) \cap \{\tau(\widetilde{\rho}) < t\} = \bigcup_{n} \{\pi^{-1}(\mathfrak{A}) \cap \{\widetilde{\rho}(\widetilde{w}) = r_n\} \cap \{\tau(r_n) < t\} \in \mathfrak{F}_{t}$$

which shows that $\pi^{-1}(\widetilde{\mathfrak{A}}) \in \mathfrak{F}_{r(\widetilde{\rho})}$.

(ii) For a general $\tilde{\rho}$ we approximate $\tilde{\rho}$ by such $\tilde{\rho}_n$ as

$$\tilde{
ho}_n = \left\{ egin{array}{ll} 2^{-n}k & ext{if} & 2^{-n}(k-1) \leq
ho < 2^{-n}k \ \infty & ext{if} & ilde{
ho} = \infty \end{array}
ight.$$

Then, $\tilde{\rho}_n \downarrow \tilde{\rho}$ and ρ_n 's are Markov times (\tilde{M}) , so $\tau(\tilde{\rho}_n)$'s are Markov times (M) by (i). Therefore, $\tau(\tilde{\rho}) = \lim \tau(\tilde{\rho}_n) \downarrow$ is also a Markov time (M). Finally, if $\tilde{\mathfrak{A}} \in \tilde{\mathfrak{F}}_{\tilde{\rho}}$, then $\tilde{\mathfrak{A}} \in \tilde{\mathfrak{F}}_{\tilde{\rho}_n}$ for any n, so $\pi^{-1}(\tilde{\mathfrak{A}}) \in \bigcap_n \mathfrak{F}_{\tau(\tilde{\rho}_n)} = \mathfrak{F}_{\tau(\tilde{\rho})}$.

Theorem 6.10. \tilde{M} satisfies the condition:

 $(\tilde{P}, 3)$ Let $\tilde{\rho}$ be any Markov time (\tilde{M}) and $\tilde{\mathfrak{A}} \in \tilde{\mathfrak{B}}$. Then $\tilde{P}_{\xi}(\tilde{w}_{\tilde{s}}^{\pm} \in \tilde{\mathfrak{A}} \mid \tilde{\mathfrak{F}}_{\tilde{\rho}}) = \tilde{P}_{\xi_{\tilde{\rho}}}(\tilde{w} \in \tilde{\mathfrak{A}})$ a.e. P_{ξ} , for any ξ in V^{22}

²²⁾ That is, **M** is a strong Markov process.

PROOF. Setting $\rho(w) = \tau(\tilde{\rho}(\tilde{w}, w))$, we can easily show that $(\pi(w))^+_{\tilde{\rho}} = \pi(w^+_{\tilde{\rho}})$. Therefore, for any $\tilde{\mathfrak{A}}_1 \in \tilde{\mathfrak{F}}_{\tilde{\rho}}$ and $\xi \in V$

$$\begin{split} \tilde{P}_{\varepsilon}(\tilde{w}_{\tilde{\rho}}^{+} \in \tilde{\mathfrak{A}}, \ \tilde{w} \in \mathfrak{A}_{1}) &= P_{\varepsilon}(w_{\rho}^{+} \in \pi^{-1}(\tilde{\mathfrak{A}}), \ w \in \pi^{-1}(\tilde{\mathfrak{A}}_{1})) \\ &= E_{\varepsilon}(P_{x_{\rho}}(\pi^{-1}(\tilde{\mathfrak{A}})) : \ \pi^{-1}(\tilde{\mathfrak{A}}_{1})) \end{split}$$

since $\pi^{-1}(\mathfrak{A}_1) \in \mathfrak{F}_{\rho}$. Noting $x_{\rho} \in V^*$ a.e. (by theorem 5.7) and $\xi_{\widetilde{\rho}(\widetilde{w})}(\widetilde{w}) = x_{\rho}(w)$ a.e., we have

$$\begin{split} E_{\boldsymbol{\ell}}(P_{x_{\boldsymbol{\rho}}}(\pi^{-1}(\widetilde{\mathfrak{A}})): \ \pi^{-1}(\widetilde{\mathfrak{A}}_{1})) &= E_{\boldsymbol{\ell}}(\tilde{P}_{x_{\boldsymbol{\rho}}}(\widetilde{\mathfrak{A}}): \ \pi^{-1}(\widetilde{\mathfrak{A}}_{1})) \\ &= \tilde{E}_{\boldsymbol{\ell}}(\tilde{P}_{\boldsymbol{\ell}_{\boldsymbol{\rho}}}(\widetilde{\mathfrak{A}}): \ \mathfrak{A}_{1}) \ . \end{split}$$

The theorem is proved.

LEMMA 6.11. Let ρ be a Markov time (M). Then for such w as $x_{\rho(w)}(w) \in V$

$$\tau(\Phi(\rho)) = \rho$$
 a.e.

PROOF. Since $\tau(\Phi(\rho)) = \rho$ if and only if $\tau(0, w_{\rho}^+) = 0$, noting $P_{\xi}(\tau(0) = 0) = 1$ if $\xi \in V$ (by (5.5)), we have

$$egin{aligned} P_x(x_{\scriptscriptstyle
ho}\in V, & au(arPhi(
ho)) =
ho) \ &= E_x(P_{x_{
ho}}(au(0) = 0), & x_{\scriptscriptstyle
ho}\in V) \ &= P_x(x_{\scriptscriptstyle
ho}\in V) \end{aligned}$$

which proves the lemma.

Theorem 6.12. \tilde{M} satisfies the conditions:

(P. 4) Let $\tilde{\rho}_n$ be an increasing sequence of Markov times $(\tilde{\mathbf{M}})$ and $\tilde{\rho} = \lim \tilde{\rho}_n$. Then for any $\xi \in V^*$

$$\xi_{\tilde{r}} = \lim \xi_{\tilde{r}_n} \text{ for such } \tilde{w} \text{ as } \tilde{\rho}(\tilde{w}) < \infty \text{ a.e. } (\tilde{M})^{23}$$

PROOF. If we set $\rho_n = \tau(\tilde{\rho}_n(\hat{w}), w)$ and $\rho = \tau(\tilde{\rho}(\tilde{w}), w)$, $\{\rho_n\}$ is an increasing sequence of Markov times (M) and $\rho_n \leq \rho$. Setting $\rho^* = \lim \rho_n$, we have $\rho^* \leq \rho$ and $\Phi(\rho^*) = \lim \Phi(\rho_n) = \tilde{\rho}$.

The following events occur almost everywhere (M):

- a) If $s < \Phi(\infty)$, then $x_{r(s)} \in V$.
- b) If $\rho^* < \infty$, then $x_{\rho^*} = \lim x_{\rho_n}$ (by (P. 4) for M).
- c) If $x_{\rho^*} \in V$, then $\rho^* = \rho$.

That is, M is a quasi-left continuous process.

For, $\rho^* = \tau(\Phi(\rho^*))$ a.e. by (6.11) if $x_{\rho^*} \in V$, and $\tau(\Phi(\rho^*)) = \tau(\tilde{\rho}) = \rho$.

d) If $\Phi(\infty) < \infty$, there exists such $\tilde{\zeta}(w)$ as $\bar{\zeta} < \infty$ and $\Phi(\bar{\zeta}) = \Phi(\infty)$ (by theorem 5.10).

Henceforth, we only consider the paths which satisfy the conditions (a), (b), (c) and (d).

(Case 1) If $\tilde{\rho}(\tilde{w}) < \Phi(\infty, w)$, then $\tilde{\rho}_n \leq \tilde{\rho} < \Phi(\infty)$ and $x_{\rho_n}, x_{\rho} \in V$ (by (a)). Moreover, since $\rho_n \leq \rho^* \leq \rho < \infty$, $x_{\rho^*} = \lim x_{\rho_n}$ is in V (by (b)) and so $\rho^* = \rho$ (by (c)). Thus we have proved $x_{\rho} = \lim x_{\rho_n}$.

(Case 2) If $\Phi(\infty) \leq \tilde{\rho} < \infty$ and $\tilde{\rho}_n < \Phi(\infty)$ for all n, then $\rho = \infty$, $\rho_n < \overline{\zeta} < \infty$ (by (d)) and $x_{\rho_n} \in V$ (by (a)). Thus $\rho^* = \lim \rho_n \leq \overline{\zeta} < \infty$ and $x_{\rho^*} = \lim x_{\rho_n} \in V$ (by (b)). Therefore $\rho = \rho^* < \infty$ (by (c)), which contradicts the assertion $\rho = \infty$. Namely, the case (ii) can not occur.

(Case 3) If $\Phi(\infty) \leq \tilde{\rho} < \infty$ and $\tilde{\rho}_{n_0} \geq \Phi(\infty)$ for some n_0 , then $\rho_n = \rho = \infty$ for all n such as $n \geq n_0$. Therefore $x_{\rho} = \hat{\sigma} = \lim x_{\rho_n}$. The above consideration shows that

$$P_x(x_{\rho} = \lim x_{\rho_x}, \ \tilde{\rho}(\tilde{w}) < \infty) = P_x(\tilde{\rho}(\tilde{w}) < \infty)$$

for any x in S^* . Since $x_{\ell_n(w)}(w) = \xi_{\widetilde{\ell_n}(\widetilde{w})}(\widetilde{w})$ a.e. and $x_{\ell(w)}(w) = \xi_{\widetilde{\ell_n}(\widetilde{w})}(\widetilde{w})$ a.e., we have

$$\tilde{P}_{\epsilon}(\xi_{\tilde{r}} = \lim \xi_{\tilde{r}_n}, \ \tilde{\rho} < \infty) = \tilde{P}_{\epsilon}(\tilde{\rho} < \infty)$$

for any ξ in V^* . The theorem is proved.

Finally, we shall prove \tilde{M} has a reference measure.

LEMMA 6.13. Let K be a closed set of V. Then

$$P_{\varepsilon}(\sigma_{\kappa}<\infty)=\tilde{P}_{\varepsilon}(\tilde{\sigma}_{\kappa}<\infty)$$

for any ξ in V.

PROOF. Throughout the proof ξ in V is fixed. Then, neglecting the event of P_{ξ} -measure 0, the following statements holds.

- (i) If $\tilde{\sigma}_K(\tilde{w}) < \infty$, then there exists a s(w) such that $s > \tilde{\sigma}_K(\tilde{w})$ and $x_{\tau(s)} = \xi_s(\tilde{w}) \in K$. Therefore $\sigma_K < \tau(s) < \infty$, since s > 0 means $\tau(s) > 0$.
- (ii) If $\sigma_K < \infty$ and $P_{\varepsilon}(\sigma_K = 0) = 0$, then $\sigma_K > 0$, $x_{\sigma_K} \in K$, $\tau(\Phi(\sigma_K)) = \sigma_K$ by (6.11), and $\tau(0) = 0$ by (5.5). Therefore, $\Phi(\sigma_K) > 0$ and $x_{\tau(\Phi(\sigma_K))} \in K$ which proves that $\tilde{\sigma}_K(\tilde{w}) < \infty$ on $\sigma_K < \infty$.
- (iii) If $P_{\varepsilon}(\sigma_K=0)=1$, let $\sigma_{\varepsilon}=\varepsilon+\sigma_K(w_{\varepsilon}^+)$ for any $\varepsilon>0$. Then $\varepsilon\leq\sigma_{\varepsilon}<\infty$ implies $\tilde{\sigma}_K(\tilde{w})<\infty$ P_{ε} by the similar argument as (ii) in which we replace σ_K by σ_{ε} . Since $\sigma_{\varepsilon}\downarrow\sigma_K=0$, we also have $\tilde{\sigma}_K(\tilde{w})<\infty$ on $\sigma_K<\infty$. From (i), (ii) and (iii), we have

$$P_{\epsilon}(\sigma_{K} < \infty) = P_{\epsilon}(\tilde{\sigma}_{K}(\tilde{w}) < \infty) = \tilde{P}_{\epsilon}(\tilde{\sigma}_{K} < \infty)$$
.

Let ν_0 be in M(S) and $\nu_0(S-V)=0$, and let $\tilde{\nu}_0$ be a restriction of ν_0 on V^* , (therefore ν_0 is in $\tilde{M}(V)$). Then, integrating the both sides of the equality in (6.13), we have

$$(*) P_{\nu_0}(\sigma_K < \infty) = \tilde{P}_{\tilde{\nu}_0}(\tilde{\sigma}_K < \infty).$$

LEMMA 6.14. For ν_0 and $\tilde{\nu}_0$ defined above,

$$P_{\nu_0}(\sigma_B\!<\!\infty)\!=\! ilde{P}_{\widetilde{
u}_0}(\widetilde{\sigma}_B\!<\!\infty)$$

for any B in B^{24} (B $\subset V$).

PROOF. Let $\{K_n\}$ and $\{L_n\}$ be increasing sequences of compact sets which are contained in B and $\sigma_{K_n} \downarrow \sigma_B$ a.e. P_{ν_0} and $\tilde{\sigma}_{K_n} \downarrow \sigma_B$ a.e. $\tilde{P}_{\tilde{\nu}_0}$ ([3]). Then, setting $M_n = L_n \bigcup K_n$, M_n 's are compact sets $\sigma_{M_n} \downarrow \sigma_B$ a.e. P_{ν_0} and $\tilde{\sigma}_{M_n} \downarrow \sigma_B$ a.e. $\tilde{P}_{\tilde{\nu}_0}$. Since $\lim P_{\nu_0}(\sigma_{M_n} < \infty) = P_{\nu_0}(\sigma_B < \infty)$ and $\lim \tilde{P}_{\tilde{\nu}_0}(\sigma_{M_n} < \infty) = \tilde{P}_{\tilde{\nu}_0}(\rho_B < \infty)$, using (*), we have the lemma.

THEOREM 6.15. \tilde{M} satisfies the condition:

- $(\tilde{P}. 5)$ There exists $\tilde{\nu}_0$ in $\tilde{M}(V)$ which has the following properties: For any $B \in \tilde{B}$, $\tilde{P}_{\nu_0}(\tilde{\sigma}_B < \infty) = 0$ implies that $\tilde{P}_{\varepsilon}(\tilde{\sigma}_B < \infty) = 0$ for all $\xi \in V$. PROOF.
- (i) We can choose a measure ν_0 in M(S) such that $\nu_0(A) = 0$ implies $E_x\left(\int_0^\infty e^{-at}\chi_A(x_t)d\varPhi\right) = 0$ for any x in S, where $A \in B$ (c.f. theorem 3.2 in [7]). Since $\chi_V \cdot \varPhi \sim \varPhi$ by theorem 3.10, we can assume $\nu_0(S-V) = 0$ without loss of generality. Let $\tilde{\nu}_0$ be a restriction of ν_0 on V.
- (ii) Let B be a subset of V which is in \tilde{B} , and $\tilde{P}_{\tilde{\nu}_0}(\tilde{\sigma}_B < \infty) = 0$. Then, $P_{\nu_0}(\sigma_B < \infty) = 0$ by (6.14). If we set

$$f(x)\!=\!E_x\!(e^{-lpha\sigma_B})\!=\!H_{\sigma_B}^lpha 1(x)$$
 ,

f(x) is a bounded α -excessive function (M), and $\int_s f(x)\nu_0(dx) = E_{\nu_0}(e^{-\alpha\sigma_B}) = 0$ or f(x) = 0 a.e. ν_0 . Therefore,

$$H_{\tau(0)}^{\alpha}f(x)=\lim_{\epsilon\to 0}E_x\Big(\int_0^\infty e^{-at}g_{\epsilon}(x_t)d\Phi\Big)$$
,

where $g_{\epsilon}(x) = \frac{1}{\varepsilon} (f(x) - H^{\alpha}_{\tau(\epsilon)} f(x))$ (lemma 3.7 in [7]). Since $0 \le g_{\epsilon}(x)$ $\le \frac{1}{\varepsilon} f(x) = 0$ a.e. ν_0 , we have $H^{\alpha}_{\tau(0)} f(x) = 0$ for any x in S. Noting $P_{\xi}(\tau(0) = 0) = 1$, we see $f(\xi) = E_{\xi}(e^{-\alpha \sigma_B}) = 0$ or $P_{\xi}(\sigma_B < \infty) = 0$ for all ξ in V.

We can regard \tilde{B} as a subset of **B**.

That is, M has a reference measure.

By (6.14), it is followed by $\tilde{P}_{\varepsilon}(\tilde{\sigma}_{B}<\infty)=0$ for all ε in V, which proves the theorem.

Thus, under the assumption R^* , we have proved that \tilde{M} is a Markov process satisfying $(\tilde{P}. 1) \sim (\tilde{P}. 5)$. We shall add the following theorem:

THEOREM 6.16. If M is conservative²⁶⁾ and $P_x(\sigma < \infty) = 1$ for any x in S, then \tilde{M} is conservative.

PROOF. For any N $(N=1, 2, \cdots)$ and any $x \in S$

$$P_x\!(\sigma(w_{\scriptscriptstyle N}^+)\!<\!\infty)\!=\!E_x\!(P_{x_{\scriptscriptstyle N}}\!(\sigma\!<\!\infty)\!:\;N\!<\!\zeta)\!=\!1$$
 ,

 \mathbf{or}

$$P_x(\sigma(w_N^+) < \infty, N=1, 2, \cdots) = 1.$$

Therefore, $P_x(W_1)=1$, where W_1 is the set given in theorem 5.2. Using theorem 5.2, we see, for any x in S, $P_x(\Phi(\infty)=\infty)=1$, that is, $P_x(\tau(s)<\infty$ for all $s<\infty)=1$. Thus $P_{\xi}(x_{\tau(s)}\in V)$ for all finite s=1 for any ξ in V, which proves the theorem.

In the remainder of this section, we shall discuss the relation between the processes $\tilde{M}^{(a)}$ and $\tilde{M}^{(\beta)}$. Without losing the generality, we assume $0 < \alpha < \beta$. By (3.4)

$$\Phi_{\alpha} \sim \Phi_{\beta} + (\beta - \alpha) (\widetilde{g^{0} \cdot T})_{(\beta)}$$
,

where $g^0_{\alpha}(x) = E_x \Big(\int_0^{\sigma} e^{-\alpha t} dT \Big) \leq \frac{1}{\alpha}$. Therefore $(\widetilde{g^0_{\alpha} \cdot T})_{(\beta)} \ll \frac{1}{\alpha} \widetilde{T}_{(\beta)} \equiv \frac{1}{\alpha} \Phi_{\beta}$, and we have

Proposition 6.17. $\Phi_{\scriptscriptstyle{\beta}} \ll \Phi_{\scriptscriptstyle{\alpha}} \ll \frac{\beta}{\alpha} \Phi_{\scriptscriptstyle{\beta}}$.

Therefore by [7], there exists a function k(x) in F(S) such as $1 \le k(x) \le \frac{\beta}{\alpha}$ and

$$\Phi_{\alpha} \sim k \cdot \Phi_{\beta}$$
 and $\Phi_{\beta} \sim \frac{1}{k} \cdot \Phi_{\alpha}$.

Let $\tilde{G}_{\lambda}^{(a)}$ and $\tilde{G}_{\lambda}^{(\beta)}$ be λ -order Green operators of $\tilde{M}^{(a)}$ and $\tilde{M}^{(\beta)}$ respectively. Then, for any f in $\tilde{F}(V)$,

$$ilde{G}_{\scriptscriptstyle \lambda}^{\scriptscriptstyle (lpha)}f(\xi)\!=\! ilde{E}_{\scriptscriptstyle \xi}^{\scriptscriptstyle (lpha)}\!\!\left(\int_{\scriptscriptstyle 0}^{\scriptscriptstyle lpha}e^{-\imath s}f(\xi_s)ds
ight)$$

We say, M is conservative if and only if $P_x(\zeta=\infty)=1$ for any x in S. Similarly, \tilde{M} is conservative if and only if $\tilde{P}_{\xi}(\tilde{\zeta}=\infty)=1$ for any ξ in V.

$$\begin{split} &= E_{\xi} \Big(\int_{0}^{\infty} e^{-\lambda s} f(x_{\tau_{\alpha}(s)}) ds \Big) \\ &= E_{\xi} \Big(\int_{0}^{\infty} e^{-\lambda \Phi_{\alpha}(t)} f(x_{t}) d\Phi_{\alpha} \Big)^{270} \\ &= E_{\xi} \Big(\int_{0}^{\infty} e^{-\lambda k \cdot \Phi_{\beta}(t)} f(x_{t}) k(x_{t}) d\Phi_{\beta} \Big) \\ &= E_{\xi} \Big(\int_{0}^{\infty} e^{-\int_{0}^{s} k(x_{\tau_{\beta}(u)}) du} f(x_{\tau_{\beta}(s)}) k(x_{\tau_{\beta}(s)}) ds \Big) \\ &= \tilde{E}_{\xi}^{(\beta)} \Big(\int_{0}^{\infty} e^{-\int_{0}^{s} k(\xi_{u}) du} f(\xi_{s}) k(\xi_{s}) ds \Big) , \end{split}$$

and similarly,

$$G_{\scriptscriptstyle \lambda}^{\scriptscriptstyle (eta)}f(\xi)\!=\! ilde{E}_{\scriptscriptstyle \xi}^{\scriptscriptstyle (lpha)}\!\left(\!\int_{\scriptscriptstyle 0}^{\infty}\!\!e^{-\int_{\scriptscriptstyle 0}^{s}\!\!rac{du}{k(\xi_{u})}}\,f(\xi_{s})\!rac{ds}{k(\xi_{s})}
ight)$$
 ,

for any ξ in V. These equalities show that $\tilde{\mathbf{M}}^{(a)}$ and $\tilde{\mathbf{M}}^{(\beta)}$ can be transformed into each other by the classical time changes.

COLLEGE OF GENERAL EDUCATION, UNIVERSITY OF TOKYO

REFERENCES

- [1] E. B. Dynkin, "Intrinsic topology and excessive functions connected with Markov process," *Doklady, Academii Nauk, U.S.S.R.*, 127 (1959), 17-19 (in Russian).
- [2] E. B. Dynkin, Markov Processes, Moscow, 1963 (in Russian).
- [3] G. A. Hunt, "Markov processes and potentials I," Illinois Jour. Math., 1 (1957), 44-93.
- [4] G. A. Hunt, "Markov processes and potentials III," Illinois Jour. Math., 2 (1958), 151-213
- [5] N. Ikeda, T. Ueno, H. Tanaka and K. Sato, "Boundary problems of multidimensional diffusions II," Seminar on Probability, 5 (1960) (in Japanese).
- [6] P. A. Meyer, "Fonctionnelles multiplicatives et additives de Markov," Ann. Inst. Fourier, 12 (1962), 125-230.
- [7] M. Motoo, "Representation of a certain class of excessive functions and a generator of Markov process," Scientific Papers of Coll. of General Education (Univ. of Tokyo), 12 (1962), 143-159.
- [8] M. Motoo, "The Lévy measure of U-process," to appear.
- [9] T. Ueno, "The diffusion satisfying Wentzell's boundary conditions and the Markov process on the boundary," *Proc. Japan Acad.*, 36 (1960), 533-538.
- [10] V. A. Volkonskii, "Additive functionals of Markov processes," Trudy Moskov. Mat. Obšč., 9 (1959), 143-189 (in Russian).

f is considered to be extended to the function in F(S). $f \cdot \Phi_{\alpha}$ is independent of the extension, since $\Phi_{\alpha} \sim \chi_{V} \cdot \Phi_{\alpha}$.