ON THE USE OF SOME EXTRANEOUS INFORMATION IN THE
ESTIMATION OF THE COEFFICIENTS OF REGRESSION

Yukio Suzuki*

1. Introduction and summary

In this paper, we treat the estimation of regression coefficients,
using the extraneous or prior information in addition to the sample
information. A similar problem was discussed by Raiffa and Schlaifer
[1] and, recently, by Theil [2]. However, their approaches are different.
Raiffa and Schlaifer [1] based their discussion on Bayes theorem, whereas
Theil [2] applied the generalized least squares method to his problem.
Strictly speaking, Theil is concerned mainly with the special regression
model which was not treated by Raiffa and Schlaifer. From the Baysian
point of view, we wish to discuss the special, but useful regression model
which Theil considered of. Special interest will be the case where the
prior information is given only for a subset of regression coefficients.
In other words, this is the case where only partial prior information is
available. Further, when the precision of the regression model which
supplies the sample information is unknown, our problem becomes com-
plicated. We will give the exact form of the posterior expected values
of regression coefficients, though it is neither manageable nor practical.
Then, an approximation and its bias are derived from it.

2. Statement of the problem

The estimation of regression coefficients which is based on some ex-
traneous information as well as the sample information may be considered
to be special, but it occurrs in the field of econometric analysis. Also,
it has some application in theoretical statistics which is not treated here.
For example, when an estimate of the income elasticity of the demand
of the goods in question is given extraneously, it seems reasonable to
use this information for the estimation of the elasticities (parameters)
in the demand equation with which we are concerned. Usually, the ex-
traneous information will arise from the budget investigations, namely,
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the cross-section survey.
Let us assume that the data-generating process of the regression
model is

2.1) Y=xlp+E®

where t is a discrete parameter and
%, =(%u, e, **+, %) . pPredetermined variables,
B'=(By, B + s Bp): regression coefficients.

We assume that &, follows a normal distribution N(0, ¢?) for all £, and &,
and &, are mutually independent if t+#¢’. Let a sample of size % be observed
and denote it by (v, «)) (t=1,2, ---, n) or simply by (y, X), where
¥'=(, -+, ¥,) and X is a matrix of which the ith row is z, (i=1, 2,
.-+, n). The observed value (y, X) can be regarded as obtained from
the following model :

(2.2) J=Xp+3

where &'=(¢,, &, +-+, €,). Now let us consider the partition of g: §'=
(8., B,), where B, and B, are r and p—r dimensional, respectively. Corre-
sponding to this partition of 8, X is partitioned, say (X, X;). Therefore,
X, is made up of the first » columns of X and X; the remaining p—7r
columns of X. Thus, (2.2) becomes

(2-3) 17=)(1&+X,ﬁ,—l—§ .

Suppose that B, is accurately known extraneously. Then, 8; will be esti-
mated from the renewed regression model 7—X;8,=X,5:+¢. This is an
extreme case. On the other hand, if we have no prior information about
B and B, the ordinary method of estimation of B is applicable to the
model (2.2). This is the other extreme case. In this paper we will con-
sider the intermediate of these two extreme cases. More precisely, we
are going to discuss about the situation where we have some prior (or
extraneous) information on B, for some r (1<r<p), but no prior infor-
mation is available on §;.

When we talk about prior information, we might as well ask about
its sources. Of course, different sources of supply of prior information
are possible, depending on the relevant situations. However, in the se-
quel, we restrict ourselves to a special source of supply of the prior
information, which will be described in the next section. _

In order to combine the prior and the sample information, we take

*)  The tilde “ ~ " on y, and ¢, means that %, and %, are random variables.
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the Baysian approach. Although we have no prior information on B,
it is convenient to introduce an artificial prior information on B, for the
use of Bayes theorem and then eliminate it from the posterior distribu-
tion by considering an appropriate limiting distribution.

3. Prior distribution of 8

We assume that the prior information on B, is given in the form of
the observed values on the following data-generating process:

(3.1) ﬁi=’w§ﬁ1+;)¢ ('l:=1, 2, ceey, m)

where w,=(wy, Wi, -+, w;;) and % are independently and identically
distributed according to the normal distribution N(0, ¢?) (1=1, 2, ---, m).
Further, the observed values {u,, w}}(i=1, 2, ---, m) are written as (u,
W), where w'=(uy, uy, +++, Un), W'=(w,, wy, -+, w,) and so (u, W) is
regarded as a realized matrix of the random matrix (%, W) which is
constrained by the following equation:

(3.2) a=Wp+7

where =, 7, *++, 7a). Clearly, the sufficient statistic with respect
to B, is (b, M), where b, is the solution of the normal equation, that is,

3.3) b=M"'Wu, M=W'W

under the assumption | M |#0.

The distribution of 5,=M “'W'a is Gaussian with the mean vector g,
and the variance matrix M~'¢’. Now, let us denote the density function
of the p-dimensional normal distribution with the mean vector z and
the variance matrix 3} by f®(x|g, 33). Then, the density function of
b, is written as f(b, | B, M~'dY).

When the (u, W) is observed and, therefore, the sufficient statistic
(b,, M) is obtained, it seems natural for us to think that the most suit-
able prior probability measure to be assigned on B, is the probability
measure with the density function f™(B,|b, M's}). Further, we as-
sume the prior probability measure of §; to be the normal distribution
S (8,10, Is"), where, without loss of generality, the mean vector can
be regarded as the zero vector 0 of p—r dimensions and I is the unit

matrix of order p—r. We assume that the two random vectors ,§1 and
B are mutually independent with respect to the prior probability distri-
bution of 5. Hence, the joint density function of l§1 and E, is
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B4 ORI, M0, B)=rs| (5) (M L)
=p/(8).

Now, the situation where no prior information about g, is available cor-
responds to the extreme case where ¢ tends to infinity. Therefore,
after the necessary procedures are conducted, we will make ¢ go to in-
finity.

4. The posterior distribution of 8 when o, is known

When we have an observed value (y, X) in the model (2.2), the
sufficient statistic of 8 is (b, N) which is obtained by

(4.1) b=N-'Xy, N=X'X

where we assume that N is nonsingular and ¢! in the model (2.2) is

known. Since the distribution of 5=N-X7 is normal with the density
function :

(4.2) FP0®1B, N7a)=pb|h),

the posterior density function of B with respect to p/(8), denoted by
/(B b), is obtained by Bayes theorem, that is, ,

(4.3) /(8 |b)=p(b | B)piB)/ S (b | PPi(B)dB .
By (3.4), (4.2) and (4.3), we have

(4.9) p!/(B|b)=fP[B|a, (No7’+Q)7'],
where

a®=(No*+Q,)™ [a,"N b+ (0; ’1(‘)1 b§1>>]

(4.5) =b+ o) [ (T A7)~ ]
Q= (M‘(’)”—z o) -
Now, let us consider the limiting case: 1»1*13 P/ (B|b)=p%(8|b), then
(4.6) 2/ (B10)=,P[B|a, (No7"+Qx)7']
where

4.7) a“=(No;*+Q..)™* [a:’ Nb+ (a,,—ﬂ ]‘Olbgl))]
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=b+ (N +Qu) (7 M=)

_(Mas;* O
Q=" 0-1)
where b’'=(b], b;) and b, consists of the first » components of . Further,

let us partition N as follows: N= (%: %::) , where N,;, Ny, N;; and N,; are

rxr, rX(p—7r), (p—r)xXr and (p—7r)X(p—7r), respectively. Then, as
easily seen, we have

_ i R — RN, ,N;!
@8 (Ne'+Q.) ‘”(—N;NuR-* (Nt NN y1)

where R=N}o;?+ Mo;? and N¥=N,;,— N N3'N,,. Therefore, (4.7) is writ-
ten as follows:

(4.9) A =b+ (_ Ngl—\f,l R_l)a,,"M(bﬁ‘)—-bl) .

Thus we have
(4.10) (
@ =bi+ o, ROMGP—b) =bi+ (N8 2+ M) MOO—b)

a§”=b,— 0 NG Nu B MO0 —b) =by— Na' N N2+ M) ME—b) .

a:

Clearly, we can see that a®—b when g,—>c0, and a®>—>b when b —b,.

Further, if -Z=>1, a®=b" and ai™ =b,— N;' N, (bi°—b,). Having ob-
o’ﬂ

tained the posterior distribution of 8, we can take a®™> as an estimate

of B8 which is unbiased, of minimum variance and of maximum likelihood

in the sense of the posterior distribution.

5. The case where o, is unknown

Theil [2] treated the estimation of 8 when ¢, is unknown, the test
of the compativility of prior and sample information, and also the shares
of prior and sample information in the posterior precision. Concerning

the estimation of 8, he introduced f-estimate ﬁ,, which corresponds to
a® in (4.5) or a in (4.7) with f in the place of ¢;%. Let ﬁi,, be the
f-estimate of which the suffix ¢ equals ;2. In other words, §, is the
estimate of 5 obtained in section 4 when o7 is known. Theil shows that,

if o—f=0(m"?), B,=B,4+0(n""), where n is the sample size. Since B,
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is unbiased, ,B ; is asymptotically unbiased, if ¢—f=0(n""?). An obvious

. . 1 _ n—p
choise of f is XX X)Xy
gous results by employing Baysian approach. First of all, the prior infor-
mation is supplied by the observed value (u, W) of the regression model
(3.2). However, it must be noted that this prior information gives us
no information about the unknown ¢?. As far as our problem is concerned,
only the sample information about ¢? is available to us.

The following is the presentation of sample likelihood and the poste-
rior distribution of f which is obtained by the combination of the prior
and sample informations. When the precision h=0;% of the regression
model (2.2) is unknown, the sufficient statistic of g and & is (b, v, N, v)

for the observed value (y, X), where n=v+p, v.—-—l—(y—Xb)’(y——Xb),
v

Now, we will derive analo-

p=rank (X), b=N"'X"y and N=X'X. As a matter of fact, the sample
likelihood function, say p(b, v |8, h), is

(5.1) p(b, v I ﬁ’ h) —_ (2”)—7;/2' N 11/23—(1/2)h(b—ﬁ)’N(b—ﬁ)hp/ze—(lﬂ)hvvhu/ﬁ .

Since the prior distribution of 8 is normal with the mean vector (g‘)

and the variance matrix @, for an arbitrary positive ¢ as section 4, we
have

: a7 o)
62 pE= Mo —Ls- ()] e[s-(%)]} -
2
Therefore, the posterior density function p)(8, h|b, v) of g and h is ob-

tained by Bayes theorem, that is

(5.3) (8, b |b, v) = ——PLEPD, V1B, b)
[ an o @m0, v 15, B8

where E® is the p-dimensional Euclidean space. From (5.1) and (5.2),
we have .

DUADO, v |8, k)= (@) @*"| N | M| Vo0~

1 ’ _
64 cexp {— T 6-bQ0 o)

rexp {—L(8-a”y@+hN)(E—a)}

- h*? exp { — -—;—(hvv — K,)}
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where K,=(b-b*'Q.(Q,+kN)"'Q,(b—b*), b¥=(b{"", 0): p-dimensional.
For the simplicity, let us denote

PBW0, 01, W=C@n) ™" exp {—-L(B—a)(@+hN)(—a)]

(5.5)
-h™* exp {——%—(hw——K,)} ,

where C=(27)~"3| N [/* | M["’s-""~? exp {——;—(b—b*)'Q,(b—b*)} .
On the other hand, we have
[ an| omi®p, 015, h)dp

=C[ [m" exp [~ L (bo—K)}1Q.+ 1N |-2r) | QAN
(5.6) ° 2

. S £ XD l - -%—(,B —a®)(Q.+hN)(8 —-a(”))} dﬂ]dh
_ CS: |Q.+hN [k exp { _ —%—(hw — K,,)} dh

Hence,

(6.7 (8, h|b, v)

@) " exp | - (3—a®Y @ +RN)(F—a) " exp [~ (- 1K)

Sml Q.-+hN ["*h* exp {——;—(hvv —K,)} dh
0

When o—>00, we obtain p”(ﬂ, h |b, v) by replacing @, and a“ in (5.7) re-
spectively by Q. and a®™, where Qo,—llmQ and a‘“)—hm a®,

When the loss function of our estimation problem is quadratlc, the
optimal estimate of B8 will be the mean of the posterior distribution of

B. Let us denote it by E”ﬁ@, that is,

Ego— SSﬂp,','(ﬁ, h |b, v)ddh .
Using (5.7), we have

0 1QHRN [k exp {—L (oK)}
(5.8) E'Bo=

[, 1@+RNI 1 exp {— L o— 1) dh
0
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Since a“>=b—(Q,+hN)'Q,(b—b*), we obtain

A
*Q.(b—b%),
Q. Q.(b—b%)

(5.9) . Efo=b—

where

A= Q+RN)Q+AN|~h-exp |~ (hwo—K.)|dh

(5.10)
d,= So |Q, 4k N|~"*h="" exp { ——;—(hw—K,)} dh .

For the limiting case, that is, when ¢—>oc0, we have

6.11) E"f=b— ‘3‘” Q.(b—b%),

where A.=lim A, and d.=limd, .

g— 00

Since Q. is non-negative definite and N is positive definite, there
exists a nonsingular matrix F' such that

(5.12) F'NF=I and F'Q.F=D

where I is the identity matrix of order » and D is a diagonal matrix
with diagonal elements 4, (¢=1, 2, ---, p). Therefore,

F'(Q.+hN)F=D+hl, F(Q.+hN)™(F~)y=(D+hI)™
and

|Qu+AN|~'=| F|| D+RI|= | F'| =|F|* T] Q)
Furthermore, we have
K.=lim K,=(b—b*'Qu(Q~+1N)"Q.(b—b*)
=0b—-b'Q.F(D+hI)"'F'Q.(b—b*)
=33 A+ )
where p'=(py, p3, *+**, pp) 18 deﬁnéd by p=F"Q.(b—b*). Hence, we have

A= S”F(D+ hIyF | F| {ﬁ, 2 +h)-1/2} B

(5.13) . exp {—_th— ps pz(zi+h')-l)}dh
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dm=S:| F {f[ (zt+h)-w} h*exp {—%(hw— élpf(lg-l-h)”} dh
and

(5.14) E'B=b—FGF'Q.(b—b*),
where G is a diagonal matrix: G=(g:;) (,3j=1,2, .-, p),
(5.15)

S:(zi+h)“‘ {E[l (z,+h)-1/=} K exp {—%(hw— é (A +h)! )}dh

" §, [T Gt exp { oo~ it my]dh

gu:O if 'l:¢j.

(N.B.) In (5.12), we can assume without loss of generality that 2,>0
for +=1,2, ---, r and 4,=0 for i=r+1, ---, p, where r=rank of M.
Then, it follows that p,=0 for i=r+1, .-, p. For, p=F'Q..(b—b*)=
DF-(b—b*).

Let us denote gﬁ=(2,-+—?1)—)_l+t,- and

(5.16) t,=
0

[ [ i—eto ) [{ S acn v exp [ L guo—si+ry))dn

[[ (Bt b exp { (o — Sei(a+) ) dh
(i=1! 2; tt Y p)'

Then, we have

(5.17) G=D+vD)'+T

where T is a diagonal matrix with the ith diagonal element ¢, (=1,

2, +++, p). Noticing that F(D+v'I)*F'=(Q.+v"'N)™*, we obtain

(5.18) E”ﬁ:b—(Qw+'v‘1N)“Qm(b——b*)—FTF’Qw(b—b*)
=b—(Q.+v'N)'Q.(b—b¥)—FTp.

As easily seen, b—(Q.+v"'N)~'Q..(b—b*) is the same as a® in (4.7) or

(4.9) if 4% is replaced by v, so let us denote it by a{>. The formula
(5.18) tells us that, when we use a{™ as an estimate of 8, the bias is
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—FTp. However, it is difficult to obtain the exact values of ¢;, diagonal
elements of T. Therefore, in the next section, we will give inequalities

to evaluate the size of the bias of a{™ from E"B.

6. Evaluation of the bias of af from E”B

Since Pi=0 if ’l:>”', we have (T‘o)!=(tlplr taPn Tty trpn Ov Tty 0)'
Let us denote the ith column vector of F’ by f, (1=1,2, ---, p). Fur-
ther, let f? be the column vector which consists of the first » elements

of fi’ and let (tlplv tsz; M) trPr)=T', and let (Pn O3 * Pr)=P°-
Then,
(6.1) [FTeli=(f 1), ('&:1’ 2, .-+, p).¥

Therefore, we have the following inequalities:

[LFTel:| =](f1, 1]
< FAl7ll (Schwartz’ inequality)

(6.2) = {max|t ATl

(6.3) = (max[t|HIAl lell  G=L2, -, p).
Since N'=FF", we have

(6.4 fill= Vd(N") (=12, -, p)

where d,(N!) stands for the ith element on the main diagonal of N,
Further, as p=F"Q.(b—b*), we have
Hol|*=(0—b*QFF'Q..(b—b*)
(6.5) =0b—b0*)'Q.N'Q.(b—b¥)
=b—-b"Y MNEMb—b)s;*
where NX=N, —N,Nz'N,,. Hence, we have
(6.6) [[E"f—as”L|< {max 2} [@(N)]V'[(b, —b{°) MN 5 M(b, —b{°)] a7 .

Now, let us go to the evaluation of |t.| (1=<k<7r). Let us consider the
probability density function f(%) which is defined as follows:

h(r+v)/2]j'Jl (A+h)™"* exp {———;——(}Wv —gpf(lt +h)'l)}
6.7 f=

[ BT Qe by exp { = (o — 5 i) ) dh

n 1/
*  For a vector &’ = (&1, X1, ***, Zn), we define [z}i=x; and ||z H=( _Z}l.m’) .
1=
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From (5.16), if h is a random variable with the density function f (R),
t. is expressed as follows:

te=E[(Ac+h) " —(Ae+v)]
=(A+v ) E[w —k)(A+R)] .
By Schwartz’ inequality, we have
(6.8) 2 S(Ae+v ) B —hYEQR,+h).

Since 2,>0 if 1<k<r, the following inequalities hold; E(%+h)?<4;* (k=
1,2, ---,r). Thus, we have

(6.9) ti<@e+av ) Eh—v) (k=1,2, ---, 7).

Now, let us evaluate E’(ﬁ—v“)’. For the sake of simplicity let us define
I, I, and I, as follows:

I= S "R K(h)dh
(6.10)
Il= Swh(""")/’“K(h)dh , I,= Swh("+')/2+2K(h)dh ,
0 ]
where  K(h)=exp [—-;—(hw+2: log (+h)— 3" p§(2¢+h)")] .
Then we have
(6.11) Eh=1IJI, Eh=I/I.

Now, employing integration by parts, we have

__ L o YA+ Y
(6.12) =2 Soh K'(h)dh .

By performing integration by parts once again, we get

4 oo
6.13 I= hC+33 K1 (h)dh .
(6.13) +r+2)v+r+4) So (k

From the definition of K(h),

(6.14) K’(h)=K(h)[—%(w+é AR+ 3 p?(z,-+h)-=)]_
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? — 1 [ T -1 ” 2 -2 ?

(6.15) K’(h)_.K(h)[—?(w+zl‘,(2i+h) +3 pia+h) )]

1z -2 LA -3
+KO) (L3 e hy 4 5 oY)

2 1 1

From (6.14) we obtain the following inequality :

(6.16) — K0 <5 K(Wov+3) &'+ 33 6i45)

From (6.15) we have

(6.17) K"(h)> %K(h)v’u’ .

Therefore, from (6.10), (6.12) and (6.13) we have

(6.18) vy L<I< 3+ S
' v+r+2)p+r+4) v+r+2

1 e

That is, we have

ER)=L/I > »+7+2
w3 (A7 4 o5
(6.19) D (@ eid)

E(ﬁ’):I,II< v+r+2)(v+r+4) )

vt

Consequently, we have the following inequality :

_ 1 2D W ed) 203 (4 )
(6.20) E(h—'v“)’<?{ E + -
VS W ed) 2 VIS (A plA)

+ (r+2)s'r+4) }

For the sake of simplicity, let us denote the right-hand side of the above
inequality by q¢'(v, 7, v, 4, p); then, from (6.6), (6.9) and (6.20), we obtain
6.21) |[E"B—a$)| < {max (’+257) 7} W, 1, v, 4, P)A(NT))™
15 r
- [(bs—b’Y MNEM(b,—b{)]*a;* (1=1,2, ---, D).

That is, (6.21) gives an upper bound for the bias of the estimator a{™.
Now, let us consider the order of the bias when the sample size
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increases. Obviously, q(v, 7, v, 4, p)=0(@""?) from (6.20). As lim,'X’X
is a moment matrix, we assume here that it is positive definite, Under
this assumption, we have the following results:

(i) Each component of N=X'X is O(v)

(ii)) Each component of N~ is O(v7).
Therefore, we have

(d(N7H))2=0(""")
Each component of N¥=0(7").
From (6.21), we finally have
[E"F—ak=06"") (=12, -+, ).

This is more accurate than Theil’s evaluation. It is naturally expected
because we restricted the model by the assumption of normality of dis-
tribution.
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