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1. Introduction

Let «(t) be a real valued weakly stationary process with discrete
time parameter ¢, such that Ex(t)=0, Ex(t)*=0’, Ex(t)x(t+h)=0d'p..
The problem considered in this paper is concerned with the estimation
of the correlogram p,. For this, we assume the variance ¢’ to be known.
Further, since the correlogram p, is symmetric about h=0, we take h
to be nonnegative. For the correlogram p,, the unbiased estimate
1
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is usually considered. However, we do not take this estimate, as it is,
but make modification. The essential part of our modification is to
replace x(t)x(t+h) by x(t)sgn(x(t+h)) in the estimate 7,, where sgn(y)
means 1, 0, —1 correspondingly as ¥>0, y=0, y<0. The statistic thus
obtained originates in Takahasi and Husimi’s method of determining the
period and decrement of a vibrating system exposed to irregular statistical
forces [4]. This statistic has been used as a simplified estimate of the
correlogram in many practical fields. However, its validity has not
been assertained. This problem was first presented to the author by
Prof. R. Kawashima, the Faculty of Fisheries, Hokkaido University.

He used (1/N) ZN x(t)sgn(x(t+h)) to simplify calculations of the covariance
t=1

in analysis of ship’s rolling records [3].

In the present paper, we shall investigate mathematical and statistical
properties of the statistic obtained by that replacement from 7,. In
section 2, it will be shown that, when x(t) is a stationary Gaussian
process, we can give an unbiased estimate of the correlogram, in terms
of x(t)sgn(x(t+h)). The estimate is
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é 2(t)sgn(a(t+h)).

The variance of this estimate will also be evaluated. In general, it is
not easy to evaluate the variance, and, our discussion is mainly restricted
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to the case where 2(t) is a Markov process. Further, in section 3, we
shall give numerical comparisons of the variances of our estimate Tn
with those of the ordinary estimate 7,. From this comparison, it will
be seen, at least in that Markov case, that our estimate has smaller
variance than the ordinary one for small lag h.

2. Mean and variance of estimate 7,

First, we shall show that, if x(t) is a stationary Gaussian process,
7. 18 an unbiased estimate of p,.
In fact, for A#0, putting simply x(tf)=x and 2(t+h)=y, we have

Ex(t)sgn(x(t+h))
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Consequently,
Ex(t)sgn(a(t+h)=+/Z op,,
and finally
E@r)=ps -
For h=0, we can also show
E(,)=1.

In the next place, we consider the variance V(y,) of estimate 7,.
Evaluation of the variance of 7, proceeds as follows. We have

Vi) =E(.—1)'=En—1,
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and, for simplicity, putting x(s)=x and z(¢)=y,
Ex(s)sgn(x(s))x(t)sgn(x(t)) = E|x(s)|| x(¢)|

== [ — L (w2 ) ded
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Using the expansion (S. O. Rice [2], section 3.5)
rru’v"‘ exp(—u’'—v'—2auv)dudv
0
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we get, for example,
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Thus, we have

Ex(s)sgn(x(s))x(t)sgn(x(t))
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and finally,
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For h>0, the variance of y, is given as follows. As was stated in
section 1, we hereafter restrict our attention to the case where z(t) is
a stationary Gaussian Markov process. A process (f) is called a Markov
process in the sense of J. L. Doob [1] when z(t) satisfies the following
condition ;
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for any integer n=1 and any parameter values t,<t,<--+<t,, the con-
ditional probabilities of x(t.), relative to x(t), x(t,),« -+, (t.—.), are the same
as those relative to x(t,_,) in the semse that for each 2

P{w(tn)ézlx(tl)y x(tﬁ)!" ) x(tn—l)} :P{x(tn)ézlx(tn—l)}

with probability 1.
In this case, the correlogram is expressed as

er=a"  (la|=1)
(see J. L. Doob [1]). Let

fn(xly Lgy *°°, wn)

be the probability density function of the n-dimensional Gaussian
distribution. Then, for a Gaussian Markov process #(t), and for any
U<ty <eoo<t,_y<t.,:<t., we have

fn(x(tl)’ w(tﬂ)r ] x(tn—2)7 x(tn—l)’ x(tn))

_ i@, 2(t) .. Sil@Ea-s), () olt), 52).
Si(x(ts)) Fu@(t,) fo(z(t,_,), z(t.))

We use this fact for calculation of the variance of y,. For simplicity,
we assume that N is sufficiently large and N>k. Then we obviously, have

variance of y,= V(y.)=E(,— pn)'=Er.— 0,
and

Ei=8 (VL LS augntate+hy) )
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s>t+h

N-h

+2 ;2 Ex(t)sgn(x(t+ h))x(t+ h)sgn(x(t+2h))

+ ﬁ Ex(t)’sgn’(x(t+h)):l .

In the following we evaluate each part of summation.
i) When s>t and t+h>s, we have
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fu=(t), x(s), 2(t+k), 2(s+h))

_ ful®(t), ©(s)) fi(@(s), 2(t+h) . .
F@@) iy S CETRhaEEh)

For simplicity, we put
z(t)=2x, x(s)=y, x(t+h)=2, x(s+h)=7.
Then we have
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Using the expansion formula used in the evaluation of V(;,), we can get
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Similarly, we get
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Therefore we obtain

Ex(t)x(s)sgn(x(t+h)sgn(x(s+h))
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ii) When s>t+h, we have, using the same notation as in i),

fu@(t), w(t+h), =(s), 2(s+h))
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In this case, we have
E(x/z,y, §)=po:%
E(xy|%, §)=E(yE(x(%, y, 9)[%, ¥)
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Consequently, we get

Ex(t)sgn(x(t+ h))z(s)sgn(x(s+h))
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iii) When s=¢t+h, the necessary joint probability density function
is fi(x(t), #(t+h), 2(t+2h)). With the same notation as in i), we have
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Using this expression, we get

Ex(t)sgn(x(t+ b))zt + k)sgn(x(t+2h))
= 20°0(1=0)" (& (2p)™
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I(m+2)(m-+1)).
iv) When t=s, we have
Ex(t)(sgn(x(t+h))) =0,
Using these results, we finally get
V() =Er.—pi,
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3. Comparison of 7, with 7,

-1—2 L ﬁ z(t)x(t+h) for a stationary Gaussian

Th riance of 7,=— —
e variance of 7, TN

=

process is as follows:
i) When A=0, we have

. ~ - 2 N—-1 . 3
variance of 7,= V(To)_—'w—, kg'l (N—Fk)1+200)+ l—v——l .

ii) When h+0, assuming Markov property, we have
variance of 7,= V(7,)=Er.—p.

1 h—1 N 9

N-1
+2 > (N—k)or(1+20i1)
k=h+1

+6(N—hyi-+ N(L+261) |
—pn-

In this section, we compare, numerically, the variance of y, with
that of 7,.
We are considering a Markov process, so we have

p=a'"! (la]=1).
Numerical comparisons are made for the following cases:

a=(0.8)%, 0.8,

N=50, 500.

The results are shown in Table 1 and Figure 1.

Taking into account the present numerical results and the ease of
computation of 7,, we can say that the estimate y, is a fairly good
estimate of the correlogram for a stationary Gaussian Markov process.
This will also be referred to in future by M. Sibuya from the point of
view of estimation theory.
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TABLE 1%
a=0.8
N=500 =50

O
h V(r,) V(7,) V(z,) V(7,)
0 1.0000 0.0048 0.0181 0.0464 0.1743
1 0. 8000 0.0070 0.0174 0.0630 0.1671
2 0.6400 0.0084 0.0160 0.0808 0.1535
3 0.5120 0.0093 0.0146 0.0894 0.1391
4 0. 4096 0.0098 0.0133 0.0949 0.1263
5 0.3277 0.0102 0.0122 0.0984 0.1159
6 0.2621 0.0104 0.0113 0.1007 0.1079
7 0.2097 0.0106 0.0107 0.1021 0.1019
8 0.1678 0.0107 0.0102 0.1031 0.0975
9 0.1342 0.0107 0.0099 0.1037 0.0943
10 0.1074 0.0108 0.0096 0.1040 0.0921
11 0.0859 0.0108 0.0095 0.1043 0.0916
12 0.0687 0.0108 0.0093 0.1044 0.0901
13 0.0550 0.0108 0.0093 0.1045 0.0892
14 0.0440 0.0108 0.0092 0.1046 0.0885
15 0.0352 0.0108 0.0092 0.1046 0.0879
20 0.0115 0.0108 0.0091 0.1047 0.0873
25 0.0038 0.0108 0.0091 0.1047 0.0872
30 0.0012 0.0108 0.0091 0.1047 0.0872

a=(0.8)5=0.32768
N=500 N=50

N on
ho Vi, Vi) Vir,) V7,
0 1.00000 0.0014 0. 0050 0.0138 0.0494
1 0.32768 0.0034 0.0032 ‘ 0.0338 0.0316
2 0.10737 0.0036 0.0026 0.0359 0.0259
3 0.03518 0.0036 0.0025 ‘ 0.0362 0.0249
4 0.01153 0.0036 0.0025 ‘ 0.0362 0.0247
5 0.00378 0.0036 0.0025 ‘ 0.0362 0.0247
10 0.00001 0.0036 0.0025 ‘ 0.0362 0.0247

comments and advices.

tions of the FACOM-128 computer to prepare the numerical results.
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0 As was stated Virximﬂﬁ.“Akaike [5], the variance of 7 is asymptotically of order 1/N. The
present results are in accordance with this fact.
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