THE SWEEPING-OUT OF ADDITIVE FUNCTIONALS AND
PROCESSES ON THE BOUNDARY
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1. Introduction

In this paper we shall consider the sweeping-out of additive function-
als in Markov processes, and its application to processes on the boundary
(U-processes). In sections 3 and 4 we define the sweeping-out of additive
functionals and investigate their properties. In section 5, we consider
a special additive functional (i.e. a time additive functional) and its in-
verse function. In section 6, using the additive functional defined in
section 5, we transform the original process by the time change, and
obtain a certain form of the process on the boundary (U-process) intro-
duced by T. Ueno [9]. We show that this process is sufficiently regular
if the original one is so. This paper is an introductory part of the in-
vestigation of U-processes. More detailed arguments of U-processes and
their application to the boundary value problems are treated in [8]. The
author wishes to express his gratitude to Mr. K. Sato and Mr. T. Ueno
for their helpful advices and encouragements.

2. Definitions and notations

Let S be a locally compact separable Hausdorff space and S*=Sv {3}
its one point compactification. (If S is compact we consider {9} an isolated
point.) Let B be the topological Borel field generated by the open sets in
S* and M(S) the set of all bounded non-negative measures z on B. We
define F— /\ B" where B* is the p-completion of B. Let C(S), B(S) and

F(S) be the sets of all bounded continuous functions, bounded B-measurable
functions and bounded F-measurable functions on S, respectively. We
always extend any function f defined on S to the one defined on S* by
setting f(3)=0 unless particularly mentioned. Path space W is the set
of all mappings w from [0, oo] into S* which satisfies the following prop-
erties:

(W. 1) w(t) is right continuous and has a left limit in [0, o)
(W. 2) w(co0)=2
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(W. 3) There exists {={(w) such that

wityeS if  t<(,
wt)y=a if t=C.

We shall write w(t)=x,(w) or simply z,. For any we W and t € [0, o],
we define w} such that z(wf)==z,,, (0<8< ). Let B, be a Borel field
generated by the cylinder sets {w: x,(w)e€ A} (s<t, Ae B) and B=3,,.

Let M= {P.}..s. be a system of probability measures on B which
satisfies:

(P. 1) P.(x,=2x)=1 for any =xe S*
(P. 2) P,(¥) is B-measurable function in « (x € S*) for any A e B. For
any g€ M(S), we write

Pp(%r)=§ P.()p(d)
E(F@)) = | Fw)dP
E,(Fw)) =§ F(w)dP,

where W eB and F(w) is any (bounded) B-measurable function. Let
F*= N B where B! is the P,-completion of B, and F=Ti= N B~

reM(S) reM(S)
We say an event U in § occurs almost everywhere P, (a.e. P,) if and
only if P, (2)=1 and almost everywhere (a.e.) if and only if P, (U)=1
for any x in S*,

A [0, oo]-valued function o=d(w) on W is called Markov time if
{o<t} € >, and we set

Fo={A: AecF An{o<t} € F.* for any t}.”
For any (nearly) Borel set A in S (or S*), set

inft: t>0, x,€A
O4=
) if there is not such ¢.

Then o, is a Markov time which is called a first passage time to A.
For any f in F(S), we set

H;f(x)=E.(ef(x.))
L Without using (P. 3), (P. 4) and (P. 5) below, we see that if {ss} be a monotone

sequence of Markov times and s=I1im g5, then ¢ is also Markov time (c.f. section 6).
» In general, §*cB.
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G.f (@) =Ez<8:e‘"‘f(m,)dt> = S“’ e~ HOf (z)dt ,

where a=0.
For the system M, we further assume the following:

(P. 3) (Strong Markov property) Let ¢ be any Markov time, for any
AeF and x € S*,

Pw}eN|F)=P.,(we) a.e. P,.

(P. 4) (Property of quasi-left continuity) Let o, be an increasing
sequence of Markov times and o=limg,. Then for w such as s(w)< oo,

n—oo

x,=lim z, a.e.
That is,
Py(z,=limz, , 0<c0)=P,o< )

for any z in S*.
(P. 5) (Existence of reference measure) There exists an v, in M(s)
which has the following property: For any A€ B, P,(6,<o0)=0 im-
plies P.(6,<o0)=0 for any x in S*.

We call v, a reference measure of M. Under (P. 4), §*=%.. Under
(P. 5), Green operator G, can be written in the form ([7]):

G.f@ = 9.6w, F W)

where vl(A)z-SGao(x, A)y(dx), and v, is a reference measure of M (a, is a

fixed positive number). From this we can easily see:
PROPOSITION 2.1. For any f € F(S), G.f is in B(S).

PROPOSITION 2.2. Let f be in F(S), and if lifn H:f=f, then f 1s
tlo
in B(S).

PROOF. Since f =£im ﬂre"‘H;' fdt=£im BG..sf and G...f is in B(S)
00 0 — 00

by (2.1), f is in B(S).
The non-negative F-measurable function u (#(3)=0) is called a-exces-
sive if and only if

(E.. 1) H:u(x)<u(x) for any z in S and ¢,
(E.. 2) lifn Hiu(@)=u(x) .
tlo

A function % is called a-potential in class D if and only if u is a-exces-
sive and
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(E.-D,) for any increasing sequence {o,} of Markov times such as
lim o, =,

lim H u(x)=0.

A function u is called regular a-potential if and only if « is a-excessive
and
(E,. R) for any increasing sequence {s,} of Markov times, if o=lim o,,
then

lim H u(x)=Hu(x)®.

From (2.2) and (F.,. 2), a-excessive function is B-measurable.

A [0, oo]-valued function A(t, w) on [0, o] X W is called (non-nega-
tive right continuous) additive functional, when it satisfies the following
properties :

(A. 1) 0=<A(R, w)S oo

(A. 2) A(t, w) is right continuous in ¢t

(A. 3) A(t, w) is continuous at t={ and A(t)=A({) for t=¢
(A. 4) A(t, w) is §,-measurable in w for any fixed ¢

(A. 5) AL, wy+A(s, wH)=A(t+s, w)

(A. 6) A(t, w)<oo for all t<oo a.e.

Two additive functionals A and B are equivalent if and only if
A(t, w)=B(t, w) for all t a.e.,

and in this case we use the notation A~B. We also write A<B if
A(t, w)<B(t, w) for all £ a.e. For a non-negative F-measurable func-
tion f, we define

rAtw=\ fawids w.

Then, for a suitable version, f-A is an additive functional if f-A satis-
fies condition (A. 6). Let u (unicity class) be the set of all additive func-
tionals whose discontinuity points are continuity points of z,(w), and €
be the set of all additive functionals which are continuous (in ¢). Let 1,
be a set of all additive functionals which are in U and

U(X)=U (X)) = Ex<8:e‘“‘dA(t, w))

3 As to these definitions, see Meyer [6]. The regular a-potential in class D in [6] is
simply called regular «-potential in this paper.
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is finite. We define €,=€N\1,, u=N\u, and €=NE,. It is easily seen

a>0 a>0

that u, , satisfies the equation similar to the resolvent equation:
PROPOSITION 2.3. If A €@, then for any a, >0
Iu’a.A —up,A +(a—ﬁ)Gaup:0‘).
We define the time additive functional T' as follows:
t if t<f(w)
T(t, w)={
¢ if t=q(w).
Then T is in € and in €, if and only if G,1 is finite. We set
9.(2) =, r ()=G.1(x) .
If Aeu,, u,, is an a-potential in class D, and if Ac€,, u, ,is a reg-
ular a-potential. On the other hand, for any a-potential u in class D,
there corresponds A in U, such as w=u, ,. If u is a regular a-potential,
then the above A is in €,». A is determined uniquely by u (except
equivalence) ([6]).
3. Sweeping-out of the additive functional
Throughout this paper we shall fix a Borel set V in S. We set
GEGVv Hm__—:H:V *
@f@=E. ([ f@t) (@20,
0

where f is in F(S), and for 4 in u

w=ut s (@)=E.(| e-da)

0

@ (x)=E,<S:e'“‘dT> —G 1@  (a>0).

9 For A€@, see Dynkin [2]. But in this special case, the proof is almost the same
as that of resolvent equation even in the discontinuous case.

% It is noticed that, if % is a regular a-potential, we can choose A in €. to be %B-
measurable. If u is uniformly a-excessive, noting # is B-measurable and following the
construction of Volkonskii and Tanaka ([10], [5]), we see A can be chosen B-measurable.
In general case, since #(x) is a limit of strongly increasing sequence of uniformly a-exces-
sive functions, A is a (almost everywhere) uniform limit of increasing sequence of B-
measurable functionals, and so we can choose A to be B-measurable. The above fact also
shows that, if A€ G, there exists an equivalent functional which is B-measurable. We shall
use this remark.
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For the later use, we state the following equalities, which are easily
proved. For positive a and B,

(3.1) He—H'+4(a— PG H =0,
(3°2) ua.A =7u2,4 +Haua,4 96)
(3.3) G.=G!+HG,.

Since, for any A in U and a>0, H®,, is a-excessive ([3]) and
dominated by u, , which is a-potential in class D, Hu, , is also a poten-

tial in class D. Therefore, there exists a unique additive functional fi(,,,
in U, such that

’M/,,I(a)= Hau“'A

B[} -5 eus)

for any  in S. We shall call /1(,,) the ath order sweeping-out of A”.
In general, A, depends on a.

PROPOSITION 3.4. For 0<a<p

Ay~ Ayt (B—a)wl - Ty -

PROOF. E, ( S :e‘ ptd!‘i(a)) =Us, 4y
=Wa, 400y +(a—ﬁ)G,sua,A(,,) (by (2.3))
=H"u,+(a— p)G,H"u,
=H"u.+(a—B)G,—G)H" u, (by (3.1))
=Hu,+(a—B)H*G,Hu, (by (3.3))
=Hu,+(8—a)(H’Gu.—H’G,Hu,) (by (2.3))
=Hu;+(B—a)H*G ul(x) (by (3.2))

=Up, 7, T (B— aYUp.l-1

= EI<S:6"’ t(dA~(p)+(.B_a)d(ﬁ)(ﬁ))>

which proves the proposition.
From this proposition we can easily see

& c.f. Meyer [6].
» It is natural to define the Oth order sweeping-out ;l'(o) of A as
Ay () =lim A (®)

if the limit in the right hand side is finite for finite ¢ a.e. For example, this is the case
when ug(x) is bounded. (u(x) may be infinite.)
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COROLLARY 3.5. A, increases as « decreases, and A, is in 1
(a>0).

PROPOSITION 3.6. If A, Bell and AL B, then

A.<B, for any a>0.

PROOF. By the assumption u, s—u, 4 is a-excessive, so H*(u, —
Wa, 1) =W, 5gy— U, 3., 1S also a-excessive and dominated by .. Thus,

Be.(t)— Ay(t) is equal to a certain (non-negative) additive functional a.e.

PROPOSISION 3.7. If A, Bell and k is a non-negative constant, then

— ~ ~
(A+B)@wy=Aw+ B
(kA)wy= kﬁ(«) .
PROOF. The above relations are only versions of the relations

Ha(un,A Fu.p)=HU, ++HU, 5
H"(ku,,,A) =}kH“u.,, A

In general, we can not say fi(..)e €, even if Ae@. For example,
let us consider the uniform motion on the real line and P is a fixed

point on the real line and V={P}. Then ’f'(‘,) has a jump of height 1/a at
6P, where T is the time additive functional. In the following we shall

consider the condition for A€ €.
LEMMA 3.8. For any t=0, ¢(x)=P,(c<t)® ts B-measurable.

PROOF. Since P,(a:O):lifn P.(oc<t), it is sufficient to prove the
tlo
lemma when t>0. Because
{o(wi) <t} {o=t+s}

for any s=wu, we have

Hr§{a(w.t)gt}cg{aét+s}={a§t}.

On the other hand, if o(w)<t (t>0), there exists s, such as 0<s,<¢ and
z,, € V, and so we have o(w;)<t for all s<s,. If o(w)=t>0, then o(w;)<t
for all s<t. Therefore, we have

lim {o(wi) <t} D{ost) .

ulo

That is,

8 =0y,
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lim {o(w])<t} exists={c<t}.
ulo

Therefore,
lulf’f,l H.p(x)=lim E,(P; (¢<1))
=lim P(o(wy)<t)
=P o<t)=¢(x) .

By this and (2.2) ¢(x) is in B(S).
We set

Vi={2: x€ V and P,(¢>0)=1}
V.,={x: P(c=0)=1}
V=vVVUV,

where V is the closure of V. Then these sets are B-measurable and V—
V,=V, since P,(c=0)=0 or 1. Now we set the following assumption.

Assumption R. o, =oc0 a.e.”

THEOREM 3.9. Under the assumption R, A € € implies that fi(,, €@
for any a>0.

ProoF. It is sufficient to prove that H*u is a regular a-potential
where u=u, 4. Let {r.} be any increasing sequence of Markov times
and r=limr,, and 7,=7,+a(w;), t=7+a(w).

1) If r=c0, then limz,=limr,=t=oc0 and 7=r=o0. Therefore,
lim %n= =00 .

2) If z,,>7 for some n,, then z,,<7,<r<7,, for all n=n,. Therefore,
T =7,=17 for all nz=n, which shows 7=lim z,.

3) If 0=7 and 7,<r for all %, then r,=7=0 and 7=z, for all
n. Hence, we have lim z,=7=0.

4) Finally if 0<r<oo and %#,<r for all n, then r=lim¢,=limr,=7¢
or limz,=z. Noting 2%, € V and z,=lim x:, a.e. by (P. 4), we have z, €

V a.e. Moreover, by the assumption R, z. ¢ V, a.e. (since z>>0). There-
fore for any = in S, we have

P, (t=limz,, 0<r< o0, ¢,<t for all n)
=PAr=17, 0<r< 0, 7,<7 for all n)
=P,(c=%, 0<c< o0, x.€ V—V,, #,<r for all n)

=E(P,(6=0):0<r<o0, x.€ V=V, #,<t for all n)

9 If V is closed, the assumption R follows from the condition H of Hunt [4]. For, Vo=
V—V, has any regular point, which is negligible.
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=P, (0<r< 0, . € V-V, #,<r for all n)
=P, (0<r< o, 7,<7 for all n)

since P,(6=0)=1 if x€ V—V,. The above equality shows that, if 0<z
<oo and 7,=7 for all n, then lim7,=7 a.e. From (1), (2), (3) and (4)
we conclude that lim z,=7 a.e. Noting w itself is a regular a-potential,
we can see that

H; Hu= H‘gnu tends to H°H u= Hzu,
which proves the theorem.

In the remainder of this section, we shall consider the condition for
A~A., when Ac@. Let

U,= {x : g?,(x)=E,(S’e‘“‘dT> g&}
0
for any a and >0, and p,=oy, .

LEMMA 3.10. Let p,=0

0n=Pn—1+0(’w+ )’ Pn=0n+Pa(’w;,)’ n=1: 2: tTt .

Pp—1
Then

lim p,=lim g,=c0 .

n—0 n—oo

PROOF. Since g%(x)=g.(x)— H"g.(x) is the difference of two a-excessive
functions, g(x;, w) is right continuous in ¢ € [0, o) (c.f. Hunt [3]). Hence,
gux, )=0. Let p=limp,. Then

n—o0

lim E,(S:"e‘"‘dT> =E,<S;e“"dT) <1

1
’
n-oo 0 [24

since T'(t) is continuous in t. Noting p,<g,,,<p, we have lim E, (Y"“e‘“‘d T )

n
P

=0. However,

E( S* e-dT ) =E<eE<S e-d T ))

=E(e g, (z, ) ZE (e ") .
Thus

E.(e-")=lim E,(e‘“ﬂn)g-;— lim E,(S""“e—“dT) -0,

n-—oco n

which proves the lemma.
We can now prove the following theorem:
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THEOREM 3.11. If AcG, then the following four conditions are
equivalent for any a>0.

(1) A~A.,
(2) A~% -A
(3) A~1,.-A
(4) A(0)=0 a.e.
PROOF.

(i) A(0)=0 if and only if

E(S: e“"dfl(a)) = Heu, J(¢)= E’x<swe'“‘dA>

=Ex(gje—udA) . v

Thus (1) and (4) are equivalent.
(i) If A~X, -A, then Xy A~y Xy -A~Xy -A~A, which shows that
(2) implies (3).

(ili) Noting o=oy. a.e. (c.f. Dynkin [1]) and A(t) is continuous, if
A~iy.-A, we have

A0=\1,da=(,  1.-d4=0 ae,
0 1744

0, ¢

which shows that (3) implies (4).

(iv) Finally, if A(s)=0 a.e., let p, and ¢, be as in lemma 4.2, and
we have

E(| eu,,da)

=E.(2[""x,-24) +E<ES X,-d4)

fn

:E1‘<Z San+1 e_atan'dA) (Since X, e Ud if t € (Un, pn))

n
<E(SienE,, (| eda))=o.
Thus X, - A~0. Noting Xy, sz_yr as 6—0, we have
XS_VT‘A~O or XVT-A~A ,
which shows that (4) implies (2).
LEMMA 3.12. Under the assumption R, 6<oc implies x, € V, a.e.

PROOF. If z¢ V., then ¢=0 a.e. P, and therefore x,=x, € V, a.e. P,.
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If z¢V,, then ¢>0 a.e. P, and by the assumption R, z, € V—-V,=V, ae.

THEOREM 3.13. Under the assumption R, if AcC, then A, satis-
fies the conditions (1), (2), (8) and (4) of theorem 3.11 for any a>0.

PROOF. Let 6=0+o(w;). Then by lemma 3.12 x,€V, a.e. and
therefore o(w})=0 a.e., that is, =6 a.e. Therefore, H°H*=H" and

Heu,, Ty =MWa, i, which shows A(,)z(j(,,))(a). Since fi(a)e@ by theorem
3.9, theorem 3.13 follows from theorem 3.11.

4. The approximation theorem

Throughout this section we shall assume the assumption R without
referring.

LEMMA 4.1. Let t be any Markov time and A ¢ u Ifz.eVae.,
then

Ee<g e“"dA) =Ee<S; e—atdzi(a))

0
for any & in V, (a>0).
PROOF. Noting P(r=0)=0 or 1, we have z.=£¢ V, if r=0 a.e. P;
and by the assumption R, x. € V,= V—V,a.e. P if >0 a.e. P.. Therefore

H* H*u(&)= E.(e-"H"u(x.))
=E (e u(x.))
=H:u(§),

and Hew(&)=u(&) since &€ V,, where u=u, ,. We have
EE<S e“"dA) —w(&)— Hu(®)
= H*w(§)— H: H*u(§)
=E'5<§:e“"tdfi(,,)> .

LEMMA 4.2. Let p be any Markov time, A€GC, and p=p+o(w;).
Then for any x in S

E,(S:e“"dfi(,)>=E,<Sfe‘"’dﬁ(,)> L (@>0).

PROOF. By the assumption R and theorem 3.13, we have A(,)(a)=0 a.e.
Therefore
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E(S~ e‘“‘dﬁm> =E(E (S e-“dj(,)» —0,

P

which proves the lemma.
In the remainder of this section we shall assume V is closed.
Let D=S—B and {D.} be a sequence of open sets in D such as

D.CD,,, and D=lim D,. Since D is open, such {D,} exists. Let {o(k)}

be a decreasing sequence of Markov times which satisfies the condition:

(*) o)<,
And we set
Po(k) =0,
(k)= pn_i(F)+ ”(w;n_l(k)) ’
palk)=o.(k)+ p(k) (w7 ) ,

for n=1, 2, ---. Omitting the suffix k, we shall often write p for p(k),
p. for p, (k) and o, for o, (k).

LEMMA 4.3. For any a, >0 and A€G,
E(S e il (w, ) S ey, , (2)
for any x in S, where

w (x)=u‘}_4(x)=Ex<S:e"‘dA>

Vo @)= 2 (x)=EI(§°°e-“dJm) .

) 0

PrROOF. If £€eV,, p,=0,=0, py=p and o,=p+o(w}) a.e. P.. By
lemma 3.12 if 6, <0 (=1, 2, ---) a.e. x, € V.. Noting these facts, we
have

B(S el (3, ))
-l [ o)
=E.(S e, (¢ e-vda))

§e’/"E,<E e‘"nE,,” (Soz e“”dA>>
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=B, (5 ek, (|"erddo)) (by (4.1))
= B(s ek, ([ erddy)) (by (4.2))
éeﬂ/"Ex<Z e_"""E'z, ( S azd/i(ﬁ)»

SeHPrE, (E ek, ( S ’ e—"td*‘iﬁ)) )
n \ Jo

<o, (|"ewdd,)
0

which proves the lemma.

THEOREM 4.4. The assumption R and V=V are assumed. Let A

be in € and Xy -A~0. Let {p(k)} be a sequence of Markov times satis-
fying the condztum (*) and hm pn(k).—hm ok)=oc a.e. Then, for any

f in B(S) such that f(x,- )—hm f(x,) exists for all t<co a.e. and that
| f(@)—f(@) | <1[k if 0<t<p(k)‘°> we have

}}_{2 Ex(rgl e ® f (@, a0 )5 (€0, x))

:E,<Sw e‘“‘f(x;)dﬁ(,,)> , for any a, B>0.
0
PROOF.

(i) Noting p,—¢,<1/k and If(x,,n_)—f(x,,n)l <1/k, we have
| B3 0t f 0, Y () — B 7z Jtn (2,,)) |

SE(S| e rn—e || f(x,, )5 (x,,))

+E(Z e f(x,,-)— flx, )| us(x,)
S{A—e M) f | +L/RIELX e nu3 (2,,))
S{A—e M) £l +1/k}eP v, (x)

where || f||=sup|f(z)| and v, , is the same as defined in lemma 4.3.

) If £ is a bounded continuous or bounded excessive function, set
inff: ze€ Dy or | f(x)—f(zy) | 21/k

'<k)={
e oo if there is no such &
and p(k)=Min (p’(k), 1/k). Then, these f and {p(k)} satisfy the conditions of the theorem.
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The right hand side of this inequality tends to zero as k tends to in-
finity.

(ii) Since
(S enf (3, Jo Mon=ceu (3, ))
B2 enfla, ), (|"erda))

we have

(%)

E(S ernf @) (w,)) ~B(S e of@, ) B, (| e*a4))
S(A—e) | £ 1| BAS e )

+ IS NE(S e, ({/e*da)).

Since @, ¢ D, for 0=<t<p,
sl [ )

=E(S ek, ([t @aa))

<E(| eais - 4))
Aps A «A and Xpg-AQ@)]lX%r-At) as koo,

and since Pz, € V—V,, t>0)=0 by the assumption R, XV~A~XVT-A~0
by the assumption of the theorem. Therefore, &im E¢<Swe““d(x of .A)> =0.
200 0
Thus, the right hand side of the inequality (**) is dominated by
(L= || £ || e«*olen, @)+ || f ”E‘Gm etd(Xy .A))
0
which tends to zero as k tends to infinity.

(iii) Since x, € V. a.e. (by lemma 3.11), using (4.1) and (4.2) we
have

E(sef@,)E., ({7 e*da))
=E.( enfle, ), (| e 0))

=E, (Z e *nf (w,,n)E,,” <S: e dA, ,)) ) .
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And
E(S enfta, ), ([ e ddi))
B (S s @B, (| e ddy))|

<@ o) | A B B, (| ddy))

=(e+*_1)|| || E. <215:" e“"dji(,,)>
S (P =1) || f e+ P v, 4(x)
which tends to zero as k tends to infinity.
(iv) Now,
Ex(E e~ f (fv.,n)Ez,” <S: e"'td/i(ﬂ)))
=Ex( > f(x,) S:ﬂ e_"tdfi(ﬂ)> .
Noting (since A (0)=0)
Ez(i S’nﬂ e ' f (fvt)dl‘I(ﬂ))l

n=0 Py

<A NE(s e, ([ eddy))=0,

we have (since lim p,=1im g,= o)

Ex(S: e f (x,)dfi(,,)> =Ez(2 S:’: e f (xt)d‘i(ﬁ)> .

On the other hand, (since | f(x)—f(,)| <1[k for ¢,<t<p.), we have

L)

E(S 1(w,)|" e dden) ~ B[ e s @)ide)

n= n

g—i—E(zg ertd Ay S—0u. iE)

n

which tends to zero as k tends to infinity.
(i), (i), (iii) and (iv) prove the theorem.

This theorem shows 33 e~*uj(x, ) approximates Se“"dA(,,) in a cer-

tain sense. The approximation in other forms may be given'. The

1D For example, under sufficiently regular conditions for M and A, we can prove the con-
vergence is in L?(P;)-sense and almost everywhere if we choose a suitable subsequence.
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theorem is useful for the investigation of the process on the boundary

([8D.

5. Properties of €. and .

In this section we shall also assume the assumption R and that Vis
closed, and only consider the functional T and its sweeping-out @,: @,=

T(,,). By theorem 3.9 @, ¢ G for any a>0.

Let

W¥={w: there exists such t as z(w)e V},
and

Wi={w: we W and sup{t: 2, € V}=c0}.
Let

p=1+0o(wy),
£e=0,  pani=p.+p(w;) .

Then

Wi={p,<oo for all n},

for p,=p,+1 and z, €V (since V is closed). Therefore, W, is F.-
measurable. In the first, we note,

PROPOSITION 5.1. we W, then {=co.
THEOREM 5.2. If we W, then @,(c0, w)=o0 a.e. for any a>0, that 1s,
PP (0)=00, W))=P(W,) for any x in S.
PROOF. Let f>Max (1, a) and X:S: e"do, .
(i) If ¢eV, and P({>p)=1/2, then noting z, € V, we have
Ee(X):E5<S: e—ﬂtdqbp)
=ES<SP e“”dT) (by (4.1))
0
2] evar
0
(.

e
2E(| it t>p21)

0
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1 -5
z——(1—e)P(L>p)
B
1
2B

where ¢ is a positive number independent of &. Also we have

v

(1—e =g
E(X?) =2Ee<S: e"”d@ﬂ(t)gr e-ﬂ*dab,,(s))
§2Ee<S: e—ﬂ‘Hﬁgﬁ(wt)dt)
2
<2 g(x),
= (X)
since Hgy(§)<g,8)<1/8. Therefore,
Ede™; 0>0)S1-E(X)+- B(X")
1
<1— (1—_5)1«75()()

g1—<1—%)q.

(i) If PAl>p)<1/2, it is easily seen that
Ei(e™%; C>p)<% .

Therefore, for any &€ V,, we have

Ef(e™*; £>p)=p<],

where
- A -1
p—Max( o 1 (1 3 )q) .
(iii) Since z, € V, a.e. by (3.12) and 9,(p)=X
E (e7°: W)=E/(e*: W,, {=o) (by (5.1))

< Ez(e" ends 0> Pn)
=E (e nrE, €5 : L>p): E>pnm)
épEz(e—.ﬁ(P"“‘): C>pn-l) (n=2’ 37 4’ ° ') .

333
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Therefore, by induction,
E(e?: Wy)sp*! n=2,3, ---)
which shows that
E(e°: W))=0 or P, (@y0)<oo, W)=0.
Noting @,(c0)=®4(0) (since a<f), we have the theorem.

COROLLARY 5.3. If M 1is conservative (that is, {=co a.e.) and
g< oo a.e. then @, (oc0)=00 a.e.

We define the inverse function z.(s, w) of @.(t, w) as follows:
7.(s, w)y=supt: @, (t)<s.
Then, it is easily seen ([10]).

PROPOSITION 5.4.
(1) rz.(s, w) is a Markov time for a fixed s.
(2) 7.8, w) is a right continuous increasing function in s.
(3) zu(s+t, w)=r.(s, w)+7.(t, W) -

For the later use, we shall prove the following lemmas.
LEMMA 5.5. PJz,(0)=0)=1 for any § in V,.
PROOF. Since z,(s) is a Markov time, g.,=H"g, and H*g.(§)=g.(5),

rq(0)
O=E€<So e_atan) =Ha a(e)_H:,,(O)Haga
= 0. — Hz 00.(6)
7,(0) at
=_E;(So e dT) >0
where g,(w)=E’,<S: e“"dT). Thus, T(z.(0))=Min (c.(0), )=0 a.e. P
namely 7,(0)=0 a.e. P; (since P.({>0)=1).

LEMMA 5.6. 7, (0)=0 a.e.

PROOF. By theorem 3.13 @,(s)=0 a.e. and therefore z,(0)=¢ a.e.
On the other hand, noting z,¢ V, a.e. by (8.12), we have

P.(z.(0)>0)=Py(z.(0, w)) >0, P 0)=0, s< o)
=E(P; (0)>0): ?,(6)=0, 0< o)

=0 (by (5.5)).
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Thus, 7,(0)=¢ a.e.

THEOREM 5.7. ., € V for any s such as 0=t.(s)<oo a.e. In other
words, Py(x, ¢ D for all s)=1 for any x, where D=S—V™.

PROOF. Since V is closed, V=V’ and by theorem 3.13 &,~X,-®,.
We consider the only w which satisfies ¢,,(t)=§t Xy (x,)d®, for all ¢, which
o
occurs for almost every w. If x,¢ D, then

u+a(w;‘)

@,,(u+o(w,t))=(l)a(u)+s 1,(x,)dD,

=0,(u)

u

and o(w;)>0 since V is closed. Therefore,  can not be equal to z(s, w)
for any s. The theorem is proved.
Let G be any open set in S. For any positive ¢ and k, we define

) k(G)Z{ inf ¢: t=e, szG, (pa(t)_@a(t—e)<k
’ ) if there is no such ¢.

Then, from the right continuity of x, and @.(t) in ¢, we have

le.d@)<t}= \J {2, €G, Oufr)—Pulr—e)<k}

7: rational

for any t€[0, o). Therefore, p,(G) is a Markov time. Let {D,} bea
decreasing sequence of open sets which contains V and N\D,=V™. Set
P.,n':P., l/n(Dn)

{ inft: t=e, x,€V, O00)—9P.(t—e) <k
oo if there is not such ¢.

p.=

The sequence {p, .} is an increasing sequence of Markov times and p, ,<
p.. Let p=limp,,. Then x;=limz, , a.e. on p<co (by (P. 4)) and p=<
p.. On the other hand, since :c,,”el_)n and @.(p..)—P.p..—e)<1/n, we
have z; € Vif p<co a.e. @.(p)—D.(p—¢)=0. Thus p=p, a.e., and so p.=p
a.e. is a Markov time. Moreover, since z, € V if p,<co and p,z¢, x, € V,

if p,<oo a.e. by the assumption R. Let

£e=0, Pri1=put o (W) .
Then z, €V, if p,<oo a.e. and @.(p,)=P.(0,—¢). Also we have

1 If 74(s) <o, then 7.(s)<{. For, if za(s)2f, then Pu({) =Pu(ra(s))=Pe(cx0)=s and
Ta(s) =00,
13 Such {Ds} exists since V is closed.
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P.(z.(0, w:,,) >0, o< 00)=Ex(P,P"(T,,(O)=O'> 0): o< )
=0 (by (5.6)).

Hence, 9.(s)>®.(p,) for any s>p,(n=1, 2, ---) a.e. Therefore, for any
x in S, except the subset of W of P,-measure 0, the following assertion
holds: If p,,<t<pnps1, e<t<oo, x,€ V and 9,(t)=9,(t—e¢), then t—e=
pnoi(m=1,2, .- ) and t=p, or D,(s)>P.(t)=P.(t—¢) for any s>t. Not-
ing lim p,=oo (since p,,;=p,+¢), we have proved the following lemma.

LEMMA 5.8. Let

%(_{ w: there existtandssuchass>t,}

2. €V and @,(s)=D.(t—¢).
Then
PA)=0  for any x in S.
THEOREM 5.9. Let

%I-—{ w: there exists t, s and u such as s>t>u, }
- z, €V and D (s)=D.(u).

Then
P)=0  for any x in S.
PROOF. Since A=\JU,,,, the theorem follows from the lemma 5.8.
Roughly speaking, Q;,,(t) can not be constant near ¢ where x,€ V a.e.
THEOREM 5.10. Let
E={ supt: eV
0 if there is no such t.
Then
(1) Z=inft: @)=, () (t<o) a.e.
(2) =00 if and only if @ (c0)=0c0 a.e.

PROOF. We confine our attention to the event that . ,€ V for
any s such as 7,(s)<oo and z,¢ V if there exist s and % such as s>
t>u and @,(s)=0,(u). This event occurs almost everywhere by theorems

(5.7) and (5.9). Let p=inft: @,()=0.(0) (t<0). If D,(0)<D.(0), then

) If n=1, t—e=0 is obvious, and if #=2, then @.(?) =¢,,(t——e)>¢,,(pn_l) and t—e>

Py_y
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for any s in @,(0)<s<®.(o0), we have [<r,(s)<oo and .y € V which

contradicts the definition of . Therefore, @,({)=®.() or {=p. On
the other hand, since @.(0)=@.(c), x,¢ V if t is in (p, o©]. Therefore

C{<p. The first part of the theorem is proved. If {=oco, then @,(c0)=o00

a.e. by theorem 5.2. If we note that p=( a.e., the converse is obvious
by the definition of p.

6. Properties of U-process

Changing the time scale of the process M by @,(t), we shall get a cer-
tain form of the process on the boundary given by T. Ueno [9] (that is,
U-process). We shall show this process is a Markov process on V in the
sense of section 2. Throughout this section, we shall assume

Assumption R*. V is closed and any point in V is regular to V*®,

that is, V=V=V,.»
Noting @.(¢, w)"” can be chosen so as it is B-measurable (c.f. remark
in section 1), we can consider

7.(s, w)=sup {r: r is rational and @.(r)<s}
is also B-measurable for fixed ¢{. Therefore, we have

PROPOSITION 6.1. . ¢, ., 15 B-measurable for fixed t.

It is obvious that

PROPOSITION 6.2. ., wy 1S Tight continuous in t, and . ,=0d if s s
wm [D,(c0), ].

Now, we set
U={w: L. sy D, for any s},
Wy={w: @,(c0)=co0, or there exists such {(w) as {< oo
and 9,(t)=90,(c) for th_} ,

and A, =AU,NYU,. Then, by theorems (5.7) and (5.10), P.(A,)=1 for any
z in S, and

WU={w: a. ) ¢D for any rational r}'®

Wy={D,(0)=c0 }\ J{D(r)=D,(c0) for some rational r}

1 gz is regular to V if and only if Pz(s,=0)=1.

16) Obviously the assumption R* implies the assumption R.

11 In this section a positive number a>0 is fixed (except the last remark of this section).
18 For, V\J{d} is closed in S* and .. (s) is right continuous in S.
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are B-measurable. Moreover, for any w e 2, let {s,} be an increasing
sequence of non-negative numbers such as s=lims,<oo. Then (1) z,(s,)<

z.(8) < oo if <D (0), (2) 7u(s,) <L <L oo for all n if s=&,(c0) and s,< D, (o)
for all m, and (3) 7.(s,)=co for n=mn, if s=@,.(c0) and s,,=?,.(cc) for some
my. Therefore lim ., exists in any case.

PROPOSITION 6.3. If we Wy, . « w(w) has a left limit in s which is
in [0, o).

We shall define the fields of sets, the sets of functions and the path
space etc. on V in the same way as in section 2 in which we replace S
by V. To distinguish the new notations from the original notations,

we add the wave marks, that is, B is a topological Borel fields on V

and W is the space of all paths on V*® which satisfies (W. 1), (W. 2) and
(W. 3), ete.

We define a mapping =, of W into W as follows:

&(m(w))= { . s, wy(W) .if we,
9 if we¥,

where §,(w)=w>. We shall often write @, for =,(w). We can assure

W, € W by definition of %, (6.2) and by (6.3) if we %, and by the de-
finition if w¢ %A,. Moreover,

PROPOSITION 6.4.
(1) P.(é(w.)=2. «, for all s)=1 for any = in S.
(2) =7'(A)eB for any A e B.

PrROOF. The first assertion follows from the equality P.(2,)=1 a.e.
Since ¥, is B-measurable, the second assertion is obtained by (6.1).

Now we define a system of probability measures M@= {P{]},.,. on
B (and therefore on %) as follows:

PE)=Py(z'(3))

for any &€ V*. We shall often drop the suffix a, that is, M=M=
P5=Pga> r=x, t=r, and O0=0, .

THEOREM 6.5. M satisfies the conditions:
(P.1) P(&=9=1.

1 V*x=V\J{a}.
By the definition, we have {(w,)=0.(co) if we ¥ and Z(w.)=0 if weA.
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(P.2) For any A eB. P(A) is a B-measurable function in &.

PROOF. Since £e€¢ V=V, by the assumption R*, P(z(0)=0)=1,
which proves (P.1). Since z7'(3) e B by (6.4) and P,(z'(})) is B-meas-
urable in x, restricting  on V, we obtain (13. 2).

PROPOSITION 6.6. 7 Y(B)CF.u\B.

PROOF. By (6.4) =~'(B)CB. For any Ae BCB and s<t, {w:
&(w)e A}={w: x. € A} a.e. The right side of this equality is F.c»-

measurable. Noting that §, is generated by {&,€ A} (s=¢, A€ B), we
obtain the proposition.

LEMMA 6.7. Let 9 be in B and p be in M(S). Then P;()=0
implies Pz (A))=0, where B(A)=S _dx)Pofx, € A) for Ac BCB.

PROOF. For any >0, there exists

U=\len €47, -+, &, € A1)

such that %, > and P,,)<e, where AVs are in B. Since, by (6.6)
(t, w)=7(0)+7(t, wiy)

=o+(t, w}) a.e.,

we have
P, U)=P\Jr.p € 43 §=1,2, -+, i)
= p(v{xr(c§.wj)(wf) €4}, j=1,2, -+, %})
=E,(Pe (i € A 5=1,2, -+, ia})
=P;(z (@) =P;(U)<e.
Sinee 7 {(A)Cx~'(,), the proposition follows.
LEMMA 6.8. = (&)™

PROOF. For any e and e M(S), if we define 5(4)= S () Po(z, € A)
(Ae f?), there exists 9’ and 9” in B, such that

AOA=ANAYPIENANVCA” and P;(U")=0.

21  Before proving (15. 3), we can not yet know F*=8; where F*=NDB> and
;c;l(:)

5;: (A: Ae%i, AN{i<s} e%s* for any s}.
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But 7 (&) € F.uy by (6.6) and P,(z~*(A"))=0 by (6.7), and = '(ASx (A"
z-'(A"). Therefore z~(2) is in the p-completion By of Fury. Since p
is arbitrary and $F..,= Q(s)%;‘(,) , we obtain the lemma.

PROPOSITION 6.9. Let p be any Markov time (with respect to M).
Then (o(w), w) is a Markov time (with respect to M) and =='(F;)C
Becotiy, w) -

PROOF.

(i) Let T\,={r.} be a countable set in [0, co] and the values of p
be in T.. Then {p=r.} eg%,:‘“, so {p(w)=r,} € gz“(grth)zé\o‘g,@”h)
=%,y by (6.8) and the right continuity of z(s). Therefore

{z(p(®), w) <t} =\{p(w)=r}N\(z(rs, w)<t} € F:,

which shows that z(p)=t(p(w), w) is a Markov time (M). Moreover, if
A E%};, then for any ¢>0,

AN{p=r}=ANp=rdN\{p<rate} € T¥o.,
and by using (6.8)
A AN =72} € N\ Fryro=Bry -
- Therefore, ‘
2N (B) <t) =\ =" N B@) =7} N\ [e(r.) <t} € F
which shows that =) € F.;, -

(i) For a general p we approximate p by such p, as

n—

5 {2—% it 2(k—1)<p<2k

oo if Z;:oo,

Then, p.J p and p,’s are Markov times (M), so 7(p,)’s are Markov times
(M) by (i). Therefore, z(p)=limz(p,)] is also a Markov time (M).

Finally, if % eJ;, then A« %;" for any m, so = }(A) e NFGp=Tz-
THEOREM 6.10. M satisfies the condition :
(P.3) Let p be any Markov time (M) and A eB. Then

Pw: e N | F)=P;(weA) ae. P, for any & in V.®

2> That is, M is a strong Markov process.
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PROOF. Setting p(w)=t(p(®w, w)), we can easily show that (z(w))i=
z(w?). Therefore, for any 9, € X and €€ V
Pyt e A, w e )= Pew} €27, we Q)
=E(P, («Q): 27()
since z7'(2,) € §,. Noting z,€ V* a.e. (by theorem 5.7) and &is)(w)=
z,(w) a.e., we have

E(P. (x(@) : =7 A))=E(P, (W) : =7(A)

=E(P(%): %)).
The theorem is proved.

LEMMA 6.11. Let p be a Markov time (M). Then for such w as ,.,(w)
eV

o(P(p))=p a.e.
PROOF. Since 7(?(p))=p if and only if (0, w})=0, noting P.(z(0)=
0)=1 if ¢e V (by (5.5)), we have
Pz, € V, o(2(p))=p)
= ,(PJP(T(O)ZO), X, € V)
=Pz, e V)
which proves the lemma.

THEOREM 6.12. M satisfies the conditions :

(P.4) Let p, be an increasing sequence of Markov times (M) and
p=lim p,. Then for any e V*

ér=lim &, for such W as p(W)<oo a.e. (M)™.

PROOF. If we set p.=rt(p.(®w), w) and p=rz(p(w), w), {p.} is an
increasing sequence of Markov times (M) and p,<p. Setting p*=Ilim p,,
we have p*<p and @(p*)=lim @(p,)=p .

The following events occur almost everywhere (M):

a) If s<®(c0), then z.,e V.

b) If p*<oo, then z,=lim z,, (by (P. 4) for M).

c) If x,.eV, then p*=p.

2 That is, M is a quasi-left continuous process.
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For, o*=1(9(p*)) a.e. by (6.11) if z,.€ V, and «(@(p*))=1(p)=p.

d) If @(co)<oo, there exists such Z(w) as {<oo and D(0) =B(0)
(by theorem 5.10).

Henceforth, we only consider the paths which satisfy the conditions
(@), (b), (c) and (d).

(Case 1) If p(w)<P(co, w), then p,<p<P(c0) and w,, x,€V (by
(a)). Moreover, since p,<p*<p<co, z,.=limz, is in V (by (b)) and so
p*=p (by (¢)). Thus we have proved z,=limz, .

(Case 2) If @(c0)<p<oo and p,<P(o0) for all n, then p=oo0, p,<
{<eco (by (d)) and x, €V (by (a)). Thus p*=lim p,<{<oco and x,.=
limz, € V (by (b)). Therefore p=p*<oo (by (c)), which contradicts the
assertion p=co. Namely, the case (ii) can not occur.

(Case 38) If &(c0)<p<oo and p,,=P(o) for some nm, then p,=p=
co for all » such as n=n,. Therefore z,=d=lim«,. The above con-
sideration shows that

Pz, =limz,, 5(®)< o0)=P.(p(@)< o)

for any « in S*. Since x, u)(w)=§5, @) (W) a.e. and @,y (w) =457y (W)
a.e., we have

P& =lim & , p<oo)=P(p< o)
for any & in V*, The theorem is proved.
Finally, we shall prove M has a reference measure.
LEMMA 6.13. Let K be a closed set of V. Then
P{ox < 00)=Pyx < )
Jor any & in V.

PROOF. Throughout the proof & in V is fixed. Then, neglecting
the event of P.-measure 0, the following statements holds.

(i) If ox(w)<oo, then there exists a s(w) such that s>ax(w)
and 2.,=&(w) € K. Therefore ox<t(s)<oo, since $>0 means z(s)>0.

(ii) If ox<oo and P.(ox=0)=0, then ox>0, z, € K, ©(@(ox))=0x
by (6.11), and z(0)=0 by (5.5). Therefore, @(0x)>0 and .o,y € K
which proves that ox(W)<co on gx<oo.

(iii) If P.ox=0)=1, let 6.=c+ox(w}) for any ¢>0. Then ¢<o, <o
implies ox(w)<oo P, by the similar argument as (ii) in which we replace
ox by o.. Since g, 0x=0, we also have ox(W)<oco on ex<oo. From
(i), (ii) and (iii), we have

Py(ox < 00)=Py(6x(i) < 0) = P35 < 0) .
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Let v, be in M(S) and v(S—V)=0, and let 5, be a restriction of y,
on V*, (therefore v, is in M(V)). Then, integrating the both sides of
the equality in (6.13), we have
() P, (0x<o0)=P;(3x<0).

LEMMA 6.14. For v, and 3, defined above,

P, (05 < 00)=P; (3 < o)
Jor any B in B™ (BZV).

PrROOF. Let {K,} and {L,} be increasing sequences of compact sets

- which are contained in B and g, |o; a.e. P, and ox, L0 a.e. P:o
([3]). Then, setting M,=L,\/K,, M,’s are compact sets gy, | o5 a.e. P,
and gy, | o5 a.e. f’;o. Since lim P, (o, < o0)=P, (¢5<c0) and lim ﬁ7a("”n

<00)=13;°(p3<00), using (*), we have the lemma.

THEOREM 6.15. M satisfies the condition :

(P.5) There exists 5, in M(V) which has the following properties :
For any Be B, P,(5,<c0)=0 implies that P(5;<c0)=0 for all E€ V.®

PROOF.

(i) We can choose a measure vy, in M(S) such that v,(A)=0 implies
E,,,(Swe‘“‘xd(x,)dq)):() for any = in S, where A € B (c.f. theorem 3.2 in

0

[7D. Since %, -@~ @ by theorem 3.10, we can assume y(S—V)=0 with-
out loss of generality. Let v, be a restriction of v, on V.

(i) Let B be a subset of V which is in B, and f’;o(?rg<00)=0.
Then, P,u(ag<00)=0 by (6.14). If we set

Sf(@)=Eez)=H; 1(x),

f(x) is a bounded a-excessive fﬁnction (M), and S f(@(dz)=E, (e”*8)=
0 or f(x)=0 a.e. v,. Therefore,

Hiof@=lim E,(|” etg.)d0) ,
where g‘(m)=%(f(w)—H 2of(®)) (lemma 3.7 in {[7]). Since 0=g.(x)

gLf(x)=0 a.e. v, we have HZ,f(x)=0 for any =z in S. Noting
&
P(z(0)=0)=1, we see f(§)=E.(e~8)=0 or P.s;<c0)=0 for all £ in V.

) We can regard B as a subset of B.
25  That is, M has a reference measure.-
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By (6.14), it is followed by P.(5,<c0)=0 for all £ in V, which proves
the theorem.

Thus, under the assumption R*, we have proved that M is a Markov
process satisfying (P. 1) ~ (P. 5). We shall add the following theorem :

THEOREM 6.16. If M is conservative®™ amd P o<oo)=1 for any =
in S, then M is conservative.

PROOF. For any N (N=1,2, ---) and any 2z €S
Pio(w) < 0)=E(P, (¢< ) : N<O)=1,
or
P(o(wF)<oo, N=1, 2, --+)=1.

Therefore, P,(W,)=1, where W, is the set given in theorem 5.2. Using
theorem 5.2, we see, for any z in S, P (®(cc)=00)=1, that is, P(z(s)< oo
for all s<oo)=1. Thus P(x.., €V for all finite s)=1 for any & in V,
which proves the theorem.

In the remainder of this section, we shall discuss the relation be-
tween the processes M@ and M®. Without losing the generality, we
assume 0<a<pB. By (3.4)

0~ D, +(B—a)@ T »

where ¢ (x)= E,(Sa e "'d T) g-L. Therefore (;]2\-1/‘)(,,) « —}-T(ﬁ)z-l—tbﬂ ,
0 a a 44
and we have

PROPOSITION 6.17. @,« @, «-L-0,.
44

Therefore by [7], there exists a function k(x) in F(S) such as 1§k(x)§—ﬁ—
[44
and
0,~k-0, and ¢,~_’lc_-¢., .

Let G and G$» be i-order Green operators of M and M® respectively.
Then, for any f in F(V),
0

G r@)=Ee(|” er(e)ds)

26 We say, M is conservative if and only if Pz({=o)=1 for any x in S. Similarly,

M is conservative if and only if P¢({=00)=1 for any & in V.
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=B (| e f @ w)ds)

E (| e pmpdo.)”

Ee( S” o050 f(w,)k(m,)d(bﬁ)

E;(Sm o= § gyt f(xfﬁ(,))k(xrﬁ(,))ds)

B (S:e‘f . "“u)"“f(fs)k(és)ds> ,

and similarly,

G r @) =B (| e Sixen f(&)f%) ,

for any £ in V. These equalities show that M and M® can be trans-
formed into each other by the classical time changes.
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