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1. Introduction

We want to consider the optimum allocation for the estimation of
population means in stratified random sampling when a multivariate
problem is treated. In ordinary sampling survey we must consider many
variables at a time, but we treat the estimation problems of these
variables independently, and the optimum allocation method by Neyman
is obliged to be modified so that a certain compromised size is taken
from among different sample sizes for each variable. In these circum-
stances we must know the correlation coefficients among the variables
in each stratum, but if it is possible from previous experience we can
get an optimum allocation procedure for the estimation of means. Even
if we stratify the sampling units by each variable separately as used in
the ordinary case, we can also get an optimum size of allocation for
the multivariate case.

2. Allocation method for multivariate case

Let us now consider the estimation problem of the means of a cer-
tain multivariate population by stratified random sampling.

At first we treat the case of two variables  and y. Let R denote
the number of strata, N and #» the sizes of the population and sample,
respectively. Further, let N, and %, denote the sizes of the ith popu-
lation and the corresponding sample, respectively. Let % and Y be the

sample estimates of the population means X and Y, respectively, and
the variances and covariances of Z and ¥ be o2, 2, and o3 respectively.
Then the ellipse of concentration is given by the variance-covariance
matrix as follows.

E-X, y—f’)("% ) @ X, g-Yy

=(¢, 77)/1—1(51 77)’ (1 )

where the prime shows the column vector. If we make use of the ex-
pressions
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ST NG, (2)

1 — 1 %
x;= Ly Yi=—— > Yp » (3)
n; =1 nj k=1
we obtain
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and for 1#7J
— 1
E(wiyj)=NNj gkszuY,k . (6)
Therefore, we have from (4), (5) and (6)
Sp— a7) — o 27) — 1 i 2 N n 1 N
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———= 3 NiX,Y,\—— 3 3 NN XY,
i=1 N? 7%
=_]_'__ERN2 Ni—mn; Tz, (7)

For o5 and o}, we can get the similar equations to (7). Thus the equa-
tion (1) becomes by (7)

& DA7YE, 1) =(E0;— 289055+ 70) (0i0; — 055)

N —n; U; N —Mn; Tzy

=1yt sy N2 T — 28y~ S N3 AT TEn

{ N’IZ N,—1 n; & N’tz—] N,—1 n,
i1 & s No—my 9z, / 22 9 )
B N n} (o20i—a%; (1)

and the area of this ellipse of concentration is given by
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T Vel—al .
Hence, to decide the optimum size %, for the minimum error in the
simultaneous estimation we minimize the value (sloi—o2;) under the
R
condition n=31n,.
i=1
Let us consider

2

F= (zﬂ] N Ne=m %=

ul 2 Ni—n,; a’?’t)
i=1 .N;—]. ni ) (2 N n,

| —
i=1 N,,—l n;

R . Oy \1 R
—(2 N?—JX;__’;’ nﬁ”‘) +233m, (8)

where 2 is a Lagrange’s multiplier. Differentiating by », and equating
to zero we have

2
i 2 2 —
- (aiia;,+ a,’,ia; 2"%%"57’)—'1 . (9)

12

At first we get

n,=N; Vaiia§+o§ia§—2a,‘,t05; IV, (10)

hence n, is apparently proportional to N;, and also depends on ey Oy,
and 0.4, FPutting

T2y, =090y, and N,—n,=N,—1

we have from (9) after some calculation

Ba g Gy ooy Br N §=1,2, .-+, R (11)
n, N,y Mg
where
ay=NINai s} + 00}, —20,,0.,)>0 . 12)

Thus the optimum size of allocation is obtained by solving the simul-
taneous equations (11). For this purpose put %,=1/u,. Then

AU+ Ayt oo FapUp= AN

i

2 , 1=1,2,+++ R, (13)

At first we insert the first approximate value u®=(u{®, uf®, «+-, uP)=(1,
1, ++,1) into the left side of (13) and get the second approximate value
u®=u®, us®, +++, uP) with
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) ud )
uP=p (3] agu) (14)

where p= 4/ 7 N>0. Inserting this u® into the left side of (13) we
have the third approximate value u® and we iterate this procedure until

we can get a limit. As to the existence of this limit we prove it in
the following.

From the above assumption we get
R -1/2
u§2’=,u<2 a,-j>
j=1

5 R @ —~1/2

“« @ )Y R ~y2
o=l ol
= i= .
R @\ & -12(/ R @\ R 1/2) -1
=p QiU ) <2 aij) {(Z QU5 ) +(Z aij) }
j=1 =1 i=1 =1
R

X2 a,(1—uP) .
=1
We can assume 0<u$<1 and we can conclude
uPzud .
In a similar manner we can prove
U Sul®
by the above inequality. Thus, we have generally
0<uP=uP<P< -0 <1, (15)
0< «oe =uPZuP<uP<1, (16)
hence we can see lim @ and lim U+ exist. Moreover
u§2k+1)gu§2k) ) (17)
ugzk)éugﬂc—l) ) (18)
so we get
(u§2k+3) _ ugzkn)) _ (u§2k+1) _ ul(Zk))
— (ug2k+3)_ul{2k+1)) + (u?k) _— u§2k+2)) g 0 .
Hence we have

'ug2k+3) — ug2k+2)l é ,ugzk+l) — uszk)]

and in general (except the case when equalities hold in all stages)
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lim [u@e+d — gzx)l =0

Koo
that is, there exists lim u{®.
Example: Let us put
R=2, N,=NJ3, N,=(2/3)N,
a=1, 7,=3, 0i=0.3,
0,=2, a,=5, 0;=0.7 .

Then the equations (13) are given as follows :

2.8u, +24u, = £

Uy

2
24u,+144u, =
U

2

By the above mentioned procedure we obtain the following table :

k]l 2 3 4 5 6 7 8 9 10 11 12

wm® | 1 0.194 0.645 0.356 0.481 0.414 0.447 0.429 0.438 0.433 0.435 0.434

1 0.077 0.253 0.139 0.187 0.161 0.174 0.167 0.17L 0.169 0.170 0.169

2

Thus we have

1 0434, 10169
that is, .
M —0.389 .
Ny

If we use the ordinary procedure of optimum allocation, we shall have

mo_ 13 =0.289 for «

n, 2433
and
_ﬁl_zﬂg'_zogm f
n 24B3 o v

Therefore, when we take a compromised procedure, we have

M1 0.28940.316)=0.303 .
n, 2
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If we can put p,=p,=0 in the above example, we have the following
equations

4u1 + 44ug - L:
U

1

2
44y, + 480u,=%

2

from which we obtain

M= 0.303

Ny

which is very near to the value in the above compromised case.

3. Method of stratification

As was seen in the preceding section we may treat the equation (8)
in order to stratify the sampling units to get better estimates of means.
The essential part of the method for a proper stratification is to mini-
mize the expression

= (i) () (520,

i=1 N, i=1 N, i=1 M,
R N4 R R N2N2
212_1 n; U:zuo';llz(l_.”%) + zl}#z n:,njj o'zia,,j(o'zta,j—p il jo’ja”i) (19)
(2

where p; is the correlation coefficient between  and y in the ith stra-
tum. Let us take the second term of G in the last expression. To
minimize this term we stratify the sampling units so that

02,0y, 0i0j0z 0y,

approaches to zero. That means the gradient of the regression line of
y on x in the ¢th stratum equals that of « on y in the jth stratum for
any ¢ and j. Accordingly, the two regression lines must coincide in
each stratum and have the same gradient with correlation coefficient
+1. In this case the first term of G equals 0 and the value of G also
equals 0. In practical problems it is better to use a stratification
method which makes p, near to 1. Generally it is more difficult to make
p: near to —1 than to 1.

On the other hand, when the sampling units are stratified so that
p: becomes 0 in each stratum, which is used in many practical cases,
the value of G becomes larger than that in the above-mentioned better
stratification.
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4. General method for multivariate stratification

We can develop a similar argument in the case of 3 or more vari-
ables.

In the case of 3 variables we put
o: oz;; 0sF
R
F=N¢% o0z; 0% g7 |+FADI N, . (20)
i=1
oz 037 oF

Differentiating F' by n, and equating to zero we have

R R a .
23— =iN'n;, =12+, R, @1

R R AN? L ,
2 a’ijkujukz 2 ? 7'=1, 2, e, R (21)
=1 k=1 ;

where
a':‘ a’i"i Ty,
Un=NININL 3 |0y, 0, 0 (22)
id,

2
a”k‘k a"k’k U‘k

and the summation covers all permutation (¢, 7, k). The method to solve
this simultaneous equations (21) is carried out by the successive appro-
ximation in a similar way as in two variables.

As for a better stratification we can proceed in the same way as
in two variate case.

Let us put
R 2 R A2 R A2
6=(3 Moz ) (5 Mo ) (5 Migy)
izt n, Y \i=1 om, Y \imnomy ¢
R N2 R N2 B A2
+2(33 floned) (31 o) (3 Sione)
i=21 n; ZiV3 %‘; ", Yt \ 5 n, Ti%
R 2 R A2 s R A2 R A2 2
(5 ) ) )
=on, YN=a om, =1 m, Y\i;1 om; P
R A2 R A2 2
(S M) (& 0, )
is1opm, Y \is1o o, 0
2
az 027 012
1 ¥4 %
NiN;N,
=3 ==Lt & a.l. (23)
@i mmgm, |77 % 73

2
Ors, Ons, Oz
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In order to minimize the value of this expression G we try to minimize
these values of determinants for any 4, 5 and k. This is accomplished
when the regression planes in all strata have the same direction cosines
with multiple correlation coefficient 1. Because if the value of the
determinant for j=Fk, for example, is zero, then the direction cosines
Rﬁf)/a,j: Rl(z”/a,,j: Ré’)/a,j of the normal line of regression plane of 2 on
y and z in the jth stratum satisfy the following equation :

R R RP
1 gzi + i pxiyiayi + Rkt B pziziazi = 0 (24)
Iz, vj 95

where RS? is the cofactor of p,, in the determinant

L oy Pap,
BP=1pzp, 1 py,
p 1’ j p ViZs 1

in the jth stratum.
On the other hand if the multiple correlation coefficient equals 1 in
the ith stratum, then R® =0, hence

RO+ R0, + R0, =R©=0

that is,

R® (é) R®
O+ 0,0y, + 0, . 0. =0 . (25)
[ [}

Oz, ‘ Yi %

As from (24) and (25) we obtain that two direction cosines are pro-
portional to each other, we can stratify the sampling units so that
the regression planes in all strata become parallel to each other with
multiple correlation coefficient 1.
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