MULTIDIMENSIONAL QUANTIFICATION OF THE DATA OBTAINED
BY THE METHOD OF PAIRED COMPARISON

CHIKIO HAYASHI

1. Introduction

Paired comparison is an excellent method for judgement of N ob-
jects, especially when N is fairly large. However, it is not easy to
quantify the obtained data suitably for a purpose set up, because the
quantification is not always deduced directly from the underlying condi-
tions of the experiments of paired comparison. Thus, various models
of quantification are devised which correspond to the hypotheses to be
imposed on the method of paired comparison. There are two types of
models. One is the model given mainly by statistical psychologists or
statistical sociologists, and the other is the model given by mathematical
statisticians. Among models of the former type, Thurston’s model (we
~call T-model), including Mosteller’s one, and Guttman’s model (we call
G-model) are, as is well known, useful for data analysis. Many models
by mathematical statisticians are mostly concerned only with statistical
testing.* Here, another model of the former type will be shown.

Probabilistic responses are considered in one-dimensional continuum
and the probability density function of responses is assumed to be Gaus-
sian in the T-model. The model is too much restricted in assumption
and has no validity in some practical problems. In the G-model the
responses obtained by the method of paired comparison are quantified
in one dimension to represent the discriminative judgements without
any assumption on the underlying continuum. This model is very useful
for the determination of rank order of objects, based on the data by
paired comparison which usually show complicated figures. The aim of
these methods is to give a one-dimensional numerical representation of
the data obtained by paired comparison. The numerical values of the
data are meaningful only in rank order scale or in interval scale. In
paired comparison, we meet the perplexed situations in treatment as

* See, for example, the references in the book, H. A. David, The Method of Paired
Comparison, No. 12 of Griffin’s Statistical Monographs and Courses, 1963.
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shown below. Let A, B, C be objects, and > the preference-sign. A>B
means ‘‘ A is preferable to B.”” Suppose A>B, B>C but A<C. This
occurs both in judgements of objects even by only one person and in the
counting of preference-signs of objects in the universe of persons—that
is, A>B occurs more than B>A, B>C occurs more than C>B but C>A
occurs more than A>C. This inconsistent relation may be interpreted
in probabilistic responses in the T-model, that is, as a sample from the
simultaneous probability distribution of responses.

Both in the T-model and the G-model, the quantification of specifi-
cation is performed by synthesizing the various relations in the data
obtained. In the T-model, the quantification of mean and variance of
the Gaussian distribution of each object and some correlation coefficients
between objects is considered, and in the G-model, the quantification of
objects themselves or their factors (categories in items) is considered.
These are the characteristics of uni-dimensional quantification and the
validity is to be evaluated by the efficiency of applicability to practical
problems. We consider here the problem to orientate, in a space of
some dimensions, the objects which show apparently inconsistent relations,
and we intend to give a model of multidimensional quantification.

2. Model

When we are given relations A>B, B>C and A<C (>, < are symboli-
cally to bo interpreted, for example, as preferable, favourable, more beauti-
ful, better, greater, etc.; A>B or B<A means that A is preferable to B
etc.) and when A, B, C are represented as in Fig. 1 in a plane, the above

II-dimension

I

—_ I-dimension

Fig. 1. One example of constellation

preference relations are reasonably interpreted in the II-dimensional space.
That is the comparison between A and B is done in I-dimension in Fig.
1. We consider that the object with smaller magnitude in I-dimension
is judged to be preferable to the object with larger magnitude in that
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dimension. The difference between the magnitudes in the metrical sense
is not meaningful but the difference between the rank orders is mean-
ingful; for example, the only essential thing concerning A and B is that
A has higher rank order than B with respect to I-dimension, supposing
that the object of higher rank order is judged to be preferable (>)
to that of lower rank order. Then the expression is taken as A being
in the left-hand side of B in I-dimension in the two-dimensional space.
The comparison between B and C is done in I-dimension or in II-dimension.
In Fig. 1, the comparison between B and C is done in I-dimension, while
the comparison is done in II-dimension if B is located at the point B'.
The comparison of A and C is done in [I-dimension. Thus, the relations
A>B, B>C and A<C are reasonably interpreted under the scheme
mentioned above. In the following we shall give a model of multidi-
mensional quantification of paired comparison based on this idea.

Let N be the number of objects and n that of judges. Then each

judge compares <12\T> pairs among N objects. For simplicity, suppose

that only judgement > or < is made (equality is omitted). We shall
reveal the constellation of the objects in rank order sense in an S-dimen-
sional space, each dimension of which has rank order scale. The relation
between judgement and rank order is as is shown above. Let O; be
the ith object (¢=1,2 ---, N). O, corresponds to the point P; in the

S-dimensional space, which has rank orders x;, s, ---, %;s, Where x,
is the rank order of O; in the sth dimension, s=1,2, ---, S, i.e. z;,=1
or2or --- or N, the smaller number being of higher rank order. We

assume that x;,#z, for i#j, and that x,<z,, means that O, is prefer-
able to O; in the sth dimension. Here, we treat the problem to deter-
mine the number of dimension S, the constellation of objects in S-dimen-
sional space (%, 1=1,2 --- N; s=1, 2 ... S) and the size n, (s=1, 2 --- S)
which are defined as below. We show two models to formulate the
problem to be solved.

[Model A] Let n, be the size of the sth class, (n,=1). The judges
who belong to the sth class compare paired objects only in the sth

dimension, that is, paired objects O; and O; (¢, 7=1, .-+, N) only by the
rank order z; and x, in the sth dimension. We take s=1,2, --- S,
assuming that each judge belongs to only one class, s=1 or 2 or --- or

S. Then, clearly XS‘. n,=n. If xz,<x;, the judges who belong to the sth
8=1

class judge that 0,>-0,, i.e., O; being preferable to O;. If z;,>x,.(s'#8),
the judges who belong to the s’th class judge that 0,<0,, i.e., O, being
preferable to O,. Let m,, be the number of judges who judge that
0,>0;, which is obtained in experiments and m, the number of Judges
who judge that 0,<0;. Of course, m;;+m;=n.
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DEFINITION. We define d;,(8), for i#j, as

5i!(8)={ 1, if L <y
0’ ]f xu> xjt ?

and for 1=y
8::(8)=0, +=1, .-, N.
Then we have the following :

9:4(8)+9,(s)=1
(1) i9j=1’2,"'9Nv i¢jr

s
m;;= El 5”(8)1&, ’

where m,,’s are given (i, j=1, - -+, N; 1#7) from experiments, and d,,(s),
n,, S (s=1, ---, S; 4, 5=1, -.-, N; i#7) are unknown. We call (1) the
fundamental equation. We require d,,(s), i.e., z;, (¢, j=1, ---, N; i#J;
s=1, ---, S) and n, (s=1, ---, S) with the minimum dimension S. There
are N(N—1)/2 §,,(s)’s for fixed s. Since it is sufficient as is seen from
the property of rank order, that only (N—1) of z,’s (=1, ---, N) are
determined, and since d;,(s)’s are uniquely determined by z,’s (=1, ---,
N), the number of unknown parameters is generally S(N—1)+(S—1)=
SN—1, where S(N—1) is the number of z,’s to be required and (S—1)
is the number of classes, the size of which is to be determined so that

i m,=1. The smaller the number of S, the more favorable the situa-
3=1

tion becomes for analysis. In case S=1, all objects are in uni-dimension
and the results by comparisons show no inconsistency.

The solution of (1) in model A is not always obtainable and will
generally be determined approximately. As (SN—1)<N(N-1)/2, i.e.,
S<(N—-1)/2+1/N, [(N—1)/2+1/N] is given as a rough estimate of the
upper bound of S, where [ ] is the Gaussian bracket.

This model is generalized as follows.

[Model B] Each judge who belongs to the tth group compares the
paired objects in the sth dimension with probability w,, (s=1, 2, ---, S),

zs} w,=1, t=1,2, ---, T, T being the number of groups. If the size
3=1

of the tth group is large and each judge compares the paired objects
independently in the sense of probability, w,, is approximately equal to
the proportion of judges in the f{th group who compare the paired ob-
jects in the sth dimension. If w,=é,,, where J,, is Kronecker symbol,
and S=1T, this model B is reduced to the model A mentioned above.

Let I, be the size of the tth group. In this case, we have, as a



MULTIDIMENSIONAL QUANTIFICATION OF THE DATA 235

fundamental equation, in expectation,
T S
M= B0, 4 4=1, -+, N; i
If T=1, t=1, l,;=n, Lw,=lw,=n,, we have

S
mu = 'gl 6”(8)'”4;

which is formally equal to (1). However, n,=nw,, has a different meaning
from the n, in Model A. In the latter case, the same judge compares
objects in the sth dimension s=1, --., S with probability »,/n=w,, and
in the former case, each judge belongs to only one class which is charac-
terized by paired comparison in only one dimension corresponding to that
class. Taking this probabilistic model and assuming that all the com-
parisons are done independently in the sense of probability, the simultaneous
distribution of m,; (3, j=1, -+, N) is required when d:4(s)’s are assumed
to be known. The distribution of m.,, Q(m,,), is g} Py, ¥s -+, Ys),
i
"i?; , ¥’s being realized values of random

variables as the number of judges who compares in the sth dimension

where Py, ---, ys)=n! T[

S
with E_ly,=n and R, is the domain of (¥, ¥, -+, ¥s) which satisfies

S
the equation m“::‘-?f 0.4(8)y. when d,,(s)’s (=1, ---, S) are known. The
simultaneous distribution of @(m.,) (4, j=1, - -+, N; i#£j5) is ;l'[ Q(m;). The
s J

patterns of m,; are made by the Monte-Carlo method by giving d,,(s)’s
and w,’s (s=1, ..., S) assuming that S is known.

For T+#1, it is useful to simplify the model B. One example of
simplified model B:

T=S8
for t=1, Wu=p, Wi=q, 8=2,3, .-+, S,
for t=2, Wy=Dp, Wy=q, s=1,8, ---, S,

for t=T=S, wss=p, Wes=( , s=1, ..., S-1.
As f}w,,:l, g=(1—p)/(S—1). In this model, ¢ may be regarded as
=1

probability of response error, as it were. We shall be able to estimate
p by the same ideas as in the methodology for social research. For
example, p=0.95 or 0.90. So, if we specify such probabilistic response
patterns as mentioned above, the fundamental equation has a compara-
tively clear form to solve.
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3. Solution to the model, (1)

Based on the consideration of section 2, we can devise various
methods to give the solution to the model using the data, m.’s (i, j
=1,2, .-+, N), that is, to require the minimum dimension S and z,’s
(:=1,2, ..., N; s=1,2, ---, S). We shall show one method here. Let
(M) be the matrix Nx N, elements of which are m,, (i, j=1, ---, N ; 1#3)
with m,;=0 (i=1, .-, N) and let (D(s)) be the matrix Nx N, elements
of which are 9,/(s) (4, j=1, ---, N; i#j) with 8,(s)=0 (i=1, ---, N).

0, my my - - My
My 0 my + o My

(M)=

My My Mys - « 0

Let YA be the set of elements YA, (i, =1, ---, N) in the upper half of
matrix (A) and “A be the set of elements %4,/ (4, j=1, ---, N) in the
lower half of (A), i.e.,

0

(4)=

Matrix (D(s)) can be transformed into the rank order matrix (°D(s)),
in which YD(s),,’s are 1 (3, j=1, - - -, N), and *D(s),,’s are 0 (i, j=1, - - -, N),
changing the order of objects O, (i=1, --., N), i.e.,

0 1 1...1
0 0 1...1
(D) = '
-1
O .
0

This is easily proved by uni-dimensionality of z,’s (¢=1, --., N) with
the definition of d,,(s).

DEFINITION. Matrix (A) is called positive, which we express as (4)=
0, when all the elements a,;=0 (4, =1, ---, N) and at least one strict
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inequality holds. Matrix (4)=0 if and only if a;;=0 for all ¢, j=1, .-,
N.

Thus, if matrix (4) is positive and matrix (B) is positive, (4)+(B)
=(C) is positive and a(A) is positive if real number a>0.

Suppose that (M) is given by experiments. Proceed by the follow-
ing steps to give the solution to model A.

1) Change the order of objects so as to maximize the sum of “M,,’s
(%, 5=1, ---, N), that is, determine z, (=1, ---, N) so as to maximize
the value @———2 m,; sgn (xy—2%;), wWhere x,, is the rank order of the

i<j

ith object, under the condition that any element of M, (7, =1, , N)
is not zero. As 0= —E m; %“—;L‘)— , we can make a comparatively
i1 L1

good first approximation to z, (=1, ---, N) by applying the method
of quantification of e;;-type* and then, obtain successively the required
values of them by changing the order of objects step by step, i.e., by
moving the position of one object and changing the order of objects so
as to give the larger sum of “M,,’s in the new order than that in the
previous order and repeating this step. We can always attain the max-
imum value of the sum of YM,,’s by finite steps.

Let (M) be the matrix obtained by this process and let 'R be the
rank order of objects O, (¢=1, ---, N).

2) Let (°D(1)) be the rank order matrix by the rank order 'R.
Find the positive integer n, which is the maximum integer satisfying
the condition that (*M)—mn,(°D(1)) is positive. 'R is the required order
of the objects {%o,(i=1, ---, N)} in I-dimension and 0;,(1)’s are given
in (°D(1)). m, is the size of the judges who belong to the 1st-class.

3) Let (M)=(M)—n,(°D(1)). Change the order of objects to max-
imize the sum of YM},’s (4, =1, .-+, N) by the idea mentioned above.
Let (*M) be the matrix obtained by this process of changing the order
of objects and !R be the rank order of objects O,(i=1, .-, N).

4) Let (°D(2)) be the rank order matrix by the rank order ‘R.
Find the positive integer n, which is the maximum integer satisfying
the condition that ((M)—mn,(°D(2)) is positive. R is the required order
of objects {xo,4(t=1, ---, N)} in II-dimension and 4,;(2)’s are given in
(°D(2)). m, is the size of the judges who belong to the 2nd-class.

5) Let (M")=(CM)—n,°D(2)). Repeat the same process as men-

tioned above. We stop the process when (M” ‘N=(M*®)=0, and de-
termine the dimensionality as S=p.

* C. Hayashi, “ On the prediction of phenomena from qualitative data and the quantifica-
tion of qualitative data from the mathematico-statistical point of view ’’, Ann. Inst. Stat.
Math., 3 (1952), 69-98, and *‘ Theory of quantification and its examples (VI),” Proc. Inst.
Stat. Math., 9 (1961), 29-35.
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We can not always obtain the solution successfully by this process
according to what property the matrix (M) obtained by experiments
has. For example, there are some cases where we can not find n,(#0),
because some elements of M are equal to zero before (M®)=0 (p<q),
however we may change the order of objects. We can not find the
solution as far as we do not recognize the equality of the rank order
of objects, i.e., z,=%, for some %, . In such cases, our model is not
valid for data analysis and another model must be adopted. However,
in some situations, we can reasonably determine the unknown by using
the idea of the least square method from the probabilistic point of view.

It should be noted that the solution of our model A above may be
not always unique and, at least, the solutions obtained by the process men-
tioned above, and by changing the name of dimension of the solution are
also solutions of our model A. As n,=n, (r<s) generally holds, the order
of dimension is to be determined according to magnitude of the size of the
class. When the solution is not unique, what is the desired solution
must be decided by the aim of analysis of data, for example, in relation
to outside variables.

Example 1.
Preference table by paired comparison
Object
0. 0s 05 O Total=§} msj
Object
0, 8 4 4 16
(o) 2 6 6 14
0Os 6 4 4 14
O 6 4 6 16

By this preference table, it is very difficult to determine the rank order
of objects (in uni-dimension) by the usual method, i.e., by the magnitude
of ; my; (i=1, .-, 4).

M)= , N=4 and n=10.

-

0 8 4

2 0 6

6 4 0

‘ 6 4 6 0
The number of judgement 01>-O,v is 8, that of judgement 0,0, is 6 and
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that of jngement 0,<0; (0,>0;) is 6 (4). Thus we meet an inconsistent
relation in judgements and can not determine the rank order of objects
in uni-dimension.

(M)=(M),

1R= {x011<x03l<x04l<x031}
Il Ii I 1l
1 2 3 4 ... rank order

0 0, O, O
o(0 1 1 1
0,0 0 1 1
D) = , m=4,

o,({0 0 0 1
o (0 0 0 O

01 O’ 03 04
0,(0 4 0 O
O,(2 0 2 2
(M)= .
o, |6 4 0 2
O, \6 4 4 0)

Change the order, *R= {03 <%0s<Zon< %oy}
1l Il | Il
1 2 3 4 ... rank order

0O, 0, 0, O,
O, (0 4 6 4

0|2 0 6 ¢4
(M)= :

|10 0 0 4

o\2 2 2 0
0, O, O, O,
o(0 1 1 1
0,0 0 1 1
D@)= , m=d,

{0 0 0 1

o,\0 0 0 O
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0, 0O, O, O,
o,(0 0 2 0
o112 0 2 0
(M=
o|/0 0 0 O
o2 2 2 0

Change the order, *R= {3 < %o, < Toys < %o}
i Il Il il
1 2 3 4 ... rank order

01040301
0,0 2 2 2

o0 0 2 2
(CM)= ’
0,0 0 0 2
o,\0 0 0 0
0 O, O, O
o(0 1 1 1
o/0 0 1 1
(*D(3))= y =2,
10 0 0 1
o,\0 0 0 O
(Mm)=0 , p=3’ S=3.
e Thus we obtain the constellation
of objects in three-dimensional
space (see Fig. 2).
I II III
0,1 38 4) --- P
O, (2 4 1) A P 3
" 1 0,4 1 8 -.- P,
2 . 0,38 2 2)-... P,
) n 4 4 2
777
7 VARV In this case, the solution is not

I unique. We have another solu-

Fig. 2. Constellation of the objects tion



MULTIDIMENSIONAL QUANTIFICATION OF THE DATA 241

I II 1III
0 (1 3 4
0,2 4 1)
0,8 2 3
O, 4 1 2)
n 4 4 3 .

Example 2. N=17, n=10.

Preference table

Object
number 0. O3 O3 O, Os O0; O Total=§} mij

o \ 8 4 4 8 8 4 36
0 2. 6 6 8 10 6 38
0s 6 4 4 8 10 6 38
o 6 4 s\ 10 6 36
0 2 2 2 6 > 10 6 28
0 2 0 0o o0 o0 & 8
o 6 4 4 4 4 4 26

For example, the number of judgement 0,>0, is 8, 0,>-0; is 8, 0,>0,
is 10, but the number of judgement 0,>0, (0,>0,) is 6 (4). Thus we
meet an inconsistent relation in the judgements and can not determine
the rank order of objects in uni-dimension. Remember the relation S<
(N—1)/2—1/N, and S<(10—1)/2—1/10=4.4 when N=10.

0 8 4 4 8 8 4
2 0 6 6 8 10 6
6 4 0 4 8 10 6
M)=|6 4 6 0 4 10 6
2 2 2 6 0 10 6
2 0 0 0 0 0 6
6 4 4 4 4 4 0
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By '‘R= {%11 Loy Koy < op < Loy < Lo < Loy}
Il Il Il Il Il il Il
1 2 3 4 5 6 7 --- rank order

we can attain the maximum value of @ in (M), @ being 142 in (M)
and 144 in (*M). Thus (°D(1l)) is the rank order matrix of the rank
order 'R of objects. The maximum value of =, is easily obtained and
equal to 4.

0. 0, O, O O, O; Oy
0, 4 0
0

0,
(M)=(M)—n,(°D(1))= O,
O,

O;

O

Change the order and we have

= N R~ R T~ S CRE—
N~ T S TGN
- - =
N N — L O
N - T R

6 2
6 2
6 2
6 2
0 2
4 0

2R= {x072<x042<x038<w012<x03l<x05!<x052} ’
[ Il Il Il [
1 2 8 4 5 6 T7---rank order

in maximizing the value of @ in (M’). Thus

O O O, 0, 0, O O,
O (0 4 4 6 4 4 4
0|2 0 6 6 4 4 6
O, (2 0 0 6 4 4 6
(M)=0,{0 0 0 0 4 4 4
012 2 2 2 0 4 6
o2 2 2 2 2 0 6
O '2 0 0 2 0 0 O

‘R= {“f'o,s Ly < gy <L p3 < Loga < Lgga < wo‘z} .
Il [l I Il Il Il il
1 2 3 4 5 6 7 .-+ rank order

We have (°D(2)) by *R.
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(M")=(M)—n(°D(2)), m=4.

Then
07 04 03 01 0: 05 06

o(0 0 0 2 0 0 O
o112 0 2 2 0 0 2
o2 0 0 2 0 0 2
MHy=0,{0 0 0 0 0 0 O
o2 2 2 2 0 0 2
o112 2 2 2 2 0 2
o\2 0 0 2 0 0 O

Change the order and we have

SR= {2053 < @053 < Togs < Logs < Togs < Tos < Lops} »
T (| H |
1 2 3 4 5 6 7 ... rank order

(‘M) and (°D(3)) by ‘R,

o 0, O, O, O O, O,
Os 1
0;
O,
0,
0.
0,
0, \0 0 0

Then M"'=M®=(M)—n°D(8))=0 for n,=2. Thus the process finishes.
We have S=3. In this case, the solution is unique except for the change
of name of axes. Fig. 3 shows the constellation of objects in three-
dimensional space, scale of which is given by rank order.

o O O o o O
O OO
[T O O T I Y
L T S S SV

1
1
0
0
0
0

O O O b ik e e

0
0
0
0
0
0

0 0
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m
7 P,
6
5t Rank 4 4 2
order | ¢ |\ | g
4
3 P, 1 O Oy Os
. Ps 2 (o) Oy Os
P, 2
Pz 3 03 03 04
11 (2 3 4 5 6 7
/‘ I 4 Os 0, O3
2y 5 0 02| O
4 2 6
W/
' / 6 O Os Oy
4
5 { / Ps 7 O | Os | O1
6 0

Fig. 3. Constellation of the objects

4, Solution to the model, (2)

There are some cases where we can not obtain any solution of our
deterministic model A by using the data given by the method in section
3. It may be rather necessary to develop another new model, however,
it is also useful to make the solution of our model in probabilistic treat-
ment. In this case, we adopt the stochastic model (model B) for T'=1
instead of model A as mentioned at the end of section 2, which includes
the simplified model for T'#1, and in some practical problems, we re-
quire the solution by the idea of the least square method. When N(N—
1)/2>SN—1, the least square method is of course available. The follow-
ing procedure will be desirable :

1. First step:

Estimate S' and d;,(s)’s (¢, =1, -+, N; s=1, ---, S) as a first ap-
proximation by the method mentioned in section 3.

2. Second step:

Determine integer n, (n,=1; s=1, -.-, S) by the idea of the least
square method, that is, determine integer =, (s=1, ---, S) so as to min-
imize iZj (m; f—ZSJ 0:,(8)n,)'=Q* (or iZj(mi ,—Zc} g 0:5(8)n,w;;)*) under the con-

: i<y

i<J
dition X} n,=n, n,=1.
8




MULTIDIMENSIONAL QUANTIFICATION OF THE DATA 245

3. Third step:

Calculate the value @* by obtained integers n, (s=1, - --, S) and change
the first approximation.

4. Fourth step:

Estimate S*and 6,4(s) (=1, ---, N; s=1, ---, S) (second approxima-
tion) by using @ calculated.

5. And so on. Repeat the process until we obtain small value of
@, taking into account the decreasing behaviour of Q' (whether @Q* gets
to a constant of small magnitude or not).
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CORRECTIONS TO

“ MULTIDIMENSIONAL QUANTIFICATION OF THE DATA
OBTAINED BY THE METHOD OF
PAIRED COMPARISON”

CHIKIO HAYASHI

In the above titled article (this Annals 16 (1964) 231-245) the fol-
lowing corrections should be made.

(i) On page 232, line 4 from bottom, replace

“the II-dimensional” by “the two-dimensional ”.
(ii) On page 241, line 5 from bottom, replace

“is 10, but” by “is 10 and O,> 0O, is 6, but”.
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