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1. Introduction -

The terminology ¢ estimator ’ is usually understood as a measurable
mapping from the sample space into the parameter space. There exist,
however, the cases in which traditional statistics (estimators in a loose
sense) have the distribution ranges which are not included in the para-
meter space. Such cases can occur often when the parameter space is
‘restricted ’, namely when it is certainly known that the parameter is
integral, or restricted by inequalities, etc., that is, when the para-
meter space is a proper subset of the ‘natural’ one. We see also the
cases when the estimator of vector parameters are obtained by the
moment method.

We shall call the estimator of which the range is a subset of the
parameter space ‘feasible’ in order to emphasize the property. Several
authors use the maximum likelihood method to obtain feasible estimators
of restricted parameters, finding the parameter value which maximizes
the likelihood function within the restricted parameter space. We ob-
serve that the estimator’s property of feasibility sometimes contradicts
its unbiasedness. See the examples of section 3 of this paper and those
in [1] where H. Morimoto and the author discuss the UMV unbiased
estimator of the restricted selection parameter.

If we require that the estimator is both feasible and unbiased, then
we have to rely on randomization. In this note we state a theorem
giving the randomized feasible UMV unbiased estimator. We discuss
the estimation of a parametric function y(4), though it may often be a
parameter itself.

The author is grateful to Professor E. W. Barankin for his helpful
comments on a previous draft of this paper.

2. Notation and theorem

X is a random variable over a measurable space (27 %), and F=
{P,; 6€ 2} is a family of its distributions. For {P,}, there exists a
minimal sufficient statistic 7', of which the family of distributions {P;}
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is complete. We estimate a real parametric function y(¢) with the range
G={7(6), 6 € 2}, a Borel set on the real line.

A randomized estimator is a family of distributions {Q., x € -2} la-
beled by the sample value = on the space (G, 2’), where 2 is the
class of all Borel measurable subsets of G. This randomized estimator is
denoted by Z. We observe the sample value X=2, and determine the
value of the estimator Z=z according to the distribution Q.(+) using some
random device.

We shall find the randomized estimator Z, which is unbiased;

(1) EE, (Z)= Sz’(SGZdQ) dP,=1(6)
(E,,(Z) should be % measurable) and minimizes the variance
(2) V(Z)=E,Eq (Z—1(0))

uniformly in 4.

THEOREM. We assume the following conditions on {P,} and y(6):
(?) G, the range of the parametric function y(6), is a closed set of real
line. We denote by G the interval of which the end points are the left-
most and rightmost points of G (they may be +o0). (it) There exists
such a statistic ¢(t) based on T=4(X) as

S o(t)MPT=r(0), for all 6€

and its distribution ranges are subsets of G for all 9 ¢ Q.

G—G is a union of at most countable disjoint open intervals. De-
note them by (a;, b), 1=1,2, «-- .

Then the UMYV feasible randomized wunbiased estimator of y(6) is
given by

Z'=q(t), if o) eG
(3) { a;, with probability (b;—¢(t))/(b;:—a.),
' z t={bi, with probability (¢(t)—a.)/(b;—a.),

if o(t) € (a;, b)) C G-G ’

and its variance is

(4) VdZ)=V(eT)+2 S (b= ()N p(t) —a)dP; .

:p(t):(a‘, bt)

Z* s essentially unique because of the completeness of {Pr}.
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PROOF. The conditional expectation of a randomized estimator Z
(5) Eo (Z)=m(x)

is the mean of the distribution Q.(-). The variance of Z, (2), is written
as

(6) Vi(Z)=E{((m(X)—r(0)y'+ V(Z|))

where V(Z|z) is the conditional variance given X=2z, or the variance
of the distribution Q.(+);

(7) V(Z | x)=Eq(Z—m(x)) .

For a fixed value of m(x), this expression is minimized by the Q.
of the following form;

Z=m(x), with probability one, if m(x)eG
(8) P {ai , with probability (b,—m(x))/(b;—a.),
b, with probability (m(x)—a.)/(b,—a.),

if m(x) € (ai; bl) ’

and the minimized variance is

. (o, if m(x)e @,
(9) min V(Z lx)—{(bi_m(x))(m(x)—ai), if m(x) e (a;, b).

The next stage of the proof is to find such a statistic m(x) as satis-
fies E(m(X))=y(f) and minimizes the expected value of the ‘loss’

(m(x) —7(0))’, ifmx)eG,

(10) - L(mi(=), 6) :{(m(w)—r(o))’+(bi—m(x»(m(x)—ai), if m(x) € (@ b),

the conditionally and uniformly minimized variance. The function L(m, 6)
is linear for m in (a;, b) for all <. In fact, its curve is a segment be-
tween the points (a;, (a;—7(8))?) and (b;, (b;—7(8))*). So, the function is
strictly econvex in G. The application of the Rao-Blackwell theorem shows
that the essentially unique statistic ¢(t(x)) is what is required.

3. Examples

Example 1. A family of normal distributions N(4, ¢°). Assume that
o’ 18 a known constant and 6 belongs to 2=(—o0, —b]u[b, o), b>0,
and that a sample of size n is observed. The UMV feasible randomized
unbiased estimator of ¢ is
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Z'=% if Fe(—co, —b]ub, )
o e € am: aan,
Its variance is
-

(12) m(zr)=%+g_gb’—tf) a/ bn_qS(}t/—:—/—i_)dt

g zwpm o).
where
(13) Wb, 6)= (b — 6 — 1)[O(b+0)+ B(b—0)—1]

+(b+0)p(b—0)+(b—0)p(b+0) ,

and ¢&(t) and @(t) are respectively the probability density function and
the cumulative distribution function of the standard normal distribution.
The function W(b, 6) is illustrated in Figure 1. Further deletion of dis-
joint open intervals (a;, b,), 1=1, 2, +++, from £ increases the variance
W(Z") by

iz W( (b;—a) vn (bi+a;+26) vn )
’ .
n i 20 20
W(b, 6)
-
.4
3 AN
&
.2 > Fig. 1. Increase of
variance function
.1
k=05
1
0 1 2 8

If the sufficient statistic is a true reduction of data as in this ex-
ample, any ancillary statistic is independent of the sufficient statistic.
Here, for example, the statistic U=0"'((X,—X;)/( v/2 ¢)) is distributed
uniformly on (0, 1) for all 6. Therefore, U may be used to determine
the value of Z. No random device is necessary, and we are able to
construct feasible UMYV unbiased estimators which are apparently non-
randomized.

X remains to be a minimal sufficient statistic if the parameter space
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2 contains more than two different points, and remains complete if Q
contains an open interval, however short it may be. If 2 is, for ex-

ample, the set of all integers X is not complete and there exists a non-
randomized unbiased estimate [)_(—1—1/2], rounded integer of X, which has

smaller variance than X for large n (see Hammersley [2]). The parameter
space 2=[b, o) may be regarded as the limit of 2=(—oo, a]n[b, o),
a—>—oo. Then the estimator

b, z<b,

(15) o)== | Fzb,

may be regarded as the limit of a sequence of UMV randomized unbiased
estimators, of which the limiting variance is infinitely large.

Example 2. Bernoulli trials. Let X], ---, X, be independent of each
other, and let X;’s take 1 and 0 with probability p and ¢=1—p respec-

tively. The parameter space is [0, 1]— v (a;, b). Tzi‘,Xi/n is a minimal
sufficient statistic and the UMV unbiased estimator of p. If a sample
point t,=k/n does not belong to the parameter space but to an interval
(a;, b)), V(Z7) increases by (','Z)p"q""‘(bi—k/n)(k/n—a,-).

When n=3 and 2={0, 1/4, 1/2, 3/4, 1}, the UMV feasible rando-
mized unbiased estimator is

Z'=0, t=0,
1/4 with bability 2/3,

zz={/ VIEh probability 2/8, g,
1/2 with probability 1/3,

P {1/2 with probab.il.ity 1/3, t=2/3
3/4 with probability 2/3,

Zt=1, t=1,

and its variance is 3pg/8. The variance is smaller than that of, for ex-
ample, a non-randomized feasible unbiased estimator (X,+ X;)/2.

Example 3. Uniform distribution on [0, §]. Let the parameter space
2 be the set of all positive integers. As discussed in [1] T=[X,..], the
integer part of the maximum value, is a minimal sufficient statistic and
complete, and the UMV unbiased estimator of 6 on (0, o) is

. (t+1)n+l_tn—1
=T

’

and its variance is
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ViAe(T)) = 01n :ii (t(zj)lﬂ)"tn (0;1),. (n->00) .

As t+1<et)<t+2, t=1, 2, -+, the UMV feasible randomized unbiased
estimator is

Z'=1, t=0, A
,_ (t+1, with probability ¢+ —2t")/((t+1)*—t") ,
_{t+2, with probability /((¢+1)*—t"),
t=1,2, «»e, 6—1.

Its variance is

St ~2 (0—;—1—)" (n—>) .

V(2=

t=1

In this case, we can find feasible non-randomized unbiased estimators as
2[X]+1, 2[X+1/2], ete. Their variances are, of course, larger than V,(Z°).

Example 4. Hypergeometric distribution.
(M)(N——M)/ N M=0,1, «.., N,
z )\ n—=x n/), 2=0,1, ---,max(n,M)
N and n are given integers, and we estimate M. The non-randomized

UMYV estimator is XN/n, so, when N/n is not integral, the UMV rand-
omized integral estimator is

_ {[a;N/n] , with probability [xN/n]+1—zN/n,
" [zN/n]+1, with probability xN/n—[zN/n].
W(Z) is larger than V(XN/n) by at most 1/4.
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