ESTIMATION OF THE MODE*

HERMAN CHERNOFF

1. Introduction

The problems of estimating the density and the mode of a distribu-
tion are rather delicate and this delicacy is related to the fact that the
density may be changed considerably over a short range without affect-
ing the probability distribution substantially. On the other hand cer-
tain functions of the probability distribution which are related to the
density are relatively easy to estimate. The key to the approach used
by Rosenblatt, Whittle, and Parzen (see [2], [4], [5]) is that if K(x) is a
well behaved “kernel” function,

(1) o(0)=| K(@—1)aF )

is not sensitive to small changes in the probability distribution F.
Note that if K(x) is a probability density function, g(x) represents the
density of a “smoothened ” version of F. Then, if F has a continuous
density f(x),

1

1.2) g,(x)=S —EK< “;y)dr«'(y) - f(®) as 650,

and the problem of estimating g(x) or g,(x) is related to that of esti-
mating the density f(z).

It seems natural to define %, the mode with respect to a bounded
measurable function K(x), as the value of # which maximizes g(x). It
is natural to estimate Z by the analogous function of the sample c.d.f.
F,, i.e., by &, the value of  which maximizes

3) he)=| K@e—9)dF)

or by #,,, which maximizes
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(1.4) @)= | 3K (2L )am ) .

The estimate # may be called the analogue estimate of the mode with
respect to K.
In [2] Parzen has stated conditions under which h;, gives consistent

and asymptotically normal estimates of f(x) and under which &;, gives

consistent and asymptotically normal estimates of the mode of the dis-
tribution. The latter results do mot apply to the naive estimator of
the mode which is the center of that interval of length 2a¢ which con-
tains the most observations. This estimator is of course the analogue
estimate of the mode with respect to the kernel K,(x)=1/2a for |z|<a
and 0 elsewhere.

This paper deals mainly with the application of the heat equation
and Wiener-Lévy process to the derivation of the asymptotic distribu-
tion of the naive estimator. As a preliminary we informally outline a
variation of Parzen’s proof of the asymptotic normality of z under
smoothness conditions on K(x).

2. Asymptotic normality of the analogue estimate of the mode,
under regularity conditions

We assume that Z is uniquely defined and that f and K are such
that g(x) has a negative second derivative -¢ at xz=%. This is the
case if K, K’ and K" are bounded which we shall also assume. Then

2.1) 0=g'(x)= S K'(@—y)dF (y)=E{K'(Z—X)}
while
(2.2) —e=g"(x)= S K"(@—y)dF (y)=E{K"(Z—X)}.
The estimator & based on = independent observations X;, X;, - - -, X,
maximizes

@9  H@)-H@=|[K@—y)—K@E-IdF.e)—dF @)
+| (K@—y-KG@-11are)
~ @-3) | K'G—1)[dF,) —~dF Q)] — 5~y
and

(2.4) E—=c S K'@—y)dF.(y)—dF (y)]=c“% > K'G-X).

i=1
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With some care one can apply the above outline to prove rigorously
that

(2.5) L[V 1 (&—7)] - RO, ¢*)
where

_ EUK'G—X)1)
E'[K"E—X)]

(2.6)

and where £ represents distribution law while N(g, 0%) represents the
normal distribution with mean ¢ and variance o!. The study of #, with

0,—>0 as m > oo, is a bit more delicate, but is also amenable to this
treatment.

3. The naive estimator

If K,x)=1/2a for |z|<a and 0 for |x|>a, K'(x) is undefined at
2==+a and the conditions of Parzen’s results fail to apply. In this case
we shall assume that the density exists and is continuously differentiable.
Furthermore we assume that %, the mode with respect to K, and &,
the true mode are uniquely defined.

For the time being we bypass consistency considerations and assume
whatever conditions are required to assure that #, is a consistent esti-
mator of #,. Incidentally, the naive estimator is not uniquely defined.
Typically there are one or several intervals, any point of which is the
center of an interval of length 2a¢ which contains a maximal number of
observations. While one could modify the definition to make the esti-
mate unique, this will not be necessary, since these intervals typically
all lie within a range which is small compared to the natural variabili-
ty of Z,.

In this section we shall indicate heuristically how the asymptotic
distribution of the naive estimator is related to the distribution of 2
which maximizes Z(z)—z' where Z(z) is a two-sided Wiener-Lévy pro-
cess (Gaussian process with independent increments) through the origin
with mean 0 and variance one per unit z.

First we note that for %, to be the mode with respect to K, it is
necessary that #, maximize F'(x+a)— F(x—a) and hence that

(3.1) S @ta)=f(Z.—a).
The naive estimator #, maximizes h(x) and hence maximizes

hx)— @) =[F(x+a)— F(z—a)]—[F.(%,+a)— F,(%,—a)] .
But

(3.2) h(x)—h(Z)=n""Y,+u
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where

(3.3) Y, ={[Fuz+a)—F(@+a)]—[FuZ.+a)—F@.+a)]}
—{[Fuz—a)—F(v—a)]—[Fu(#.—a)— F (Z.—a)]}

and

(3.4 u=[F(z+a)—F(&.+a)]-[Flz—a)— F(#&—a)] .
For small y=2—%,

3.5) u=— 2 ey lL+o(1)]

with

(3.6) c=f"Z.—a)—f'(Z.+a).

For y=0, y small compared to @ and large compared to n~!, n?Y,
represents the deviation from expectation of the number of observations
between %,+ae and %,+a-+y minus the number of observations between
Z,—a and Z,—a+y. The numbers of observations in these small non-
overlapping intervals are approximately uncorrelated, and approximately
normally distributed with mean 0 and variance nyf (%,+a)=nyf (%.—a).
For y*>y, n'*[Y.(y*)— Y.(%)] is the deviation from expectation of the
number of observations between %,+a+y and %,+a-+»* minus the num-
ber between #,—a+y and %,—a+y*. Thus Y,(y) is approximately a
Gaussian process with independent increments, mean 0 and variance
2f(Z.+a) per unit y. This heuristic argument also applies for y<0
making plausible the claim that Y, behaves asymptotically like a two-
sided Wiener-Lévy process Y and that §=%,—%, is asymptotically distri-
buted like the value of ¥y which maximizes

3.7 'n“/’Y(y)—%cy2 .
Let
(3.8) y=rz,
(3.9) Y)=[2f @.+a)r]"Z (),
and
p s
(3.10) r=[ 2G40 |7,

Then 2=7"'y maximizes
(3.11) Z(z)—2

where Z is a two-sided Wiener-Lévy process with mean 0 and variance
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one per unit 2. This maximum occurs with probability one for z finite
and thus 2=0,(1) and

(3.12) V=%.—%,=0,(n""")

In section 4 we derive an expression for the probability distribu-
tion of 2. It follows that this is the limiting distribution of

(#.—%.)
[ 8f (#.+a) ]"’

net

(3.13)

as n— oo,

4. Distribution of 2

In this section we relate the distribution of 2 which maximizes
Z(2)—2* to a solution of the heat equation. First let us define

4.1) u(x, t)=P{Z(2)>2* for some z>t|Z(t)=x},

where Z(t) is a Wiener-Lévy process for z>t originating at Z(t)=x.
Then, for z<#,

w(@, t)=E{u(@+ev h , t+h)} +o(h) as h—>0,
where ¢ is normally distributed with mean 0 and variance 1. The usual

expansion argument yields

(4.2a) — U =U; for x<¢?

2

subject to the “ boundary ” conditions

(4.2b) u(z, t)=1 for x>t
and
(4.2¢) u(x,t) >0 for x> — .,
Now let
(4.3) Hv(m)=P{£r51?s)§ Z()=m|Z(0)=0, Z1)=v}.

Given Z(t)=x and Z(t+h)=z+ev h, the maximum value of Z(z)—z*

over the range t<z<t+h is —t'+2+M+h +O0(h) where M has the dis-
tribution H(m). Given x, M, and ¢, the probability that Z(z)—z'>—t!

+2+M+v'h +0(h) for some z>t+h is the conditional probability that

Z(2)+t'—x— M~k +0(h)>2* for some z>t+h
given '
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Z(t+h)+t—z—MvVh +0(R)=t'+(c—M) vk +O(k) .
This probability is

(4.4) Pr=u[t'+(e—M) ¥ h +O(h), t+h].

Since e —M <0 with probability one, the arguments of the above ex-
pression lie in the domain where the heat equation holds, (for & small
enough) and we may expand in terms of the boundary derivatives of
the heat equation. Thus,

(4.5) Pr=u(@, )+ (e—M) Vh u,(t?, t)+O(h) .

Note that P* represents the conditional probability that the maxi-
mum of Z(z)—z' over the range z>t is attained for z>t-+h, given
Z(t)==x, Z(t+h)=z+ev'h , and M. By symmetry, the conditional prob-
ability that the maximum of Z(z)—z' over the range z<t+h is attain-
ed for z<t given x, ¢, and M is

(4.6) P-=u(t}, —t)—M v h u,(t’, —t)+O(h).

Since increments are independent it follows that the conditional prob-
ability, given z, ¢, and M, that 2 is between ¢ and t+h is

(4.7) P=M{(e— M)hu,(t}, t)u.(t’, —t)+o(h) .
It follows that the density of 2 is

(4.8) F*(@)=Ka(z)a(—2)

where

(4.9) a(2)=u.(2', 2)

and

(4.10) K=E{M(c—M)) =[2 S: a(z)a(—z)dzil_l .

The standard reflection argument gives
P{M >m}=2[1—0(m)]
where @ is the normal c.d.f., and
E{M*}=1.
For «*>0,
LM |e=e*)=Q(M +e*|e= —¢e*) .
Hence
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1l a1
E(eM)= > E ()= 5
and
1
K——z-.
We have proved

THEOREM 1. The probability density function of %, that value of z
which maximizes Z(z)—2* where Z is a two-sided Wiener-Lévy process
with mean 0 and variance 1 per unit z is given in terms of the solu-
tion of the heat equation (1) by

(4.11) f¥*r)= —é— U2, 2)us(2*, —2) .

5. Miscellaneous remarks

This section is devoted to the discussion of the rigorous proofs by-
passed in section 8 and to some miscellaneous remarks.

THEOREM 1. The estimator %, is a consistent estimator of Z,.

PROOF. Let
(5.1) Po=F (&, +0a)—F(%,—a) .
Given 6>0, there is a A(a, 6)>0 such that
(5.2) - il%ﬂ ;5P{x—a§X Sz+a}=p.[1+34(a, 6)]"'<p,.

Select uy=—oco<u;<uy< -+ <uUy_; <uUy=oc0 so that Plu,=X=<u,,}=
P./r=M"', where r is a real number large enough so that there is an
integer m for which m/r<(1+22)~" but (m—2)/r>(1+32)". For every
point z outside (¥,—d, #,+0), the interval (x—a, x+a) is a subinterval
of at least one (u;, u;;n) each of which has probability less than 1+
22)7'p,.

With probability approaching one the interval (%,—a, %,+a) contains
more than np,(1+2)~! observations. Thus to prove consistency it suf-
fices to show that as n — oo,

(5.3) Mi‘,mP{(ui, Uiym) contains more than np,(1+42)~! observations} — 0.
i=0
Since each of the intervals (u;, u:,») has probability p,(1 +22)7%, the re-

sult follows.
The case where a=a,—> 0 as n — o requires an extension of this
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argument based on the following lemma.

LEMMA 1. If X has a binomial distribution with parameters n and
p and €>0,

(5.4) P{X>(1+e)mp} < exp {—np[l+et+d—e]} .
PROOF. In general P{X >a}=<E{exp [t(X—a)]} for t>0. Hence
P{X>1+e)np} <[pe'+(1—p)I" exp [—t(1+€)np] for t>0.

Let {=¢ and using the fact that log (1+x)<x, we have
P{X>(1+e)np} <exp {n[p(e—1)—e(1+€)p]}
from which the lemma follows.

THEOREM 2. If f(x) is bounded away from f(Z,) outside every
neighborhood of %,, a,— 0, and ma,+kloga, — oo for every k>0, then
%., 18 a consistent estimator of Z,.

PROOF. We refer to the detailed proof above for fixed a. Under
our assumptions, for fixed 6>0, 4=4(a,, 6) is bounded away from zero
as a,—> 0 and pa,=~f(%)a,. Then the appropriate » and m can be
selected so that they are bounded and M =O(a;!). Selecting an ¢ so
that 14+e<(1+22)/(1+2) and 1+e+e—e=2%>0, lemma 1 yields the fact
that the sum in (5.3) is less than Mexp [—np,, 7/(1+24)]=0(1) accord-
ing to our assumption. That (%—a., %+a,) contains more than np,, (1

+2)7! observations with probability approaching one is also easily seen.
The consistency follows. '

The reduction of the asymptotic distribution of &,—%, to that of 2
in section 4 involves a theorem which states that if (i) the distribution
of W, converges to the distribution of W and (ii) g(W) is a function
whose set of discontinuities has probability zero with respect to the
distribution of W, then the distribution of g(W,) converges to that of
g(W). In our application W, is a stochastic process related to Z and
Y. of section 3,

(5.5) W (z)=Z(2)—-2'

where Z is the two-sided Wiener-Lévy process of section 4, and g(W)
is that value of z for which W is maximized.

To determine continuity of g or to discuss convergence of distribu-
tions of stochastic processes, it is necessary to introduce a topology on
the set of W. We use a topology related to that induced by the metric

(5.6) p(W, W¥)=sup [W(z)— W*@2)]1+2)" .
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A bare outline of a proof is presented here. The argument basically
follows that used by Prokhorov (see [3], section 2.4) in illustrating his
results with the Kolmogorov statistic.

First we refer to section 3 to define

(6.7 Z(2)=[2f@+a)r.] Y,

where £=%,+Y==To+7m2, T.=[8f(&.+a)/nc']”*. Then 2,=(&,—%.)/r» max-
imizes

Wo(2)=Za(2) —0(y)7'
where (see equation (3.5))

2u
0(1/)——@,—%1 as y—0.
The fact that 6(y) >0 as |y|—> oo leads to some difficulty which we
avoid by applying the consistency of &, and modifying W,. Let

(5.8) W.X(2)=Z.(2) —6F(2)2
where
0(s») for y>s,
0¥(z)=1 6(—s,)  for y<—s,
o(y) for —s8,ZY<s.

and where {s,} is a sequence of real numbers such that s, — 0, s./r, —>,
and '

P{|&,—%,| >s8.} > 1 as n— oo .

The consistency of #, implies the existence of {s,} and that g(W,) has
the same limiting distribution as that of g(W.*) if the latter is non-
degenerate. Note that

5.9) sup |6¥(z)—1| >0 as n—> oo,

The first main step is to show that the limiting distribution of W3*
is equal to the distribution of W. The second is to establish that g(W)
is continuous on a set of W of probability one.

The heuristic demonstration in section 8 is basically adequate to
show that for every k-tuple (z,2,---,2), the joint distribution of
(W(z)), WX(zy), - - -, W*(2,)) converges to that of (W (), W(zy), -« -, W(z:)).
In addition to this a compactness condition must be satisfied. To make
it easier to refer to results in [3] where the processes studied are re-
stricted to [0, 1] and continuous in the limit, we let
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(5.10) Vi(t)=Z.(2)(1+2Y)"
(5.11) V(t)=Z @)1 +2)"
(5.12) t=2(142")"",

Thus V,(t)—> 0 and V(t) >0 as t—> —1 or 1 while z—> +co. Again,
for every k-tuple t,t,---,t, —1=<t;<1, we have the convergence in
distribution of (V,(t,), V.(t),- -, Va(ti)). Note that the metric (5.6) cor-
responds to maximum deviation in the V functions.

Prokhorov’s illustration is applicable to V, with minor modifications.
Our problem permits some simplification because Z,(0)=V,(0)=0 and
hence it suffices to deal with 0<t<1. Furthermore Z, remains constant
for y=2a (and also for y<—2a). On the other hand our problem is
more complicated in several respects. First Z, is not a Markov process.
Analysis is simplified if we decompose Z, into Z,=Z,"—Z, where

Z; =n"{[Fy@+a)—Fu@F.+a)] - [F(z+a) - F(Z.+a)]}
Z; =n*{[Fy(x—a)—F,(%.,—a)]—[F(z—a)— F (Z.—a)]} .

(5.13)

Then an analysis similar to Prokhorov’s, applied to the Markov process
(Z}, Z7), shows that the distribution of (Z,5, Z,) converges for 2z in
any bounded interval [0, z,], (¢ bounded away from 1). Second, it is
required to account for the neighborhood of z=oco (t=1). To do so, it
suffices to show that

(5.14) P{sup|Vu(t)|ze} >0
t’s1

uniformly in » as t—>1. This may be accomplished by noting that
(Z;)Y —n"*[F(x+a)—F(&,+a)] is a lower semi-martingale, and applying
semi-martingale inequalities to [Z;'(2)/1+2¥2] in the intervals (272,
27t1z), r=1,2,---, (see [1]). In this way we conclude that the limit-
ing distribution of V, is the distribution of V. This result applies with
respect to the topology called d convergence or Skorokhod convergence
[3] on the class of functions with discontinuities of the first kind. This
topology is slightly weaker than that of the metric of maximum devia-
tion. Finally 6X(2)z* is a deterministic continuous function which con-
verges to 2 and W.* converges in distribution to W.

The second major step consists of showing that the set of discon-
tinuities W of the function g has probability zero with respect to the
limiting distribution. With probability one, the two-sided Wiener-Lévy
process yields a continuous realization W(z). It follows that V is con-
tinuous and since Skorokhod convergence to a continuous function V is
equivalent to uniform convergence, it suffices to show that W is a point
of continuity with respect to the p metric (5.6). With probability one,
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(1) Z(2)=0I2|z|log log |z{]'* as |z2] > oo and hence W(z)~—2z!, and (ii)
for 6>0, W(z) is bounded away from its maximum outside (g(W)—e,
g(W)+e). It follows easily that with probability one, W is a point of
continuity of g. This concludes our outlined demonstration.

We conclude our paper with a heuristic discussion of the results of
sections 2 and 8 in the cases where d,— 0 and a,—> 0. Suppose that
the distribution has mode #,=0 with density f(x)=c,+c&*+csx®+o(x®)
for x > 0. If K and f are symmetric %,=2, for ¢ sufficiently small and
there are no bias effects. It is more interesting to consider the case
where K is symmetric but ¢;<0 and ¢;#0. Then, it can be shown that
%;, ~0,. On the other hand, the asymptotic variance of the estimate

is of the order of magnitude of (né*)~'. Taking d,~n~" indicates the
possibility of obtaining an estimator #, such that &,, — 2,=0,(n"*").

A similar analysis can be applied to the naive estimator with a, —0.
Then Z., ~a; and the variance is of the order of n~*‘a,*’. Setting
a.~n""* would give &, — %,=0,(n""").

Finally suppose that f(x) does not have a derivative at the mode.
For example we could have f(x)=c,+cx+o(x) for >0, x — 0 and f(x)
=c,+cifz+o(x) for <0, x —> 0. It seems evident that the approach of
this paper should be applicable to this case.
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