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Summary

The problem of asymptotic approximation is formulated in a general-
ized form, and the basic concepts of asymptotic equivalence of probability
distributions, which are fundamental to the study of asymptotic approxi-
mation problems, are established precisely. For the purpose of practical
applications, some useful criterions for the asymptotic equivalence are
given.

As a special case of asymptotic equivalence, notions of asymptotic
independence are introduced, partly with the aim of application to the
asymptotic approximation problem, or more precisely, to the construction
of asymptotically approximate distributions.

By applying the idea to a problem of asymptotic independence of a
set of elementary coverages, to that of extremes of an ordered sample,
and to that of a set of multinominal variates, new and interesting results
are obtained.
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PART L

BASIC CONCEPTS OF ASYMPTOTIC EQUIVALENCE IN
THE PROBLEM OF ASYMPTOTIC APPROXIMATION

1.1. Problem of asymptotic approximation

As for the comparison of two sequences of probability distributions,
some notions have been introduced in the literature, for most of which
the existence of limiting distributions of the sequences is assumed, or
in other words, these notions rely upon those of stochastic convergence
(Loéve [13]). Recently, in the study of extreme values, Jeffroy [3] in-
troduced a notion of asymptotic independence of two random variables,
based upon a two-dimensional extension of Lévy’s distance [12], where
he did not assume the existence of limiting distributions.

Now we shall formulate the problem of asymptotic approximation
under a sufficiently general situation.

Let us consider a family .7~ of o-finite measure spaces, (R, S, p)’s,
where R is an abstract space, S is a o-field of subsets of R, and g is a
o-finite measure over S. For any space (R, S, p) belonging to 7
(R, S, p) designates the family of all probability distributions, or equally, -
of all random variables, defined on the measurable space (R, S), which
are absolutely continuous with respect to z. Then, as is well-known, for
every member X of F°(R, S, p) there exists a generalized probability
density function with respect to g (‘gpdf(g)’, in short), f(z), such that

P E)={ f@dn

for any E belonging to S.

Let us consider a limiting process, t—t,, of a certain ‘ parameter’
depending on ¢ in a topological parameter space, and, throughout the
present discussion, the above limiting process is fixed unless otherwise
stated. Here, we use the term ‘ parameter ’ in a wide sense: It stands
for a usual parameter of a probability distribution, or a size of sample,
or a time-parameter of time series, ete.

Suppose that, corresponding to the above limiting process, we have
a sequence, {X.,}(¢—t,), of probability distributions, where X, belongs to
F(R,, S, ;). Here, of course, the basic spaces (R, S, p)’s are not
necessarily different from one another. Further, suppose that we are
given a sequence of measurable subsets, {E}(t—t,), where E, belongs to
S; for every t(—t,), and that we are required to evaluate the value of
P*(E,) asymptotically as t—>t,. This is an asymptotic evaluation problem.
The problem of asymptotic approximation arises when it is difficult to
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evaluate the probability directly. In such a case, we must seek another
sequence of probability distributions, {Y.}(t—t,), such that the probability
PY(E)) is easy to evaluate and the relation

PY(E)—P(E)—>0 (t-1)

holds.

In the asymptotic approximation problem, it is required to (a) con-
struct an asymptotically approximate distribution to the one under con-
sideration, and (b) define a notion of asymptotic equivalence appropriate
for showing that a probability distribution can be used as an asympto-
tically approximate distribution.

However, it is difficult to discuss the former problem (a) in general,
except for the case when the distribution under consideration is an
asymptotically independent (in some sense) system of probability distribu-
tions. Notions of asymptotic independence in the asymptotic approxima-
tion problem will be introduced later in section 1.5. Section 1.2 and the
subsequent two sections will be devoted to discussion of the problem (b).

1.2. Definitions of asymptotic equivalence

In the asymptotic approximation problem introduced in the preceding
section, two sorts of error may be considered. The one is the absolute
error, |P*(E,)— PY(E))|, and the other is the relative error,| P*:(E,)/P¥«(E,)
—1].

In order that the absolute error tends to zero for any sequence of
measurable subsets, {E }(t—t,), it is sufficient that

(1.2.1) o(P*:, P*)=sup |P*(E)— PY(E)|—>0 (t—t,),
where the ‘sup’ is taken with respect to E, € S..

Now, define
1.2.2) VX, Y¢)=LL [flz)—g.(z)lde.

where fi(z) and g,(z,) stand for the gpdf(x)’s of X, and Y,, respectively.
Then, it is evident that

1.2.3) o(P*,, P7)<V(X,, Y)<26(P*, Py,

from which it follows that the condition (1.2.1) is equivalent to the
vanishing of the distance V(X,, Y,) as t—4,.

DEFINITION 1.2.1. Two sequences of probability distributions, {X}
(t—t) and {Y.}(t—>t,), are said to be asymptotically equivalent in the
nse of type I, or simply asymptotically equivalent (I), as t—t, if it
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holds that
(1.2.4) VX, Y)—-0 (t-t).

Briefly we shall call this equivalence the ‘asymptotic equivalence
(I)’.

It should be remarked that Jeffroy’s notion of asymptotic equiva-
lence [3] (asymptotic independence is a special case of asymptotic equiva-
lence) is strictly weaker than the above one. This fact is shown more
precisely in the following section.

Now, we shall proceed to the consideration of relative error. Put

P*(E) _

(1.2.5) K(X,, Y,)=sup P(E)

1!,

where the ‘sup’ is taken with respect to E, contained in S,. Based
upon this quantity K(X,, Y,), we define the asymptotic equivalence (II) as
follows.

DEFINITION 1.2.2. Two sequences of probability distributions, {X}
(t—t,) and {Y.}(¢—>t,), are said to be asymptotically equivalent in the
sense of type II, or simply asymptotically equivalent (II), as t—t,, if it
holds that

(1.2.6) K(X, Y)=0 (t—t,).

Generally speaking, this notion is too strong for the application to
a problem of asymptotic approximation. For asymptotic approximation
problem, where we are given a sequence {E,}(t—t,), and the probability
P(E;) is to be evaluated asymptotically, it is sufficient to define a weaker
notion of asymptotic equivalence based upon the following distance :

(1.2.5) K(X,, Y; F))=sup |(P*(E)/P*(E))—1],

where {F,}(t—t,) is a suitable sequence of members of S, such that E,<
F, for every t(—t,), and the ‘sup’ is taken with respect to E, belonging
to S(F)={E:NF,: E.€8S,}.

Asymptotic equivalence (II) is useful, for example, for the following
problem of asymptotic approximation. Suppose that the value of

AX)=1.PE.)
=1

is to be evaluated asymptotically as {—t,, where n(t) tends to infinity
as t tends to ¢, and the series is known to be absolutely convergent. If
we can find a sequence of probability distributions, {Y.}(t—t,), which is
asymptotically equivalent (II) to {X,}(t¢—>t,), then, exchanging X, for Y,
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in the above definition of A(X)), we have |A(Y,)— A(X))|—>0 as t—>t,. Here,
it is noted that the asymptotic equivalence (I) between {X}(t—t,) and

{Y.}(t—t,) does not necessarily assure the asymptotic equality between
A(X)) and A(Y).

1.3. Properties of asymptotic equivalence

In the present section, some properties of two sorts of asymptotic
equivalence defined in the previous section will be stated. Throughout

the present paper, D(X) denotes the carrier of a gpdf. of X. For ex-
ample,

D(X)={z:f(z)>0} .

First of all, we can show the following relation between two notions
of asymptotic equivalence.

LEMMA 1.3.1. The notion of asymptotic equivalence (II) is strictly
stronger than that of asymptotic equivalence (I).

PROOF. Put
A=D(X)n {2 : filz)2942)} ,
B.=D(X))n {2 : fl2)<g.2:)} ,
and
C:=D(Y)-D(X)~D(Y) .
Then we have
V(X., Y)=P*(A)—P"(A)+P"(B)—P*(B)+P"(C),
from which it follows that
1.3.1) VX, Y)<K(X,, Y)+P"(C,).

Since the condition (1.2.6) implies that PY¥:(C,)—0, (t—t,), the above in-
equality shows that the notion of asymptotic equivalence (II) is stronger
than that of asymptotic equivalence (I).

The ‘strictly ’ assertion is confirmed by the following example.

EXAMPLE 1.83.1. Let X, and Y, be one-dimensional real random
variables, whose pdf.’s are
(n—1)/n?, if 0<x<n?,
fa(@)=4 1/, if <e<ni+n,
0, otherwise,
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and

(n—2)/n®, if g=Sx<n®,
gn(x)= 2/’””’ lf ns§x<nz+n’ '
0, otherwise,

respectively. Then, it is clear that V(X,, Y,)—>0 (n—>c), while it does
not hold that K(X,, Y,)—>0 (n—c0).

In the second place, we shall give some conditions for the asymptotic
equivalence.

LEMMA 1.3.2. In order that {X,}(t—t,) and {Y.}({t—t,) are asympto-
tically equivalent (I) as t—t,, it is necessary and sufficient that

(1.3.2) P*(E)— P"(E,)—>0 (t—t,),
Jor any sequence {E.}(t—t,) with E,€ S,.

PROOF. The result is straightforward from the relations

|P*(E)—P"(E)=V(X,, Y)

and
V(X., Y)=P*(A;)—P"(A)+P"«(B))—P*(B),
where
Ai={z.:f(z)20.(2)} ,
and

Bi={z : fi(z:)<g.(2.)} .

LEMMA 1.3.3. In order that the condition (1.2.6) of asymptotic equiva-
lence (IT) holds, it is mecessary and sufficient that one of the following

conditions (a) and (b) is satisfied.
(a) For any sequence {E.}(t—t) with E,€S,, it holds that

(1.3.3) [(P*(E,)|PY(E))—1]->0 (t—t).

(b) For any sequence {E.}(t—t,) with E, € S,, there exists a function
of t, o(t), independent of any particular choice of the sequence {E.}(t—t,),
such that ¢(t)—0 as t—>t, and

(1.3.4) |P*(E,)— P (E)| <e()P«(E)) ,

Sfor all values of t sufficiently close to t,.
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PROOF. (a) It is clear that the condition (1.2.6) is sufficient for (a).
Conversely, suppose that (1.2.6) is false. Then, there exist a se-
quence {E}(t—>t,) of the members of S, and a positive constant é such
that a subsequence of {E,}(t—t,), say, {E,}(t'—¢t,), satisfies the relation

I(P* (E,)/P"(E.)—1| 26

for all ¢/(—t,). This contradicts (a), which shows that (a) is sufficient
for (1.2.6).

(b) Putting ¢(t)=K(X,, Y.), it can be seen that (1.2.6) is sufficient
for (b).

Suppose (b) holds. If P*{(E,)=0, then it follows from (1. 3. 4) that
P*(E;)=0. Hence, it holds that K(X., Y,)<¢(t), which shows that (b)
is sufficient for (1.2.6).

Thus, the proof of our lemma is complete.

In the last half of this section, we shall discuss some other proper-
ties of the asymptotic equivalence (I).

As is easily noticed, the situation, under which the notion of asympto-
tic equivalence (I) is defined, permits some specializations. If, in the
definition 1.2.1, all the basic spaces (R, S, w)’s are independent of ¢
and identical with a certain space (R, S, z), then the condition (1.2.4)
turns out to be

(1.3.5) [ r@—0@idis0 @1,

which is equivalent to the condition that
(1.3.5) PX(E)—P"(E)->0 (t-t,),

uniformly in E belonging to S. This is the case of ‘ equal basic spaces ’,
and it is just in this case that Jeffroy [3] defined his notion of asympto-
tic equivalence. As was already remarked in the preceding section,
Jeffroy’s notion of asymptotic equivalence is strictly weaker than ours.
This is seen in the following example.

EXAMPLE 1.3.2. Consider the condition (1.3.5) in the case when
(R, S, #) is the one-dimensional Euclidean space with Borel field S and
Lebesgue measure p. Then, to X; and Y, there correspond the cumula-
tive distribution functions, Fi(z) and G.(z), respectively. Jeffroy’s defini-
tion of asymptotic equivalence (in the strong sense) is based upon the
condition that

(1.3.6) Fi(z)—G(2)—>0 (t—ty),

uniformly in z. It is evident that (1.3.5) is stronger than (1.3.6).
The ‘strictly > assertion is shown by the following example, which
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is a slight modification of Robbins’ example [15]. Let

f,.(z)={ /QA—=1/w), if 1nis2=1,
0, otherwise ,

and, for any fixed 2 with 0<41<1/2 and §,=21/(n2"), let

g (z):‘l 1/(nd,), if i/n—d,<2z<1i/n, (1=1, 2, .., n),
0, otherwise ,
for n=1, 2, ---. Then, it is seen that

sup |[F.(2) —G.(2)] >0 (n—>o0).

On the other hand, for E,={z:g.(2)>0}, it can be seen that

12
1-1/n* 2¢

ng”(Z)dzz < 2,:2_1 ’ (/n=2: 3) ¢ ') ’

and

SEgn(z)dz=1, n=1,2,--.).

This shows that the condition (1.3.5) is not satisfied.

Now, we shall consider a more specialized situation. In addition to
the equal basic spaces, if we assume that g,(z) is independent of ¢ and
is identical with g(z) for every t(—t,), then (1.2.4) becomes

(1.3.7) [ r@—g@iau>0 ),

which is equivalent to the following.
1.3.7) PX(E)—>PY(E) (t-t,),

uniformly in E belonging to S, where Y is a probability distribution
whose gpdf(y) is g(2). This is an important concept of convergence in
statistics, together with that of ‘in law’ convergence. For the above
convergence, a useful criterion has been given by Scheffé [16], or in a
general situation of basic spaces, by, for example, Halmos [4] and Loéve
[18]. Another criterion was introduced by Ikeda [9], which is a special
case of the theorem 1.4.2 in the following section. It should be noted
that our results of the present part are applicable to the problems of
asymptotic approximation under these special situations, too.

Returning again to the general situation of definition 1.2.1, we
shall consider another property of asymptotic equivalence (I).
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Let {X.}(t—t,) be a sequence as before. Suppose there exists an-
other family, .7, of o-finite measure spaces, and let u, be a measurable
transformation from the space R, onto a space R,, of which (R,, S., &)
belongs to L7_,‘ for every t(—t,). For this transformation, put

(1.3.8) X.=u(X).

Then, the new random variable X, defines a probability distribution over
the measurable space (R, S.):

PX(E)=P*(u"\(E,)) .

Here we assume that X, is absolutely continuous with respect to .

Now, suppose that {X;}(t—t,) and {Y.}(t—>t) are asymptotically
equivalent (I) as t—t, and that {X,}(t—t) and {Y,}(t—t,) correspond
respectively to the above sequences by measurable transformations u.’s
in such a manner as stated above, for every t(—t,). Under this situa-
tion we can get the following :

LEMMA 1.3.4. If {X.}(t—t,) and {Y.}(t—>t,) are asymptotically equiva-

lent (I) as t—t,, then {X,}({t—t) and {Y,}({t—t,) are also asymptotically
equivalent (I) as t—>t,.

If, moreover, the transformations u,’s are all non-singular (i.e., one-
to-one and the imverse is also measurable), then the asymptotic equiva-

lence (I) of {X.}(t—t) and {V.}(t->t) implies that of {X.}(t—>t) and
{Y.}(-t).

PROOF. By lemma 1.3.2, the asymptotic equivalence (I) of {X,}(t—t,)
and {Y.}(t—t,) is equivalent to the condition

PX(E)—PT(E)—>0 (t-t,),

for any sequence {E,}(t—t,) of the members of S,’s. Since
PX(E,)— P*(E,)=P*(u(E,))— P"(u(E,)),

the asymptotic equivalence (I) of {X,}(t—t,) and {Y.}(t—>t,) implies that
of {X,}(t—t,) and {Y,}(t—t,). This proves the first assertion.

If w, is non-singular for every t(—t,), an analogous argument is made
in the opposite direction, which shows that, together with the first argu-
ment, the asymptotic equivalence (I) of {X,}(t—t) and {Y,}(t—t,) is
equivalent to that of {X,}(t—>t,) and {Y.}(t—>t). Thus the proof of our
lemma is complete.
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Lastly, we shall investigate an asymptotic equality of characteristic
quantities of asymptotically equivalent (I) distributions.

Let v.(2.) be a real-valued, measurable (S,) and integrable (with res-
pect to P* and PY:) function, defined on (R, S,, i), for every t(—t,),
and let '

o= vfie)dn,
and

oY1 = vtz .

Then, we can show the following :

LEMMA 1.3.5. Let {X,}(t—t,) and {Y.}({t—t,) be asymptotically equiva-
lent (I) as t—t,. Then, in order that the asymptotic equality

(1.3.9) Ew(X)]— Ew(Y)]>0  (t-t),

holds, it is sufficient that both of &[v.(X.)'] and & [v.(Y.)'] are bounded
Jrom the above by some K(>0) independent of t.

PROOF. By using Schwarz’s inequality, it is easy to see that
| & [v(X)]— &Y
<[, @A)~ @idp | 17 —aeld.
12 t

Hence, by assumption we obtain
[Z[v(X)]— S Y)II < V2KV(X,, Y) »

from which the lemma easily follows .

1.4. Asymptotic equivalence criterions

In order to make our notions of asymptotic equivalence applicable
to practical problems, it is indispensable to give some criterions for prov-
ing the asymptotic equivalence of two sequences of probability distribu-
tions. In the present section, we shall introduce some of such criterions.

First, we investigate relations between several distances defined on
a class of probability distributions. Let (R, S, ) be a o-finite measure
space, and let “A(R, S, ) be a family of probability distributions which
are absolutely continuous with respect to . In addition to the distance
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V(X, Y) defined by (1.2.2),.
le.,

1.4.1) VX, Y)=Llf(Z)—y(z)ld#.

we introduce the distance

(1.4.2) WX, V)=v/| (V7@ — Va@Vds ,

and the so-called Kullback-Leibler mean information with a general defini-
tion [11]

(1.4.3) IX: Y)=SRf(z) log —‘;T(z%)—dy ,

where f(z) and g(z) are the gpdf(¢)’s of X and Y, respectively.
As for the distance W(X, Y) it is seen that

WX, V)= v20—p(X, Y)) ,

where p(X, Y) is the ‘affinity’ between X and Y (Matusita [14]), de-
fined by

(1.4.4) X, N=| vF@e@ de -

Relations between these distances have been given by some authors,
for example, by Hannan [5], Hoeffding and Wolfowitz [6], Tkeda [9],
Matusita [14], or implicitly by Kudo [10, 11]. We shall summarize
them in the following :

LEMMA 1.4.1. For any members X and Y of F(R, S, p) it holds
that

(1.4.5) 0=2(1—p(X, Y)=V(X, V)=2V1-p(X, V)=S2VI(X:Y),

and the last inequality holds true if we replace (X:Y) by KY : X).

The proof is straightforward. For example, as to the last inequality,
when D(X)ED(Y)(z), we have I[{X: Y)=oco by definition, and the in-
equality clearly holds. When D(X)SD(Y)(¢), we have

IX:V)=| F(@)log (o)

z-2log || () V@7 @) du=—2log X, Y)
22(1-p(X, Y)z1-4(X, Y),
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from which it follows that

2VIi—p(X, M=2VIX: Y)-

Now, let us return to the situation of section 1.2. From the above
lemma, the following results are evident, which will be regarded as the
asymptotic equivalence (I) criterions.

THEOREM 1.4.1. In order that {X.}(t—t,) and {Y,}(t—>t,) are asympto-
tically equivalent (I) as t—>t,, it is necessary and sufficient that

(1.4.6) X, Y)=| vimwEdn—1 ot
(3

and the ‘error estimation’ is given by

1.4.7) V(X., Y)<2V1—p/(X,, Y,)-

THEOREM 1.4.2. In order that {X,}(t—t,) and {Y,}(t—t,) are asympto-
tically equivalent (I) as t—t,, it is sufficient that

(1.4.8) 1%: Yo=_fiz) logﬁ—z*;dwo (t>t),
or

. _ g:(2:)
(1.4.9) KY,: X,)—Lt 9z log HE). 40 (151,

where the error estimation is given by

(1.4.10) V(X, Y)<2VI(X,: Y,), or V(X,, Y)S2VI(Y,: X))

correspondingly to the case (1.4.8) or (1.4.9).'
As mentioned above, we have

(1.4.11) VX, Y)S2VI—p(X,, Y,) <2/IX,: Y, -

Therefore, when applying these theorems to practical problems, it is de-
sirable to use the first one as much as possible, but there might exist
some problems in which p(X;, Y,) is difficult to calculate but I(X,, Y;) is
much easier to handle.

As to the application of the second theorem, it should be remarked
that, when D(X,)SD(Y,)(z) the condition (1.4.8) must be examined,
while when D(Y,)SD(X,)(p;) the condition (1.4.9) must be used. In cases
when these implication relations do not hold, theorem 1.4.2 is useless,
and other criterions must be prepared. The following is one of criterions
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for such cases.

LEMMA 1.4.2. For the asymptotic equivalence (I) of {X.}(t—t,) and
{Y.}(t->t,) it is sufficient that

(1.4.12) PX(D(X,)—D(Y.))-0, P*(D(Y,)—D(X,))-0,
and

(1.4.13) , di(X,, Y;)=ess. sup f‘-(ﬂ—l‘ei) ,
9.(z;)

as t—t,, where ‘ ess. sup’ is taken for z, € D(X,) N D(Y,) with respect to p, .
PROOF. This is straightforward from the inequality
V(X., Y)=<P*(D(X,)—D(Y.))+P"(D(Y,)—D(X.)))+dy(X,, Y2).
Next, we shall give a sufficient condition for the asymptotic equiva-
lence (II).

THEOREM 1.4.3. In order that {X,}(t—t,) and {Y.}({t—>t,) are asym-
ptotically equivalent (II) as t—t,, it is sufficient that

(1.4.14) AUX,, Y))=ess. sup ﬁ(z—')q‘—m, (t—ty) ,
g.(z)

where the ‘ess. sup’ is taken for z, € D(X,)U D(Y,) with respect to p,.

PROOF. It is clear that the condition (1.4.14) implies that D(X,)=
D(Y,)(¢.) for all values of £, at least for ¢ sufficiently close to t,. Hence,
for such values of ¢, it holds that

|P( ) — PYd(E) < SE |fi(z) —g(2)ldp. <d(X., Y,)P"(E)) ,

for any set E, belonging to S,. Thus the result follows from lemma
1.3.3 (b).

1.5. Asymptotic independence

In order to define notions of asymptotic independence, we shall as-
sume that the family .7~ of basie spaces is closed under the finite-product
operation, i.e., if the o-finite measure spaces (R,, S;, 1), (Rs, Sy, tta), ==+,
(R, S, ) belong to 7] then their product space (R, Swyy tmy) = 171 (R,
S, ©;) also belongs to .7, for any finite positive integer =.

Now, suppose we are given a set of random variables, {X;, X;, ---,
X.}, each X; belonging to Z(R, S, u), and let X.,,=(X;, X;, ---, X,)
belong to FP(Ruy, Swy, tny)- As is well-known, according to the usual
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definition, a set of random variables {X}(i=1, 2, -- -, m) is said to be
independent if, for any members E’s of S,’s, it holds that

(1.5.1) P*o(Eq) =[] P*(E)

where Eq,=[];.,E; denotes the direct-product of E,’s. By this definition,
(a) independence of every proper subset of {X}(i=1, 2, ---, n) does not
necessarily imply that of the whole set, and conversely, (b) independence
of the whole set {X}(:=1, 2, ---, n) implies that of any subset of it
(see, for example, Cramér [1]). From the viewpoint of applications to
the problem of asymptotic approximation, it is convenient to define no-
tions of asymptotic independence by specializing those of asymptotic
equivalence defined in section 1.2. The concept of asymptotic indepen-
dence (I) given below by such specialization, implies that of independence
defined by (1.5.1) in the limit as t—>t,, provided that » is independent
of t.

Let us consider a set of random variables {X}(i=1, 2, ---, n), where
n may depend on ¢ as t—t,, and X!e P(R:, S, ) for i=1,2, ---, m.
We shall call n the ‘size’ of the set. Let X(,=(X¢, X¢, ---, X*) be
their joint variable, and assume that it belongs to (R, Sityy pdy) and
that there exists gpdf (uc)fux(2i) of X5 On the other hand, let f£i(z!)
be a gpdf (¢} of X! for 1=1, 2, ---, n, and put

(15.2) 9oz =[1F1(2) ,

where z;,=(2}, 2, ---, 2;). Then, there exists an independent set of
random variables, {Yi}(i=1, 2, -.-, n), say, such that each Y is iden-
tically distributed with X¢ and their joint variable Y,=(Y*, Y%, ---, Y))
necessarily has g.(2+,) as a gpdf (g). Under this specialized situation,
the definitions (1.2.2) and (1.2.5) become in turn

-~

(1.5.3) V(X Yb)= .‘R tlf (Zm) — G (Zam) Aty

)

and

(1.5.4) K(X(n)y .-Yv(n))= Sllp

PXex(BL) 1
PY (,‘,)(E(;))

where the ‘sup’ is taken for E € S/ . It should be noted that, under
the present situation, the inclusion relation of the carriers D(X%)S D(Y )
(22¢ny) holds.

We shall define the asymptotic independence (I) as follows :
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DEFINITION 1.5.1. A set of random variables, {X4}(i=1, 2, ---, n),
is said to be asymptotically independent in the sense of type I, or simply
asymptotically independent (I), as t—t, if {X.}({t—>t,) and {Y,}(E->t)
are asymptotically equivalent (I) as t—t,, i.e., if it holds that

(1.5.5) VXL, Yi)-0 (t—t).

In connection with this definition, we define the asymptotic %-in-
dependence as follows:

DEFINITION 1.5.2. A set of random variables, {X:}(k=1, 2, ---, N),
is said to be asymptotically m-independent in the sense of type I, or
briefly asymptotically n-independent (I), as t—t,, if all subsets of size
n of {X{}(=1,2,---, N), are asymptotically independent (I) as t—t,,
where N and » may be dependent on ¢.

Quite analogously, asymptotic independence (II) is defined as follows:

DEFINITION 1.5.8. We shall say that a set of random variables,
{(X1}(@=1, 2, ---, n), is asymptotically independent in the sense of type
II, or simply asymptotically independent (II), as t—t,, if {X.,}({t—t,) and
(Y} (E—>t,) are asymptotically equivalent (II) as t—t,, where {Y,} have
the above stated property, i.e., if it holds that

(1.5.6) KX, Yi)-0 (t—ty).

DEFINITION 1.5.4. A set of random variables, {X{}(k=1, 2, ---, N),
is said to be asymptotically n-independent in the sense of type II, or
simply asymptotically n-independent (II), as t—>t,, if all subsets of size
n of {X,}(:=1,2, ---, N), are asymptotically independent (II) as t—fi,,
where N and » may depend on t.

As a consequence of theorem 1.4.1, we have

COROLLARY 1.5.1. In order that a set of random variables {X:i} (1=
1,2, -+, m) is asymptotically independent (I) as t—t, it 18 mecessary
and sufficient that

(1.5.7) o( Xty Yeiy)—>1 () .
- From theorem 1.4.2 we have:

COROLLARY 1.5.2. In order that a set of random variables {X!} (i=
1,2, ---, m) is asymptotically independent (I) as t—t, it is sufficient
that
(1.5.8) I( X : Y)) =0 (t-t) .

By specializing theorem 1.4.3, we obtain
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COROLLARY 1.5.3. In order that a set of random variables {X:}(i=
1,2, ---, n) is asymptotically independent (II) as t—t, 1t is sufficient
that

(1.5.9 AU Xy, Yay)>0 (Et0),

where the distance d(X.,, Y.,) is defined analogously to that of (1.4.14).
Now, we shall remark some properties of asymptotic independence

D.

First, we have

LEMMA 1.5.1. Under the situation of equal basic spaces, if n is in-
dependent of t, and for every 1 the limiting distribution of X. exists,
then {X}(i=1, 2, ---, n) is independent (in the sense of (1.5.1)) in the
limit as t—t,.

Secondly, taking a measurable transformation such that

Ul Xm)=Xemy »

where X7,=(X:, Xi, ---, Xi ) and m=mn, and applying the lemma 1.3.4,
we have

LEMMA 1.5.2. If a set of random variables {Xi}(i=1,2, ---,n) is
asymptotically independent (I) as t—t,, then every subset of {Xi} are also
asymptotically independent (I) as t—t,.

This result is extended in a more general form: Partition the set
of random variables {X!}(:=1, 2, ---, n) into s mutually exclusive sub-
sets, {X;J}(j=1, 2, -, m:k=1,2, ---, 8), and let

X(flk)=(Xl£1’ /53! Tty Xlg,,k)’ (k=1’ 2! Tty S) .

Then, we have the decomposition of X,
Xoy=Xeaps Xeagy ***» X(,i')) ’
and the corresponding decomposition of the basic space

(1.5.10) (Benyy S ;z(,‘.))=’!_=[1(R(,fk), S(,fk), ,u(,fk)) ’

where, of course, X, belongs to P(Be,,, Sa,y, tary)-
Now, let w'=(u!, u, ---, u}) be a measurable transformation from
the space (1.5.10) into a certain measure space '

(B Sé» pa)=]1(Bs, S, 1)

belonging to a family .7 of o-finite measure spaces, such that
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(1.5.11) W (2en) = (UilZep)s Wa(Zlapp)s = 5 UelZnp)) 5

where 2.i,= (21,5, Zap, - *» %an,) correspondingly to (1.5.10). Here, 8 may
depend on t. This transformation defines that of X, such that

(1.5.12) Xé=u(Xs)
or
1.5.12) (X4, X4, -+, X)=ui(Xekp), ui(Xtp)s -+ -0 (X))

where each X! is assumed to belong to .7 (R!, S:, ub).
Under the above situation, the following is an immediate consequence
of lemma 1.3.4.

LEMMA 1.5.83. If {X}(i=1, 2, ---,n) 1s asymptotically independent
(I) as t—t,, then {Xi}(k=1,2, ---,3s) is also asymptotically independent
I) as t—t,. If, moreover, s=n and all the transformations ui’s are
non-singular, then the asymptotic independence (I) of {X5}(k=1,2, ---, 8)
implies that of {Xi}(i=1,2, -, n).

PART 1I

APPLICATION TO CERTAIN PROBLEMS OF
ASYMPTOTIC INDEPENDENCE

2.1. Asymptotic independence of a set of coverages

Basic results obtained in the preceding part is applied, in the present
section, to the examination of asymptotic independence in the sense of
type I, of a set of coverages.

According to the definition by Wilks [17], a set of random variables,
{C}(#E=1,2, ---, N+1), is said to be a set of elementary coverages, if it
is subject to the restraint

N+1

2 Ci=1 ’
i=1
and the probability element of the joint distribution of C,’s is given by
' N
(2.1.1) N! dclng A ch ) (Oéci, § Ciél) .

As far as the author is aware, no work has been presented in the
literature as to the property of asymptotic independence (I) of this set
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as the size N tends to infinity. In the previous study [8], the author
is faced with essentially the same problem as this, where he strongly
felt the need of the theory of asymptotic independence

Now, we shall consider a subset, {Ct}(.’l 1,2, .-+, m), of a set of
elementary coverages, where the size of the subset may be dependent
on N as N tends to infinity. A question may arise, how large the value
of » should be in order that {C; j} (=1, 2, -+, n) are asymptotically in-
dependent (I) as N tends to infinity.

In the first place, it is noted that the joint distribution of C,j’s has
a probability density function, independent of any particular choice of
the subset, such as

(2.1.2) f(n)(c(n))—%(l i‘v_’ C )N—n

0=c, ; ¢=<1),
=1

where c,=(c;, €5, +*+, ¢,). Hence, there is no loss of generality to rest-
rict our attention to a set of first » coverages, {C}(1=1, 2, ---, n), for
which we put Cu,,=(C,, Cy, - -+, C,).

The probability density function of each marginal C; is independent
of ¢ and is given by

2.1.3) fle=N(1—c)*", (0=c=1),

and the sum of any r coverages is distributed according to a beta dis-
tribution whose probability density function is

[(N+1)

@.1.4) I'(r[(N—r+1)

w(1l—w)¥7, 0Zusl).

Let Ci,, be a random variable of n dimensions, whose probability
density function is

(2.1 .5) g(n)(c(n)) = tljlf(ci) =N" iljl (1 - ci)N_l ’

for 0<¢, <1, (2=1,2, -+, m).

In order to apply the result of corollary 1.5.2 as an asymptotic in-
dependence (I) criterion, we shall calculate the Kullback-Leibler mean
information, the vanishing of which as N tends to infinity implies the
asymptotic independence (I) of the subset {Ci}(i=1, 2, ---, n). Now, in
our present situation, the Kullback-Leibler mean information of (1.5.8)
becomes

(2.1.6) HCoy: Cin)= g[log ;’ ::((g((;))
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where the expectation & is taken with respect to the distribution of
Cwy, 1.e., with respect to (2.1.2). Thus, from (2.1.2) and (2.1.5) it follows
that

@L7)  ICe: Cin)=log ﬁ(zlvvjau 5 H-m & log (1 —31C)]

—(N—1)§: &llog (1—C))] .

For the exact calculation of this information, we shall prepare a
formula of integral calculus.

LEMMA 2.1.1.

(2.1.8) g 2l —2) log & do = — L@ 3

1
I'(p+q) =1 p—1

+1
Jor integers p and q.

For the second member of the right-hand side of (2.1.7), by using
this lemma, we obtain

@19 [log (1—% Col

PONH1) (' iy owen g (1
- o Sou (1— )" log (1—u) du

1

i=t N—n-+1

?

and for the third term we have

(2.1.10) Ellog (l—Ct)]=N§: (1—c)"log 1—c)dec= —%’— .

Thus, from (2.1.7), (2.1.9) and (2.1.10) it follows that

(2.1.11) I(Cny: Ciny)= log NN-— 1)-1.v. ,S N—n+1)

1 (N—1)n
—n+1 + N

——(N—n)g}l N

Then, we obtain
(2-1'12) I(C(n) : Cén))én(n—l)/N ’

from which we can conclude that, if n=0(+/N), then I(C.,: C¢,) tends
to zero as N tends to infinity.
Hence, we have the following
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THEOREM 2.1.1. A set of elementary coverages, {C}(i=1, 2, ---,
N+1), is asymptotically n-independent (I) as N—>oo, provided that n=
o(/N).

This result will be obtained in a more general form.

Let us take 7 subsets of elementary coverages, {C, Je=12, ..., m,),
Gle=12, .-, my, ---, {C,}(i=1, 2, - -+, m,), which are chosen mutu-
ally exclusively from a set of elementary coverages {C;}(i=1, 2, --., N+
1), where » and m,’s can depend on N according as N tends to infinity.
Let Ciny=(Ci;s Ciyy * -, Ck"‘x)' for each k(=1, 2, ---,n). Under this situa-
tion, as for the asymptotic independence (I) of a set of random variables,

{Cnp}(k=1, 2, ---, n), the following corollary is obtained as a direct
consequence of lemma 1.5.3 and the above theorem.

COROLLARY 2.1.1. A set {C.,}(k=1, 2, ---, n) is asymptotically in-
dependent (I) as N->oo, provided that m(=3my)=o( V).
k=1
By lemma 1.5.83 the following is easily follows from this corollary.

COROLLAPY 2.1.2. Under the same situation as in the preceding
corollary, let

6k=uk(c(mk))’ (k=1,2, ---, m),

where u,’s are all measurable transformations. Then, in order that
{C)(k=1,2, -, n) is asymptotically independent (I) as N tends to in-
finity, it is sufficient that m=o( 4/ N), where as before m=3>1}_m,. Hence,
if n=0Q1) independently of N, then the condition m=o(+/N) implies the
asymptotic independence (I) of that set, where m=max (m,, my, * -, My).

Now, let X,<X,<---=<X, be an ordered sample of size N drawn
from a uniform distribution on a certain interval, (6,, 6;), say, of unit
length. Then, putting

(2.1.13) C[=Xi—Xi—ly (7«=19 2; Y N+1) ’

where X,=6, and Xy,,=0,, we have a set of elementary coverages {C;}
(1=1,2, -+, N+1). Our results obtained above are applicable to this
set. :

More generally, as is seen easily, the following is an immediate con-
sequence of lemma 1.5.3 and theorem 2.1.1.

COROLLARY 2.1.3. Let X,=X,< --+ X, be an ordered sample from
a uniform distribution on a certain interval (6,, 6;) with any given length,
and let C’s be random variables defined analogously to (2.1.18). Then,
in order that {C}(G=1,2, ---, N+1) is asymptotically m-independent
(I) as N tends to infinity, it is sufficient that n=o0(/N).
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Under the situation of lemma 1.3.4, it is not difficult to see that
V(X,, Y)SV(X, V),

where the equality holds when the transformation w, is non-singular.
Accordingly, if we define, analogously to the distance (1.5.3) in the
general theory, the distances for those variables which are considered
in corollary 2.1.1, corollary 2.1.2 and corollary 2.1.3 (in the first two
results, replacing m by =), those distances are not larger than that in
theorem 2.1.1, i.e., not larger than V(C,, Cw), and in particular, the
distance in the last corollary 2.1.3, V(C,, Cy), is equal to V(Cy, Cey).
In this sense, the value of V(C., C.,) is regarded as a sort of *weak-
ness of independence (I) of a set of elementary coverages, and it will

be of some importance in practical applications to check the values for
some N and n.

As was already shown in (1.4.10), it holds that
V(Cay Ci) =2 VI(Cyy: Ciny)

in our present case, where the exact values of I(C,,: C;,,) for given N
and n may be calculable from (2.1.11). Exact values of the right-hand
member of this inequality for some values of N and n are tabulated in
the following table.

Table 1.
Values of 2V Cny:C'ny) -
SN 20 50 100 500
2 | 01516 0.0732 0.0285 0.0144  0.0049
3 0.1200  0.0593  0.0259
4 0.0739  0.0397
6 0.1153  0.0566  0.0187
8 0.0767
10 0.0990  0.0195
20 : 0.0894

2.2. Asymptotic independence of extreme values

In the present section we shall be concerned with the asymptotic
independence (I) of extreme values of a random sample when the size of
the sample increases infinitely.

Let Z,<Z;<.--<Zy be an ordered sample of size N drawn from a
one-dimensional continuous probability distribution defined on the real
line. Under some restrictions on the population distribution, Gumbel
[2] has shown that the mth lower extreme and the mth upper extreme

-
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are mutually ‘independently ’ distributed as N tends to infinity, provided
that », m=0(1) independently of N. The notion of asymptotic indepen-
dence in Gumbel’s sense is not so clear, but, scrutinizing his paper,
one will notice that Gumbel’s notion is weaker than or equivalent to that
of the asymptotic independence of type I in our present case. The problem
to be discussed in this section is regarded as an extension of the above
result. By applying the so-called probability integral transformation

(2.2.1) X,=F(Z), i=1,2, ---, N,

we have a new set of random variables, X;<X,< .-+ <X,, which is
regarded as an ordered sample drawn from a uniform distribution on
the interval (0,1). In the first place, we shall be concerned with these
variables.

Let us take a set of first » variables, {X;, X,, ---, X.}, and that
of last m variables, {Xy_ms+1,Xy-ms2r **+» X}, which will be called briefly
the set of lower m extremes and the set of upper m extremes, respectively.
For the sake of notational simplicity, we put, for the second set,

KzXN’ I’ﬂz‘XN-ly Tty Ym=XN-m+l .

Let X=(X,, Xy, +++, Xu) and Yi=(Y}, Yy, - -+, Y,,) be their joint vari-
ables respectively. Then, since the set {C}, (1=1, 2, ---, N+1), defined
by

Ci=X1;—‘X1_1, i=1, 2, ey, N+1, With .X0=0 and XN+1=1 N

is a set of elementary coverages, and since
i N+1
Xi=2087 i‘:]-, 2, *t Sty n, and Yj=1— 2 st,jZ]_, 2’ ...,m,
8=1 R 8=N+42—
the following theorem follows from corollary 2.1.2.

THEOREM 2.2.1. A set of two random wvariables, {Xuy Ym}, 18
asymptotically independent (I) as N tends to infinity, provided that n+
m=o0(¥/N).

According to the usual definition, we shall say that ‘two sets of
extremes, i.e., the set of lower n extremes and that of upper m extremes,
are mutually asymptotically independent in the sense of type I as N
tends to infinity ’, if {Xw Yim)} is asymptotically independent (I) as N
tends to infinity. By virtue of lemma 1.5.3, the following is an immediate
consequence of the above theorem.

COROLLARY 2.2.1. Amny subset of the set of lower n extremes and any
subset of the set of upper m extremes of an ordered sample of size N drawn
from a uniform distribution on (0,1) are mutually asymptotically in-
dependent in the sense of type I as N tends to infinity, provided that
n+m=o(y/N). '
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As a special case of this corollary, we have

COROLLARY 2.2.2. The nth lower extreme and the mth upper ex-
treme of an ordered sample of size N drawn from a uwiform distribu-
tion on (0,1) are mutually asymptotically independent in the sense of
type I as N tends to infinity, provided that n+m=o(+/N).

This is an improvement of Gumbel’s result stated in the beginning
of the present section.

Now, we shall return to the original ordered sample considered in
the beginning of this section. As before, let Z,<Z,< --- <Z, be an
ordered sample of size N, drawn from a real, one-dimensional continuous
distribution, whose cumulative distribution function and probability den-
sity function are F(z) and f(z) respectively. The probability integral
transformation (2.2.1) is rewritten as

2.2.2) Xy =\ Zo)=F(Z), F(Z), ---, F(Zy)),
where X=Xy, X;, -+, Xy) and Zyy=(Z,, Z,, ---, Zy),
and we have the inverse transformation

(2.2.3) Zay=uan( X)) =(F"'(X,), F(X), ---, F7(Xy)) .

Choose the intervals on which F(2) is strictly increasing, and let R be
their union, where we can assume without any loss of generality that
R is an open domain on the real line. For our present consideration
of the asymptotic independence problem, it will be sufficient to regard
R as a basic space. Then, the transformation x=F(2) from R onto the
interval (0,1) is one-to-one and the inverse transformation z=F-'(x) is
measurable, and hence the inverse transformation (2.2.8) is non-singular.
Thus, by applying the lemma 1.5.3, we have

THEOREM 2.2.2. Let Z\;<Z,< --- <Zy be an ordered sample of size
N drawn from a real, one-dimensional continuous distribution. Then,
the set of lower m extremes, {Z}(i=1, 2, ---, n), and that of upper m
extremes, {Z}(j=N—m+1, N—m+2, ..., N), are mutually asymptotic-
ally independent (I) as N tends to infinity, provided that n+m=o( /N).
In particular, correspondingly to corollary 2.2.2, we have

COROLLARY 2.2.3. Under the same situation as in the above theorem,
the nth lower extreme Z, and the mth upper extreme Zy_,., are mutual-
ly asymptotically independent (I) as N tends to infinity, provided that
n+m=o(+/N).

From the standpoint of the asymptotic independence consideration,
this is regarded as an extension of Gumbel’s result in two directions,
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that is, in widening the basic distributions and in loosening the condi-
tion to be satisfied by n and m.

It is also noted that theorem 2.2.2 is an extension of the preceding
theorem 2.2.1, and it states that, in practical applications to the asympto-
tic evaluation problems which concerns the lower and upper extremes
of an ordered sample, we can employ them as if they are mutually in-
dependent in the usual sense. For such cases, it will be important that
we know how large the ‘error’ of approximation would be. Since the
transformations (2.2.2) and (2.2.3) are non-singular, it is not so difficult
to see that the error of approximation in the above sense is less than
or equal to 2 vI(n, m, N) for any given », m and N in all cases under
the situation of theorem 2.2.2, where I(n, m, N) is given by

2.2.4) In, m, N)=log 1’:8:; ;‘);(llg"_az — I 3
+(N—n—m) £log (Ya—X.)]
—(N—mn) &[log (1—-X,)]
—(N—m)&Jlog Y,] .

Now, the right-hand members of (2.2.4) can be calculated exactly,
as is shown in the following. First, it follows from the joint distribu-
tion of X, and Y, that

(2.2.5) &[log (Y,—X,)]=C(n, m, N) J(n, m, N),
where

I'(N+1)

e )= P T —n—m+ DEGm)

and

J(n, m, N)= j 2 (y—2)" (1 —y) " log (y—2) dady .
0<z<ly<ll

By changing the variable as x=yz, we obtain
J(n, m, N)= S: ¥y (1 —y)”‘“dyg: 2" (1—=2)" """ log (y(1—2)) dz
=Bn, N—mn—m+ l)S: Yy ™1—y)'log y dy
+B(m, N—m+ 1)52 2-1(1—2)""" log (1—2) dz .

Here, it holds by lemma 2.1.1 that
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S: ¥y (1—y)~log ydy=—B(m, N—m+1) >3 1

it N—-m+1’
and
v . r 1
27 (1—2)" " "log (1— =—Bn, N—n— 1 _,
[, 72— log (1—2)dz=—B(n, N-n—m+1 5 — L

where B(p, q) designates the usual beta function. Thus we have, by
(2.2.5),

2.2.6) & [log(Ya—X)]= — [ifl 1 45 —1_—] .

Similarly, we can obtain

xpe—m 1
2.2.7) Elog A—-X)l=— 32—~
and
o1
2. Yal=—3% .
(2.2.8) &llog Y.l ,Z=}1 NomTi

Substituting (2.2.6), (2.2.7) and (2.2.8) into (2.2.4), we have

(2.2.9) In, m, N)y=(N—n)UN—n; n)+(N—m)UN—m ; m)
—~(N—n—m)UN—n—m ;n+m)— W(n, m, N),

where

(2.2.10) Up:g)=—L_  for positive integers p and g,
' = p+i

and

(2.2.11) Wn, m, N)=log LAFDIN—n—m+1)

I'(N—n+D)I(N—m+1)

By virtue of (2.2.9), exact calculation of the values of 2 yI(n, m, N)
is possible for any given n, m and N, and some of them are tabulated
in table 2.

2.3. Asymptotic independence of a system of multinomial variates

A set of discrete random variables, {X,, X;, ---, X}, distributed ac-
cording to a multinomial distribution with probabilities
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Table 2.
Values of 2 vI(n, m, N)

1 0.04796
N=50 n 1 2 3 4 5 6
m
1 0.02867 0.04096 0.05070 0.05918 0.06690 0.07412
2 0.05854 0.07246 0.08446 0.09564
3 0.08972 0.10474
N=100 n 1 2 4 6 8 10 12
m
1 0.01424 0.02023 0.02891 0.03578 0.04167 0.04722 0.05229
2 0.02875 0.04109 0.05088 0.05939 0.06716
4 0.05874 0.07272 0.08490
6 0.09004
N=500 n 4 8 12 16 20
m
4 0.01139 0.01615 0.01985 0.02309 0.02587
8 0.02303 0.02832 0.03282
12 0.03473

! T
@3.1)  P(Xy Xy -, X)=(my, my -, m)} =] o,
il:l ’ni! -

(Oénb ‘é ’n1«=n) ’
=1

where 0<p;, 3., pi=1, will be called a system of multinomial variates.
In this section, asymptotic independence (I) properties of this system are
investigated.

LEMMA 2.3.1. Let X, be a random variable with a probability distri-
bution, P*», defined over a measurable space (R, S), where R is a metric
space with distance D(z, 2'), and S is a o-field of subsets of R, contain-
ing all open subsets of R. Here, throughout n=1, 2, ---, (R, S) s fized.
Furthermore, let t(z) be a real-valued function defined on R. Under this
situation, suppose that X, converges in probability to a given point z, of
R, as n tends to enfinity. Then, if t(z) s continuous at z, and if
Z[P(XL)]<K (independent of n), we have

2.3.2) EHX)]->tz), (n—>c0).

The proof of this lemma is easy and is omitted.
Now, we shall consider two subsets of the above system, {X, ---, X,}
and {Xi,, ---, X,_,}, where k is a positive integer such that 1<k<r—2.
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The limiting process of related parameters, under which our discussions
are made, is:

(2.3.3)  m—00, n(p+---+p)>K(< o), and p,->p}(>0),

where k and » may vary depending on this limiting process.
First, we show the following

THEOREM 2.8.1. If k=2, then the set {X,, ---, Xi} is asymptotic-
ally independent (I) under the limiting process (2.3.3).

PROOF. Let P(n,, ---, n;) and P(n;) be the probabilities of the dis-
tributions of X,=(X,, ---, Xi) and X, respectively, i.e.,

P(nl’ coe, nk)

AT !(nqi'!nl_ A S
0=n, E:; n,=mn),
and
P(n)= -@m”‘—_‘n-i)—!p,.w(l—pi)w , (0=m.<m).

To prove the theorem, it is sufficient to show that

.‘findep(Xh ct Xk) =0SZSIP(n1, c Ink)—P(nl) . .P(nk)]_éo ’
”i 7

i=1, oo, k&
under (2.3.3). By theorem 1.4.2, it holds that
(2'3'4) I/.'indep(AYl, tt Y “Yk)é2 ‘\/Iindep(Xl’ oy, Xk) ’

where

Ilndep(Xl, ceey, Xk)= g[log P(-le M) Xk) :I ,

. P(X))- - - P(Xy)
& being the expectation sign with respect to the distribution of X,.

Then, we can get
Ilndep()(b Tty Xk)én(pl-l_ ot +pk)z’

from which the theorem follows.

It is noted, concerning this theorem, that if np,—«,, 1=1,2, ---, k,
under the limiting process (2.3.3), then the limiting distributions of X,’s
are Poisson distributions with mean a,’s respectively.

In the second place, we shall prove the following



114 SADAO IKEDA

THEOREM 2.3.2. Let X(k)-:(Xl, ey, Xk) and X(,_k_1)=(Xk+|, crey, Xr—-l)°
Then, X, and X,_._,, are asymptotically independent (I) under the limit-
ing process (2.3.3).

PROOF. Put

— k — r—1
Xk=§14¥t; Xr_k-1=5‘_. )(t ’

i=k+1

and

r—1

x
D, =¢E=1 D, ﬁr—k—l= 2D .

i=k+1

The Kullback-Leibler mean information for proving the independence
under consideration,

P(Xll "'9Xr-l) :l’
P(Xh Sty Xk)P(Xk+1’ ) Xr—l)

Iindep(X(k)y -X(r—k-l))= g[IOg

is identical with

P(X;, X)) ] ,

(2.3.5) LBy Xr)= 2 | log PEu X
P(X,)P(X,_._,)

where & is taken with respect to the joint distribution of X, and X,_,_,.
We shall calculate the right-hand member of (2.8.5). From the distribu-
tions of X;, X,_,_, and (X;, X,_._,), it follows that
n—X)!(n—X,_,_)! ]
n!ln—X,—X, )!

+n(1 —f’k_ﬁr_k-x) lOg (1 ——i’k—f)r—k-l)

_n(l _1—’1;) IOg (1 _1—7);) _n(l _51'—1;—1) IOg (1 _ﬁr-—k-o .
The first member of the right-hand side of this equality satisfies the
inequality

b vk Rl e |

2.3.6) Luao( X X, = %[log

=n— P g’[(l————X'""“) log (1—————‘)(""‘1 )] ,
1-p,_,_, n n
where the expectation sign &’ is taken with respect to X, ,_,. Since

X,_._./n converges to 1—p¥* in probability under (2.8.3), by applying
lemma 2.3.1 we obtain
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L<np, log p*

for sufficiently large ». Thus we can get

— — _ p*
Iindep(Xk, Xr—k—l)énpk IOg ‘i“T‘rT“_

iy

for large n, from which the theorem follows.
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