DISTANCE AND DECISION RULES

KAMEO MATUSITA

1. Introduction

Distance between distribution functions often becomes a useful and
convenient concept in statistics. In a class of distributions, distance can
be defined in various ways. We, therefore, have to choose an adequate dis-
tance for a particular problem. Further, to treat the problem efficiently,
we are required, or at least it is very desirable, to control all errors
that may be committed in making decision or inference. For this
purpose we have to formulate, or reformulate if necessary, the problem
suitably. A proper formulation of the problem is very important for
getting command over possible errors.

For instance, suppose that we want to know whether or not the
random variable under consideration can be considered to have mean
zero, when it is given that the random variable has the Gaussian dis-
tribution N(8,1). In this case, if we take the problem as the one
inquiring just whether or not the mean of the random variable is zero,
we can not control possible errors. For we can find a distribution
which has mean not equal to 0, but which is as near to the distribu-
tion N(0, 1) as desired, and this makes it impossible to control all possible
errors in inference or decision making based on a finite number of observa-
tions. In terms of hypothesis testing, we can not make the first and
second kinds of errors simultaneously as small as desired (i.e., while
we can make the first kind of error smaller than any given (positive)
value, this is not the case with the second kind of error). One way to
avoid such inconvenience is to formulate the problem as follows. That
is, introducing an adequate distance d(- , -) in the space of distributions
concerned, we set the problem as making decision whether the random
variable under consideration has F,=N(0, 1) or some F' with d(F', F)>d
(>0), where & is a constant which is to be predetermined from the
actual situation of the problem. For the problem thus formulated we
can control the errors (see Matusita [1], Matusita, Akaike [2]).

So far, the author has treated various problems with the same idea,
the idea of controlling possible errors (see Matusita [1], [3], [5], [7], [8],
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Matusita, Akaike [2], [6], Matusita, Suzuki, Hudimoto [4]). There, employ-
ing a special distance, the author gave decision rules based on the
distance, and he often dealt with finite discrete cases (because the finite
discrete is the case with most actual problems, as the measurement has
always a unit). Of course, as mentioned earlier (Matusita [5]), for some
cases the distance can be replaced by other distances, and the space of
definition of distributions can be made more general. The purpose of
this paper is to treat a generalized version of decision rules based on
the distance. At the same time, properties of distance which are used
in giving reason to decision rules will be taken up and the concept of
distance in a wider sense will be given. As a result the class of decision
rules based on distance will be made more inclusive. For instance,
decision rules by probability ratio and the maximum likelihood method
can be counted within this class.

In section 2, a general formulation of the problem is given based
on the distance, and it is seen that various classical problems are
considered under this formulation. In section 3, a general decision rule
based on distance and properties of distance between distributions are
treated, and in section 4, the properties of the distance which are
required for the decision rule are further investigated. Throughout
these discussions, what is aimed at is to get command over possible
errors. In section 5, the problem of estimation is dealt with. The
minimum distance method is naturally considered here.

2. Formulation of the problem

Let X be a random variable, and let 2 be the set of distributions
to which the distribution of X is known to belong. Further, let {w,}
be a class of subsets of 2. The problem we treat is to decide which
o, can be considered to contain the distribution of F. As is immediately
seen, most problems in statistics can be reduced to this form. For efficient
decision, we require here that for an adequate distance between dis-
tributions, d(-, :), it holds that d(w,, »,)>a for any indices v, z with
v#p, where a is a positive constant, and d(v,, ®,)= inf d(F,, F,). In

g

some cases when d(w,, w,)=0, we can represent o, by a single distribu-
tion F, such that d(F,, ©,)>0. For such F,, we can consider the averaged
distribution of w, by an adequate distribution over w, (see also Lehmann
[9]). In the following we give some examples of the problem.

1. The classification problem. This is just the above mentioned
problem itself.

2. The case where {w,} consists of only two sets ®,, w,; is of inter-
est. Some familiar cases can be brought to this set-up.
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(i) The problem of fit. This is the case where w, consists of a
single F), and d(F), @,)>0. In the literature the problem of fit is often
treated as the one which is concerned with a single F, and w,=2—F),.
In this case, however, it can happen that d(F}, »;)=0, which causes incon-
venience for controlling errors.

(ii) The two sample problem. This is the problem concerned with
whether two random variables X, Y have the same distribution. For
this problem we consider as follows. Let G be the set of distributions
which can be considered as the distributions of X, Y simultaneously.
Then, the paired random variable (X, Y) has the direct product F,x F}
as its distribution, where F,, F, € G. Now, set

o= {F\xF,| F,=F,, F\, F, €G},
o= (F\X Fy| d(F, X F}, @) >a(>0), F;, F;€G},

where d(- , -) denotes a distance in GX @G, and a is a constant. Then,
d(wy, @;)=a, and we have the problem of the above mentioned type.

(iii) The problem of independence. For two random variables X,
Y consider the pair (X, Y) and the set of the joint distributions of the
pair, say 2. Let F), and F, generally denote possible distributions of
X, Y, respectively, and put o,={F,xF,} (the set of direct products)
and o,={?| d(?, o,)>a(>0), ® € 2}, where d(-, -) denotes a distance in
2 and « is a constant. Then, to decide whether the distribution of (X, Y)
belongs to o, or w, is the problem of independence.

Besides these problems we can mention the problem of invariance

(symmetry), a linear regression model, etc. Any problem whether or
not a certain property is satisfied can be formulated as above.
3. The problem of estimation. In this problem each , consists of a
single distribution or a set of distributions. In this problem, we,
normally, do not require d(w;, »;)>0. We just take up one w, based
on some principles of reasoning.

3. Decision rules and desirable properties of the distance

When an adequate distance is introduced into the space of distribu-
tions, it is quite natural that, as the set which contains the distribution
of the random variable under consideration, we take for a sample an
o, that minimizes d(S, »,), where S denotes the empirical distribution
based on that sample, and d(- , -) the distance. The problem is to intro-
duce a distance so that this decision rule can control the possible error,
or get as high efficiency as desired. In the following we shall discuss
properties of the distance which are required or at least desirable for
such purposes.
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First, under the word of distance between distributions in a space
R, we understand the non-negative valued quantity which is uniquely
defined for the distributions. Denote it generally by d(F;, F,), F;, F;
being distributions in space R. It is, of course, desirable that the
distance is defined for any two distributions in R. However, as will be
seen below, in some cases it is sufficient that the distance is defined in
a restricted class of distributions. Now the first property we require is:

() d(F, F;)=0 when F,=F,.
As the second the following is considered.
(i) d(F;, F))=d(F;, F;), for any two distributions F}, F).

We do not always require this property, although it is desirable.
The third is:

(iii) d(F;, Fo)+d(F;, F)zd(F, F;).

Concerning this inequality, it happens that in some cases we need only
the special case where F) is the empirical distribution (see below).
These are the characteristic properties of the distance. However, we
count the quantity d(-, -) as a distance even when (ii) or (iii) is not
always satisfied. By doing so, we can consider a wider class of quantities
under the name of distance. The following property of the distance is
important for our decision rule.

(A) When a random variable X has the distribution F', it holds for
an arbitrarily chosen, positive number 4§, that

P(F, S,)=0)—0 (n—o0),

where S, denotes the empirical distribution based on n observations on X.

With this property (A) the decision rule can control possible errors
by increasing the number of observations in the case of a finite number
of distributions. Namely, let F}, ---, F be the distributions under con-
sideration. Then, for each 7 (1<7<s) and any positive numbers ¢ and
d there exists an integer N such that for n=N®

where P(d(F%;, S,)=6|F;) means the probability that d(F}, S,)=6 when
random variable X has distribution F;. Therefore, when we put
N=max N®, the relation (x) holds for i=1, ---, s when n=N. Assume

(1
here that we have taken

o= L min d(F,, F))
2 wn
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in advance, where the minimization is taken over the set of all pairs
(i,7). When the symmetric property of the distance is not satisfied,
we have to consider both combinations (¢,7) and (j,%). Then, the
decision rule is:

Make n (=N) observations on X. When
d(F;, S,)<d(F;, S,)  for any j#i,
take F; as the distribution of X. When

d(F;, S,)<d(F;, S,) for  j#1,
d(F;, S,)=d(Fy, S.) for some k,

take F, or some F, as the distribution of X so that the probability
according to any F; that F; is taken as the distribution of X is well
defined.

With this decision rule is associated a subdivision of the sample
space R*. That is, subsets of R", D,, ---,D,, are associated with Fj,
..., F, so that all D, are measurable with respect to all F}, ---, F and
for a point x=(xy, -+, x,) € D,

d(Fu Sn(xl’ ] wn))éd(Fj, S,.(xl, ey, x,,)) j-?é?z, (71—_—1, LI S)

and Di/\Dj=0 ('I:#:j).
On the other hand, when the triangle inequality of the distance
holds, we get

d(ij Sn)g.d(Fu Fj)—d(Fi, Sn)
and, when d(F3, S,)<3,
d(F';, S;)>20—06=0.

Hence (x4, - -+, «,) belongs to D, when d(F}, Sz, ---, %,))<d. Conse-
quently we have

P(D.|F)=P((F, S,) <8|F)>1—¢  (i=1, ---,s)
P(D,|F)<P(R*—D,|F,)<e for i#j (i,j=1,---,5).

This means that the decision rule has error rate less than ¢, or success
rate greater than 1—e. Notice that in this problem the distance need
not be defined between empirical distributions, and that only such triangle
inequalities as d(F, S,)+d(F;, S,)=d(F, F;) are required.

When F,, ---, F, are unknown, we use the empirical distributions
in place of them. Let S®=8%(g,, ---,x,) denote the empirical distribu-
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tion based on a sample of size n; from F,. Assume that distances between
F; and an empirical distribution, between F; and F, and between em-
pirical distributions are defined and that for those distances the triangle
inequality holds. Further, for arbitrarily chosen positive numbers e,
d, let

Pd(F;, S,)=0|F)<e (i=1,---,5)

hold for n=N, where S,=8S(x;, - - -, x,) is the empirical distribution based
on (z, ---,%,), and assume that n,=N. Now, set

Dy={(xy, -+, 2)| d(S®, S,) <d(SD, 8.), j#i} (i=1, --+,s)

and remove some boundary points from D; so that the resulting set D,
is measurable with respect to all F}, and has no common points with
other D; (j#1). This D; clearly contains

DI={(&y, - -+, 2)| dSP, ) <d(SD, S,), j#i).

Then, when = 1 r(nu)l d(F;, F';), we have
()

DiQ{(“’n ] wn)l d(Fb Sn)<5}'
In fact, from d(F;, S,)<d it follows that

d(F;, So)zd(F, Fy)—d(F, S,)
>40—0=30 ’

from d(F}, S®)<a, d(F;, S,)<d it follows that d(S®, S,)<2d; and from
d(F;, S9) <9, d(F;, S,)<o it follows that

d(SD, S,)=d(F;, F))—d(F;, S¥)—d(F;, S,)
>46—6—6=25.

Since
P(F;, S®)<d)>1—e  (2=1,---,5)
for n=N, we have
P(F;, S¥)<d,1=1, + -+, 8)>(1—¢)".
It is assumed here that S,, S®, - -+, S® are independent. Then, we obtain
P(S®, S,)<d(8?, 8,), j#1|F))

=P(d(F;,, S®)<4, d(F,;, SP)<d(j+#1) and d(F;, S,)<d | FY)
=P(d(F,, S¥) <4, i=1, - -, s)P(d(F}, S,) <3 | F)



DISTANCE AND DECISION RULES 311

>(1—e)(l—e)
=(1—¢)t'=1—¢ (say).

From this we also have
P(there exists an integer j, such that d(S®, S,)>d(S“, S,), Hi#i|F)=¢.
This holds for 2=1, ---,s. Consequently we get

P(S®, S,)<d(SY, SHF)<e,  j#1.

Thus, the decision rule concerned can control the possible errors.

Suppose that we are concerned with a finite number of sets of
distributions, ,, -+, »;,. The problem is to pick up one among w, ---,
o, as the set to which the distribution of the random variable under
consideration belongs. Assume that the distance is defined in the space
of distributions concerned and empirical distributions. Defining

d(S, w;)= inf d(S, F'),
F€aw;

we can deal with the problem by comparing d(S, y), - -+, d(S, ®,). Here
we assume

d(w;, 0;)>0 (d(w;, ;)= inf d(F;, F})).
Fi€og
Fjc€oj;

When each o; contains only a finite number of distributions, the problem
becomes exactly the above stated. However, when some or all of w; con-
tain infinitely many distributions, we need to take up a distance which
has a stronger property than the previous one. That is, we require
the distance with the following property :

(B) For arbitrarily chosen positive numbers ¢, d, there exists an
integer N such that when =N we have

P(d(F, S)zd|F)<e

for any distribution F' under consideration.

With the distance with this property we can treat the case of infi-
nitely many distributions just as before, that is, when it is given that
d(w,, ,)>a>0 for v#p, our decision rule can control possible errors.
As a matter of fact, when we previously dealt with decision rules in
the finite discrete case, we took advantage of the property B (see Matusita
[5], [7], Matusita, Akaike [6]. Concerning property B see also Hoeffding
and Wolfowitz [10]).

Now, the set of distributions in a Euclidean space R is separable
with respect to the distance

aFs F)={| (Vp@— Vp@) dm} ",
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p(x), p,(x) being probability densities with respect to measure m, of F;
and F, respectively. As a result, {o,}, a class of sets of distributions
in R, can not contain more than countably many w, when d(w,, @,)>a>0
for the distance d(- , -) in B which is equivalent to, or cruder than,
dy(-, -). Besides, in some actual cases, it comes out by a priori know-
ledge, or information obtained from samples about the a priori distri-
bution, especially about its range, that we can do with a finite number
of w,. Further, when, for any two w,, o;, there exist boundary distri-
butions Fy, F; such that

d(Fy, 0)=0, d(F;, 0;)=0, d(F, F;)>a>0, (a being a constant),
d(F’ ) w)=d(w;, w;), d(F Jo? ;) <d(w;, wy),

we can treat the problem with such boundary distributions {F},} (see
Matusita, Suzuki, Hudimoto [4]). When the number of o; is finite, the
number of such boundary distributions is also finite, and we come again
to the former finite case.

4. More on properties of the distance

Let us investigate further the basic properties of the distance from
our standpoint of making decision.

First, let us consider the case where the distributions concerned are
known. We use the notion of distance to express that an empirical
distribution is nearer to one distribution than to another, that is, we
use that notion for comparison such as d(F;, S)<d(F,, S). What is
essentially needed, therefore, is that
(I) a linear order relation holds among {d(F, S)}.

Now, the property (A) or (B) has been used to show that
(II) for given ¢ (>0), there exists an integer N so that for n=N

P(d(F:, S)<d(F;, S)|Fy, i#j)>1—e.

Further, the triangle relation d(F, S)+d(F,, S)=d(F;, F;) has been used
with (A) or (B) to show that
III) for n=N

Pd(F;, S)<d(F;, S)|F;, i+ j)<e.

Hence, when it is known by other reasoning that (I), (II), (III) hold,
we need not pay attention to whether (A) or (B), or the triangle
relation is satisfied. Our decision rule applies without regard to such
properties.

For example, consider the case where two different distributions
F,, F, with probability densities p,(x), pi(x) with respect to the same
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measure in R are concerned. Define the distance between F; and the
empirical distribution S, based on a sample (%, -+, x,), as

d(F;, S)=cdpdz)---px)}  (1=1,2),

where ¢; are positive constants. As the distance between F| and F; we
can take any definition. Then, (I) is obvious. (II) and (III) are also
satisfied (see Matusita [1], [3]). Thus, the decision rule based on this
definition of distance can control the possible errors. On the other
hand, d(Fy, S,)<d(F;, S;) implies

1 .
;l—pl(wl)---pl(xn»c— Py(21) - - - po,), and vice versa.
1 2

This means that the decision rule by probability ratio ean be considered
within the category of decision rules based on the distance. '

When the distributions concerned are unknown, we have to consider
the empirical distribution for each of them. Let S$ denote the em-
pirical distribution based on a sample from F,, and S, the empirical
distribution based on % observations. Then, when the following properties
@y, Iy, (II1) are satisfied by a distance d(- , -), the decision rule based
on this distance satisfies our requirement.

(IY A linear order relation holds among {d(S$’, S.)}..
(IIy For given & (>0) there exists an integer N so that for n=N

P(S$, S,)<d(S¥, SHF,, vEp)>1—e.
(IIIY For given ¢ (>0) there exists an integer N so that for n=N
P(d(S$, S)<d(Sy, SHF,, v#p)<e.

(These (IY, (ITy, (IIIY can, of course, be derived from (A) or (B) and
the triangle inequality of the distance.)

Thus far, we have aimed at controlling the possible errors in decision
making. When nothing is known about the a priori distribution, it is
desirable to make the sizes of the possible errors equal to each other.
In some cases, this can be done by modifying the definition of distance,
or replacing the fundamental relation, say, d(F;, S,)<d(F;, S,), by
c.d(F, S)<c,d(F;, S,), ¢, c; being appropriate constants. Further, when
two decision rules have the same size of the possible errors, the one
with smaller sample size is clearly better. The optimality in this sense
depends on the choice of the distance.

5. Estimation

Let X be the random variable under consideration, S the empirical
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distribution based on observations on X, and 2 the set of distributions
each of which may possibly be the distribution of X. Then, the pro-
blem of estimation is to choose one among £2 for an observed S as the
distribution of X. When the distance d,(- , -) is defined between any F in
2 and S, the decision rule which is immediately considered is to take
the one which minimizes dy(F,S). This is the minimum distance
method. Let S, be the empirical distribution based on a sample of size
n as before, let

dy(F, , S;)= min d,(F, S,),
FeQ

and let F, be the distribution of X. Then
ady(F.. ., S,)=dy(Fy, S,).

Let dy(-,-) be the distance defined in 2 with the following
properties :
1) dy(Fy, F)=0,
2) when d(Fy, F;)=0, F; and F, have the same characteristic with
respect to the point under consideration,
3) for a sequence of distributions {F,} and a distribution F,, d(F,, F,)—0
means that the characteristic under consideration of F, approaches that
of F,. When the distance functions d,(-, -), dy(-, -) are such that the
triangle inequality

Qi(Fe ny F)SAy(F, 4, Sp)+do(Fy, Sy)

holds, we have

(Feny Fo)<2d)(F,, S,).
Hence, when (A) holds, for any positive ¢, d, there exists an integer
N such that

P(d(Fe,n, Fo)<0|F)>1—e
for n>N. This means

A F, ., F )0 with probability 1.

That is, the minimum distance method provides a strongly consistent
estimate.

Further, even when the above triangle relation does not always hold,
the minimum distance method can provide a consistent estimate. For
instance, let p/(x) denote the probability density of distribution F,
with respect to a Lebesgue or counting measure m defined in space R.
Distance in £ can be defined in any way so long as it makes sense for
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—_ — 1/2
the problem, for example, d,(F}, F,)= {SR( V() — V() ) dm} or
SRlpl(x)—Pz(dem . As d(F, S,) (S,=S(x,, * -, x,)) we define

dy(F, S,)={p(x,) - -+ plx,)} 7

Then, the minimum d,-distance method is the maximum likelihood method,
so the minimum d,-distance method provides a consistent estimate under
some conditions. From this example it can be seen that the maximum
likelihood method can be taken as a decision rule based on the distance
(in a wide sense).

We can also treat the problem to estimate the true distribution
(parameter) by a set of distributions (parameters), based on the notion
of distance (see Matusita [5]).
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