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Summary

The problem of selecting a subset of & gamma populations which
includes the ‘‘best’’ population, i.e. the one with the largest value of
the scale parameter, is studied as a multiple decision problem. The
shape parameters of the gamma distributions are assumed to be known
and equal for all the k& populations. Based on a common number of
observations from each population, a procedure R is defined which selects
a subset which is never empty, small in size and yet large enough to
guarantee with preassigned probability that it includes the best population
regardless of the true unknown values of the scale parameters 6, Ex-
pression for the probability of a correct selection using R are derived
and it is shown that for the case of a common number of observations
the infimum of this probability is identical with the probability integral
of the ratio of the maximum of k—1 independent gamma chance variables
to another independent gamma chance variable, all with the same value
of the other parameter. Formulas are obtained for the expected number
of populations retained in the selected subset and it is shown that this
function attains its maximum when the parameters 6, are equal. Some
other properties of the procedure are proved. Tables of constants b
which are necessary to carry out the procedure are appended. These
constants are reciprocals of the upper percentage points of F,.., the
largest of several correlated F' statistics. The distribution of this statistic
is obtained.

1. Introduction

In many problems of practical interest, the classical tests of homo-
geneity do not provide satisfactory answers. In recent years, some
work has been done toward developing techniques which try to incorporate
in the original statistical formulation of the problem the plans of the
experimenter for further analysis after the hypothesis of homogeneity
i.e., the hypothesis of equality of parameters is tested. In cases where

* This work was supported in part by Office of Naval Research Contract Nonr-225 (53) at
Stanford University. Reproduction in whole or in part is permitted for any purpose of the
United States Government.

199



200 SHANTI S. GUPTA

the experimenter tests for homogeneity and regardless of the outcome
ranks the populations on the basis of further analysis of the same data,
it would, clearly, be more realistic to assume at the outset that parameters
are unequal and formulate the main problem as a ranking problem.

The formulation considered in this and earlier papers [4], [5], [6],
[7] is that of selecting a subset of k populations which contains the
‘“best”’ population or all those populations which are better than a
standard. The best population is usually defined as the one with the
largest (or smallest) parameter value. Some further remarks on the
motivation of this formulation are given in these papers.

In the present paper we are interested in the scale parameters
0.(t=1,2,0++ k) of the k¥ gamma populations with a common known
shape parameter . The object is to select a subset which includes the
population with the largest # with a preassigned probability of at least
P*, regardless of the true values of the k parameters §,. The procedure
R depends only on the sample means each of which has a gamma
distribution.

It should be pointed out that this *‘selecting a subset’’ formulation
is different from the indifference zone formulation for the problem of
ranking means and variances of normal populations treated in [2] and
[3], respectively. In the latter formulation, an indifference zone in the
parameter space is preassigned, the common number of observations
needed is tabulated and the final decision is the selection of single population
which is asserted to be the best population. In the formulation of this
paper the number of observations is given, constants needed for carrying
out the procedure are tabulated, and the final decision is the selection
of a subset of populations which is asserted to contain the best population.

There are several aspects of this formulation which have already
been described in [4], [6], [7], and which also apply to the problem
treated in this paper. One is that the procedure R can be regarded as
an elimination or screening procedure. Another is that a confidence
statement can be made after experimentation. A third is that the expect-
ed size of the selected subset can be regarded as a measure of the
efficiency of the procedure.

The main problem is formally described in section 2 and the proce-
dure R is defined in section 3. In section 4 we derive exact and
asymptotic expressions for the probability of a correct selection using
procedure R and the infimum of this probability over all points in the
parameter space. Section 5 gives the expression for the expected number
of populations retained in the selected subset. In section 6 we discuss
and prove some other properties of the procedure R. The distribution
of F..., the largest of several correlated F' statistics is relevant to the
procedure R and is discussed in section 7.
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2. Formal statement of the problem

Let =, my,<««, 7, denote k given gamma populations with density
functions

2.1)

o eXD(—alA)E/0) ", 30, 630, i=1,00-,k

with a common parameter r(>0) which is assumed to be known. The
ordered parameters 6, are denoted by

(2-2) 0[1]§0[z]§ ce éa[k]

(equalities being allowed for mathematical convenience only). It is as-
sumed that there is no prior information available about the correct
pairing of the k given populations and the ordered scale parameters Oriz-
The population with the parameter 6, equal to 6, is called the best
population. The goal is to select a subset of the k£ populations containing
the best population. Any such selection will be called a correct selection
(CS). Then the problem is to find a rule R such that for a preassigned
probability P*
(2.3) P{CS|R} =z P*

regardless of the true unknown values of the population parameters.
It is assumed that the same number 7 of observations will be taken
from each population.

From each population r(i=1, 2,--+, k) we take m observations
z(j=1,2,-++,n) and compute E,:; xy/n. The sample means %, form a
set of sufficient statistics for the problem and the rule R (defined in
Section 3) depends only on these statistics.

It is clear that we prefer rules which make the size S of the selected
subset never empty and as small as possible, subject to satisfying 2.3).
[One can always attain any specified P*, even unity, by putting all the
populations in the selected subset.]

3. Procedure R

Let the ordered values of the k observed sample means z,(i=1, 2,+- -, k)
all based on a common number n of observations be denoted by

@3.1) T STn= e ST

The procedure R is then defined as follows.
Procedure R: *‘‘Retain z; in the selected subset if and only if

(3.2) 7,2 by
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where b=b2nr, k, P*) is a constant with 0<b<1 which is determined
in advance of experimentation.”

The constant b is chosen to be the smallest number which satisfies
the basic probability requirement in (2.8) for all true configurations
0=(0,, 0, +++, 0,). Tables of the values of b for v2=nr=1 (1) 25,
k=2 (1) 11 and P*=.75, .90, .95 and .99 are given at the end of the
paper in Table IA, B, C, D; the reciprocals of the b values can also be
regarded as percentage points of a largest Studentized y’-statistic or the
percentage points of F,, as explained in section 4.

Illustration

From each of the k=4 gamma populations with parameter r=2,
five observations were taken. The observed sample means based on n=5
are 2.01, 3.12, 4.13, 5.92. Then the common value of v=2nr is 20. If
P*=.75, the value of b from Table IA is b=0b(20, 4, .75)=.565. For
this case ¥;=5.92 so that b%;,;=3.34. Applying the procedure R we
find that the two populations with sample means 4.13 and 5.92 which
fall in the interval [3.34, 5.92] are retained in the selected subset. At
this point the experimenter can assert with confidence level .75 that one
of these two populations has the largest value of # among the 4
populations.

4. The probability of a correct selection

We will now derive exact and asymptotic expressions for the proba-
bility of a correct selection for general k, v(=2nr) and any point in
the parameter space and also for the infimum of this probability over
all points in the parameter space. It will be convenient here to discuss
the case of general sample sizes m, from =z, so that the parameters
v/2=(n,r) are associated with the distribution of the sample means
which follow gamma distributions with scale parameters 6,/n, (1=1,
2,+++,k). Under this general framework, we can just as easily write
down the expression for the probability of a correct selection P{CS|R}
if we were to apply the procedure R of (3.1) with some fixed b in the
general case when y; are not necessarily equal. This is done in section
4.1. In section 4.2, it is pointed out that if we keep v; fixed, the P{CS|R}
approaches its infimum as 6; approach equality (with 6;;=0,_,; only in
the limit). It should be noted that the infimum is not the same as the
value of the P{CS|R} when the parameters 6§, are equal (the latter has
not been defined but by any reasonable extension of our definition should
be unity); mathematically, we can use the configuration with all 6, equal
provided we ‘‘tag’’ a particular one of the populations and regard it
as being the best. In section 4.3 the P{CS|R} is shown to be equivalent
to the cumulative distribution function (c.d.f.) of F,,, or the c.d.f. of



ON A SELECTION AND RANKING PROCEDURE FOR GAMMA POPULATIONS 203

the largest of several correlated F' or that of a Studentized largest
chi-square statistic and this leads to an approximation of the P{CS|R}
based on asymptotic normality.

4.1 Probability of a correct selection
Let %, denote the (unknown) sample mean that is associated with
the ¢th smallest population parameter, 6.,; let v; denote twice the value
of the other parameter associated with Z,. Then for this case the
procedure R with some fixed b(0<b=<1) gives the following result.
THEOREM 1.
oo k—
1) PCSIRY = 0., @ T1 [ G, 2202 Ja
0 a=1

b”(wom

where G(x) and g.(x) are the cumulative distribution function and the
density, respectively, of a standardized gamma chance variable (i.e. with
0=1) and with parameter v/2.

PROOF: The procedure R with some fixed b(0<b<1) yields a correct
selection if and only if the event

(4'2) E(k)gb Max E(a) (a:l’ 2,-oo,k)

occurs. Since 0<b<1, the occurrence of the event (4.2) is equivalent
to the occurrence of the event

(4.3) Fo=bMaxz, (a=1,2,++,k—1).

Hence, the probability of a correct selection is given by

(4.4) P{CS|R} =P{Zg=bMax &, (a=1,2,---, k—1)}

=P { ZOLI0) >b Volw , Yl (a=1,2,-, k—l)}

iy Ot Vet
- k=1 Xy 0
% @l (__(a&l_)]dx.
Sog (k)( ),‘1]: @ bv(lc)e[u]

This proves the theorem.

4.2 Exact expressions for the infimum of the P{CS|R}

It follows from (4.4) that for fixed b and fixed vy, (a=1,2,---,k),
the P{CS|R} depends only on the ratios of the 6., and that it approaches
its infimum by setting 6, =0;= "+« + =0y_y; letting 0_,;—>0;, With equality
only in the limit. Hence, for the case of a common v [letting Ir;f denote
the infimum over all points in the parameter space ;>0 (a=1,2, «++, k)],
the theorem

THEOREM 2.



204 SHANTI S. GUPTA
(4.5) Inf P(CS|R} = rG’:“ (ﬁ) .(@)da.
2 0 b

It follows that if for given v and k&, we solve for b by equating the
right hand side of (4.5) to P* and use this value of b in the definition
of R, then R will satisfy the basic probability requirement.

Suppose in the next to the last expression in (4.4) we make the
transformation

(4.6) yo=20%0 g Yeleln (q=1,2,... k1),
sy Y0t

then the limits of y, are from 0 to oo and upon integrating out y, we
obtain an alternative expression for the P{CS|R} as a (k—1) fold
integral ‘

4.7 P{CS|R} =S: S:’k-l Lmutmateetmy)
f1 Tom.)

k-1
{ 1T [y o~'dy] ]
(1+y1+ ces _l_,yk_l)ml+...+m,c

where m,=v,/2 and m=v/2 and ¥, =04 e/[0Lvwb].
An alternative expression for (4.5) follows from (4.7), so that for
the case of a common v=2m, we have

. o T IR
4.8) Iglf P{CS|R} = 50 ot SO [['((m,’;?" A+ytee e+ Y )™

4.3 Approximation to inf P{CS|R} based on asymptotic normality

Let z; (j=0,1,-++, p; p=k—1) denote k independent gamma chance
variables with a common value of the parameter =y/2. It follows from
(4.2) and the fact that the P{CS|R} approaches its infimum as the 6,
approach equality that we can write the basic probability requirement
in the form

M
(4.9) P{ s

BT 1) pe
X, )
Hence, the determination of b to satisfy (2.3) for all points in the
parameter space is equivalent to the determination of the reciprocal of
the upper a=1—P* percentage point of F , =max (F}, Fy,+--, F}) or,
equivalently, the percentage point of the studentized largest chi-square
statistic with v degrees of freedom for all chi-squares.
Using the fact [1] that log x is approximately normally distributed
for large values of v=2m, we can obtain a normal approximation to
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the infimum of the probability of a corret selection (the details of the
derivation are same as in [3]) as

(4.10) Inf P(CS|R) ;Sl[F(x+d)]""f(x)dw

where F(x) and f(x) are the standard normal c.d.f. and the density
function, respectively, and

(4.11) d=— v(»v—1)/2 log,b

For large values of v an approximate solution to the smallest value
of b satisfying the probability requirement (2.3) can be obtained by
equating the right hand side of (4.10) to P* and using (4.11) to solve
for b. Values of d are tabulated in Table I of [2] for k=2 (1) 10 and
many values of P* [our d corresponds to 24N of [2]) and also in
Table AI of [4] for k=2 (1) 51 for P*=.75, .90, .95, .975, and 99 [our
k—1 and P* correspond to » and 1—a of [4], respectively].

Using (4.10) and (4.11) and the tables in [4] and [2] we have computed
the approximate b values for v=50 and P*=.75, .90, .95, and .99.
These are listed at the bottom of Tables IA, B, C and D. In all cases
the approximate values agree with the exact values to one unit in the
second decimal place.

5. Expected size of the selected subset

For the procedure R the size S of the selected subset is a chance
variable which can take on only integer values 1 to k, inclusive. For
any fixed values of v, k, and P*, the expected size of the selected subset
is a function of the true configuration = {4, 6,,+--, 6,} and this function
can be regarded as a criterion of the efficiency of any procedure which
satisfies the basic probability requirement (2.3). In analogy with power
function consideration, one secondary problem is to find the smallest
common sample size 7 necessary to control E(S) at some preassigned
level for a particular alternative in the parameter space; alternatively,
we may wish to control the maximum E(S) over all parameter points
in the subset 2(3) of 2 given by 06,,<6,, (1=1,2,+++, k—1) with 6>1.

5.1 Exact expression for the expected size

Let Y; denote a chance variable which equals 1 if #, is included in
the selected subset and equals 0 otherwise. Then S= zk‘, Y; and hence
for any values of v, k, P* and 4, =

(5.1) ES)=E( 3 Y)= 3] B(Y)
= é P(z; is included in the selected subset).

i=1
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Using an argument similar to the one in section 4.1 for obtaining
the exact P{CS}, we obtain from (5.1), the following result:
THEOREM 3.

(5.2) BS)= 33 | 0@ [1 (6.0;a/b)dz

where 0;;=06,/6;,. [It should be noted that if 6,=6.,/6.,; is used in (5.2),
then the ith term on the right hand side of (5.2) is the probability that
the population associated with 6, is included in the selected subset and
hence the sum is again E(S).]

COROLLARY.

For the particular configuration

(5.3) 0[‘7]:50[11]’ (a:l, 2,"', k—l)

we obtain from (5.2) the result
(5.4) B(S)=| 6t 0ub)g. @)
+(k=1) | GAo/bGE (/) ()

where the first term on the right side of (6.4) is the P{CS} for the
configuration (5.3). In particular, if all the 6; are equal, then d=1 and
E(S) equals k P*.

5.2 Maximum value of E(S)

It will now be shown that the maximum value of E(S) takes place
when all the parameters 6, are equal. If we set the m smallest parameters
0(1=m<k) equal to a common value 6 (say) and define 6,.=46,,/6=1/6.,,
then writing Q=E(S|0;y=0,)="+=0;,,=0), we obtain from the remark
following (5.2),

(5.5) Q= % S:’Gl"(ﬂi.x/b)g,(x)F]jH G (6, b)da
J#i

+ mS:G:"“(x/b)gy(w) jj[n“G(().,x/b)dw

We now show that the right hand member of (5.5) is a non-decreasing
function of ¢ for 1/k<P*<1 (actually, the proof shows that it is a
strictly increasing function of ¢ for 1/k<P*<1). This proves that it
is maximum when #=6,,,; and since this holds for any integer m <k, the
desired result will follow.

To show that @ is monotonic we differentiate Q with respect to 6
and show that the result is positive for 1/k<P*<1 and 6<0,,;. Dif-
ferentiation gives



ON A SELECTION AND RANKING PROCEDURE FOR GAMMA POPULATIONS 207

6o Dm 5 (B0 G0l @bt
[ i=17_:[+1 G (0] b)]dm
|G 0. aft) n G0tz
[

For P*<1, it is clear that §6>0. If we let z=x" 6,. in the second
integral and drop primes then (5.6) becomes

dQ _m L On m-1(f 5
(5.7) g _m 51 Yol o610, INCICED)

{9.(x)9.(0;.%/b) — g.(0..2)g.(x/b)} dzx.

It suffices to prove that for each x>0 the expression in (5.7) is
negative or that the ratio of the two terms in braces in (5.7) is less
than unity.

(5.8) log{g.(x)g.(6;.%/b) +g.(0..%)g.(x/b)} =x(%-—1) (1-6,.), i=m+1, -, k.

Since b<1 for P*>1/k, it follows from (5.8) that for #<#6,,,; the right
side of (5.8) is negative for each x>0 and hence the expected size of
the selected subset is an increasing function of . Thus, we have proved
the following theorem.

THEOREM 4.

For given k, P* (1/k<P*<1), and common v, the expected size of
the selected subset

E(S|0[1]=0[23= e =0[m]=01 m<k)
in using the procedure R 1is strictly increasing in 6.
COROLLARY 1.
(5.9) Max E(S) =krG1: (@/b)g(x)dz=Fk P*.
0

COROLLARY 2.

In the subset 2(0) defined by 8001<6y, (1=1,2,+++,k—1), the function
E(S) takes on its mawimum value when 60p,,=0y; (i=1,2,+++,k—1) and
hence

(6.10) Max E(S)=S:Gf-l(aw/b)gxw)dwr(k—l) S:Gy[x/(w)]Gf‘2(x/b)g,(w)dx-

COROLLARY 3.
The smallest value of the common sample size n=v/(2r) such that
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E(S)<1+c¢ for all points in 2(6) where ¢>0 and 6>1 are preassigned
18 given by

(6.11) S:Gf‘l(ﬁx/ b)g(x)dx+(k—1) S:G,[av/ (BOIGE(x/b)g,(w)dw=1+-.

5.3 Amn approximation to E(S) based on asymptotic normality

Using the fact that log.[z/6:], (¢=1,2,++-, k) are independently
and asymptotically normally distributed with a common mean and common
variance, we now derive the following approximation for E(S),

(5.12) E(S)~:1 S-wll:[. ( %%)]f(x)dm.

For the particular configuration (5.3) this reduces to

(5.13) E(S):_:Sl[F (H%j((‘?/b—)))] f@)da

Fe—1) SZ[F (x—‘/z_l/_(;——v%)]qu (”‘%%%) f@)da.

6. Properties of the procedure R
1. In section 5 we proved that

(6.1) Max E(S|R)=k P*.

Thus subject to the basic probability requirement, viz., Inf P{CS|R} =

the procedure R satisfies the condition that the expected size of the
selected subject is <k P* for all parameter points in 2.

2. Property of monotonicity

THEOREM 5.

For 0.,=0.;, we have
Plincluding the population with 6., in the subset} = P{including the
population with 0, in the selected subset}.

PROOF.

We can write

(6.2) P{selecting the population with 4.} =Swg,(a:) ﬁ [G.(6..%/b)ldx
(] a=1
axi

where 6, =—14

Again the probability of selecting the population with 6., is given by
(6.2) with 7 replaced by j in the expression on the right hand side of

~ that equation.
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Noting the fact that 6,=6,, for all a, we see from (6.2) that at
each >0 the integrand in (6.2) is = the integrand in the case when
we are concerned with the selection of 4.

This completes the proof of the theorem.

3. The subset selected by the procedure R has the maximum probability
P{CS|R} among all different subsets of size S (S not known in advance)

which are (g) in number.

Note that the procedure R selects populations with sample means
TS Tp- =+ * = Te_ss3- 1t follows from similar arguments as in 2 above
that P{CS|R} is maximized among all different subsets of size S.

7. Distribution of V=1x,../X;=a/%s=Fmax

As pointed out in section 3 and 4, the procedure R depends on the
constants b. If »; and n; are such that 2 rn,=v,=v (1=1,2,+--, k), then
the constants b depend on v, k and P* and are the solutions of (4.9),
which is

Max «
(7.1) P{___._’_ 1

§=1,2,+40,p g——}ZP* Where pzk_]_.
2, b

Hence, the reciprocals of b-values are the upper a=1—P* percentage
points of

(7.2) V=2 To = Lax/ o=maX(Fy, Fy,e ¢+, F})

where z,, 2,,++, x,, %, are independent standard gamma chance variables
with a common value of the parameter »/2 on all (p+1) gamma varia-
bles and where 2., is the largest of x;, @5+, ,.

From the above, it is clear that we are interested in the distribu-
tion of V which is the maximum of several correlated F-statistics. The
theory and discussion pertaining to this distribution are similar as for
the case of F., which is treated in [8]. For the sake of brevity we
shall give only a few basic results and formulas.

As shown earlier in sections 3 and 4, we can write (7.1) as

(1.3) S:[G (%)]” gi@)dz=P*=1—a

where G.(x) and g.(x) refer to the c.d.f. and the density, respectively,
of a standard gamma chance variable with parameter v/2.
If v is an even integer =2 m (say), then (7.3) reduces to

(7.4) %S:]} — ’g%ﬁi_’]"e-bvym-ldF 1—a.
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For m=1, the gamma distribution reduces to an exponential distribution,
and in this case (7.4) simplifies to

(1.5) bS:[l—e"’]"e"’”dyzl—a.
From (7.5) we find that

> 1
7.6 —1 (P4
(7.6) b2 (=1 ( j)j+b “

Special cases for m=1 where we can write down the b-values explicitly
are

For p=1, p=-2
.7 l—a
’ 3,1 8a
For p=2, b=—2+14/9 .
or p=2, b=—5+3 Vor 1—a

Alternatively, b(0<b<1) is the solution of

(7.8) L+ 1I®) _q_,.
I'(p+b+1)

For large values of p the equation that results after taking logarithms
of both sides in (7.8) is better suited than (7.8) for solving for b by
iterative methods on high speed computers. Also (7.8) reduces to

(1.9) I'(p+1) —l—a.
O+1)®+2)-+(0+p)

We will now show that the integral in (7.3) or (7.4) can be reduced
to a finite series when v is an even integer =2m (say). If we expand
the first factor in the integrand in (7.4) and collect the coefficients of y~
we obtain

bm 2 p «m=1) Sw —(t r+m—1
.1 1\ +dyy,r+ =1—a.
(110) e 3 () Cadm, v crydy=1-a
where
(7.11) a(m, t)=coeflicient of %" in (E y—j)‘
=0 j!

_ 1

0<j=m-1 L.
Jytigteee =T nl.%!
1=

=Y Am, ).
r! '
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Note that the coefficients A,(m,t) are all positive and at most equal to
one; in particular for »<m—1, their value is one for any ¢t. With a
slight simplification we see that b is the solution of

SPERIEYE AR I'(r+m) @py
112) (1 (7)E Adm, o P ) oy =

Using iterative procedures on an IBM 7090 the b-values were computed.
These are tabulated in Tables IA, B, C and D. The main procedure
used is to write (7.12) as

. I(r+m)t’
(7.13) b,u——z( 1) ( )2 A ) b At @)

Starting with a guessed value of b,(0<b,<1), we compute b, by using
(7.13) and find the value of |b,—b,|. If |b,—b,| is not small enough, we
compute b, by substituting b, on the right hand side and obtain b,. The
process is discontinued after the ith iteration if |b,—b,_,| is less than a
preassigned constant. For fixed value of a and v=2m, it is easy to
see from (7.3) that b decreases monotonically as p increases. The tables
show that there is also a monotonicity in v for each fixed value of p
and a considered. For p=1, the entries are the reciprocals of the upper
percentage points of the usual F,,, statistic with equal degrees of
freedom (v,=v,=v). Also for m=1, and p=1,2 we can find the values
exactly by using formulas (7.7). Thus one can always obtain a ‘‘ good
guess ”’ value by starting with an entry in an adjoining row or column
that has already been computed; this helps to speed up the convergence
of the iterative procedure.
In a more generalized form one can consider the statistic

(7.14) V=Fp.= Max {i x"f}

i=1,2,e0,p Ly, x,,o

where z, (i=0,1,---, p) denote (p+1) independent gamma or chi-squares
chance variables with parameters »,/2. For yy=y,=¢++=y,=v=2m, and
v,=2m,, the probability integral of this more general form is

(1.15) P{V<o}=1

1y I'(r+m,) (vmt/m,)"
+ B0 ()G A o e

A very brief table of the percentage points of V when the numer-
ator y* all have equal degrees of freedom which are not necessarily the
same as the degrees of freedom of the denominator #* is given by
Ramachandran [9] only for the case of p=2 and a=.05. The values in
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[9] are given to two decimal places and the reciprocals of 10 entries
agree with the corresponding values in Tables IC to three decimal places
except in the case v=20 where the agreement is only to two places.
Earlier Nair [8b] computed the upper 5 and 1 percent points of
V=F,.. (as defined in (7.14) of this paper) when u,=1, 1=1,++,10
and »,=10, 12, 15, 20, 30, 60, co. Nair’s tables are given in Pearson and
Hartley [8c, p. 164]. Approximations for the above maximum F ratio
for the case v,=2, 1=1,2, «++, p, were considered by Hartley [8a] and
Finney [3b] David [3a] also briefly discussed the distribution of F,.. and
gave tables of the upper 5 and 1 percentage points for selected values
of v, and v, that correspond to the degrees of freedom for the various
mean square and error square that enter into a randomized block, Latin
square and Graeco Latin square.

-
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TABLE IA
Reciprocals of Upper a{ =1—P*) Percentage Points of the Statistic V= %max/%o= y2,,,/72—max
(Fy, Fy,---, Fy) where 1, 23,-- -, xp, x0 are Independent Standard Gamma Chance Variables with
a Common Value of the Parameter v/2 on All p+1 Independent Gamma Chance Variables and

where max is the Largest of 1, x3, -« -, 2p.
a=1—P*=.25

N 1 2 3 4 5 6 7 8 9 10
2 333 .208 .166 .145 .131 .122 .15 .109 .104 .10l
4 484 350  .300 .271 .253  .239  .229  .221  .214  .208
6 561 431  .379  .349  .329  .314 .303 .204  .286  .280
8 610 .48  .434 404  .383  .368  .356  .347  .339  .332

10 645 526 475 445 425  .400  .397  .388  .380  .372
12 671 557 507 478 458  .442  .430  .421  .413  .406
14 .692  .582  .534  .505  .485 .470  .458  .448  .440  .433
16 | .709 .603 .556 .528  .508  .493  .482  .472  .464 457
18 124 .621 575  .547  .528  .513  .502  .492  .484  .477
20 .736  .637  .502  .565 .545 .531  .520 .510 .502  .495
22 747 .650  .606 .580 .561  .547  .535  .526 .518 .51l
24 757 .662  .620  .593  .575  .561  .550  .540  .533  .526
26 .765 .673  .631  .605 .587  .573  .562  .553  .546  .530
28 773 683  .642  .616  .599  .585  .574  .565  .558  .551
30 780 .692  .652 .67  .609 .56 .585 .576  .568  .562
32 .786  .700  .660  .636  .618  .605 .505  .586  .579  .572
34 792 .708  .669  .644  .627  .614  .604 .505  .588  .582
36 197 .715 676 .652  .636  .623  .612  .604  .506  .590
38 .802  .721  .683 .660 .643  .630 .620 .612  .605  .598
40 .807  .727  .690 .667 .650 .638 .628 .619  .612  .606
42 .811  .733  .696 .673  .657 .64 .635 .626 .619  .613
44 .815  .738  .702 .679  .663  .651 .641  .633  .626  .620
46 .819  .743  .707  .685 .669  .657 .647  .639  .632  .626
48 .822 748 .712  .690 .675 .663  .653  .645  .638  .632
50 .825  .752 .717  .696  .680  .668  .659  .651  .644  .638
50t | .825 .748 .712  .689  .672  .659  .649  .640  .633  .627

This table gives the values of & for which

S: [G(%)]” g(x)dx=1—a

where GJ(x) and g.(x) refer to the c.d.f. and the density, respectively, of a standard gamma
chance variable with parameter /2.
t First term normal approximation based on (4.10) and (4.11)
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TABLE IB

Reciprocals of Upper a(=1— P*) Percentage Points of the Statistic V= finax/o=y2,,,/x2=max
(F, Fo,---, Fp) where x1, x3,- - *, Xp, xo are Independent Standard Gamma Chance Variables with
a Common Value of the Parameter /2 on All p+1 Independent Gamma Chance Variables and
where %max is the Largest of 1, 13, - - -, Xp.
a=1—P*=10

I 2 3 4 5 6 7 8 9 10

2 J111 .072 .059 .052 .047 .044 .041 .039 .038 .036

4 .244 .183 .159 .145 .135 .128 .123 .119 .116 .113

6 .327 . 260 .232 .215 .203 .195 .188 .183 .178 .174

8 .386 .317 .286 . 268 .255 .246 .239 .232 . 228 .223
10 .430 . 360 .329 .310 .297 .287 .279 .273 .268 .263
12 . 466 .396 .364 .345 .332 .321 .313 .307 .301 . 296
14 .494 .426 .394 .374 .361 .350 .342 .336 .330 .325
16 .519 .451 .419 .400 . 386 .376 . 367 . 360 .355 .350
18 .539 .472 .441 .422 .408 .398 .389 .382 .376 .371
20 . 558 .492 . 460 .441 .428 .417 .409 . 402 . 396 .391
22 .573 .508 .478 .459 .445 .434 .426 .419 .414 .408
24 .588 .524 .493 .474 .461 . 450 .442 .435 .429 .424
26 . 600 .537 . 507 .488 .475 . 465 .456 .450 .444 .439
28 .612 . 550 .520 . 502 .488 .478 .470 .463 . 457 .452
30 .622 . 561 .532 .514 . 500 .490 .482 .475 .469 .464
32 .632 .572 .543 .525 .511 .501 .493 .486 .481 .476
34 .641 .582 .553 .535 .522 .512 .504 . 497 .491 .486
36 .649 .591 . 562 .544 .532 .522 .514 . 507 .501 .496
38 .657 .599 .571 .553 . 540 .531 .523 .516 .510 . 506
40 .664 . 607 .579 .562 .549 .539 .531 .525 .519 .514
42 .671 .614 .587 .570 . 557 . 547 . 540 .533 . 528 .523
44 .677 .622 . 594 .577 . 565 .555 . 547 .541 .535 .530
46 .683 .628 .601 .584 .572 . 562 .554 .548 .543 .538
48 .689 .634 .608 .591 .578 . 569 .561 . 5565 . 550 . 545
50 .694 .640 .614 . 597 .585 .576 .568 . 562 . 556 .552
501 .693 .637 .609 .591 .578 .568 . 560 .553 . 547 .542

This table gives the values of & for which

5 : [G”<Tx>:|p g{x)dx=1—a

where G.(x) and g(x) refer to the c.d.f. and the density, respectively, of a standard gamma
chance variable with parameter »/2.
t First term normal approximation based on (4.10) and (4.11)




ON A SELECTION AND RANKING PROCEDURE FOR GAMMA POPULATIONS 215

TABLE IC

Reciprocals of Upper a(=1—P*) Percentage Points of the Statistic V= Tmax/X0= Y onax/ X5 = Max
(F1, Fy,- -+, Fp) where x1, x3,- - -, Xp, %o are Independent Standard Gamma Chance Variables with
a Common Value of the Parameter /2 on All p+41 Independent Gamma Chance Variables and
where xmax is the Largest of xi, x3,- -+, %p.

a=1—P*=_05

N‘l 2 3 4 5 6 7 8 9 10

2 .053 .035 .028 .025 .023 .021 .020 .019 .018 .018

4 . 156 .119 .104 .095 .089 .085 .082 .079 .076 .074

6 .233 .188 .168 .156 .148 .142 .138 .134 .131 .128

8 .201 .242 .220 . 206 .197 .190 .184 .180 .176 .173
10 .336 .285 .261 .247 .237 .229 .223 .218 .214 .210
12 .372 .320 .296 .281 .27 .263 . 256 .251 . 247 .243
14 .403 .350 . 326 .310 .300 .201 .285 .279 .275 .271
16 .428 .376 .351 .336 .325 .316 .310 .304 .300 . 296
18 .451 .399 .374 . 358 . 347 .339 .332 .326 .322 .317
20 .471 .419 .394 .378 .367 . 359 .352 .346 .341 .337
22 .488 .437 .412 . 396 .385 .377 .370 . 364 . 359 . 355
24 .504 .453 .428 .413 .402 .393 . 386 .380 .376 .371
26 .518 .468 .443 .428 .417 .408 .401 .395 .390 . 386
28 .531 .481 . 457 .442 .430 .422 .415 .409 .404 .400
30 .543 .494 .470 .454 .443 .434 .428 .422 . 417 .413
32 .554 .505 .481 . 466 .455 .446 .439 .434 .429 .424
34 . 564 .516 .492 .477 . 466 .457 .450 . 445 .440 .436
36 .574 .526 . 502 . 487 .476 . 468 .461 .455 . 450 .446
38 .582 .535 .512 .497 .486 477 .470 .465 . 460 .456
40 .591 .544 .520 .506 .495 .486 .480 .474 .469 . 465
42 .598 . 552 .529 .514 .503 .495 .488 .483 .478 .474
44 .606 . 560 .537 .522 .511 .503 .496 .491 .486 .482
46 .613 . 567 .544 .530 .519 .511 .504 .498 .494 .490
48 .619 .574 .551 .537 .526 .518 .512 . 506 .501 . 497
50 .625 .580 .558 .544 .533 .525 .518 .513 .508 .504
50t .625 .578 .554 .539 .528 .520 .512 . 506 .501 .497

This table gives the values of & for which

5: [Gv(%>TgxxMx= 1—a

where G.(x) and gi(x) refer to the c.d.f. and the density, respectively, of a standard gamma
chance variable with parameter y/2.
t First term normal approximation based on (4.10) and (4.11)
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TABLE ID

Reciprocals of Upper a =1—P*) Percentage Points of the Statistic V=2xmax/%0= y%a,/x5=max
(F1, Fs,---, Fy) where xi, x3,-- -, %p, x0 are Independent Standard Gamma Chance Variables with
a Common Value of the Parameter 1/2 on All p+1 Independent Gamma Chance Variables and
where xmax is the Largest of x1, x3,+ -+, Xp.
a=1—P*= 01

T2 1 2 3 4 5 6 7 8 9 10
2 | .00 .07 .006 .005 .004 .004 .004 .004 .004 .03
4 | .063 .048 .043 .03 .037 .035 .034 .032 .032 .03
6 | .18 .097 .087 .082 .078 .074 .072 .070 .06 .067
8 | .16 .40 .128 121 .16 .11z .100 .106 .104 .102

10 | .26 .178 .164 .15 .15 .l46 .142 .13 .136  .134
12 | .241 .210 .19 .187 .180 .175 .171 .168 .165 .163
14 | .20 .289 .24 .24 .207 .202 .19 .19 .191 .18
16 | .207 .264 .240 .23 .231 .226 .22 .218 .214  .212
18 | .320 .287 .271 .260 .253 .247 .243 .239 .236 .23
20 | .340 .37 .201 .280 .273 .267 .262 .258 .255  .252
22 | .39 .36 .309 .208 .291 .285 .280 .276 .212  .269
24 | .76 .343 .36 .315 .307 .30l .296 .292 .289  .286
2 | .392 .358 .34l .33 .32 .316 .311 .307 .304 .301
28 | .406 .372 .35 .345 .337 .330 .326 .321 .318 .3I5
30 | .419 .38 .39 .38 .350 .344 .339 .334 .33 .328
32 | 431 .38 .31 .30 .362 .35 .351 .347 .343 340
4 | .43 .40 .393 .382 .374 .368 .362 .358 .354 .35
3 | .454 .420 .404 .393 .385 .378 .373  .369  .365  .362
38 | .464 431 .44 403 .395 .388 .383 .379 .376  .372
0 | .73 .40 424 412 .404 .308 .303 .38 .385 .382
42 | 482 449 433 422 414 407 402 .308 .304 .301
44 | 490 458  .441  .430 .422 416 .41l 407 .403  .400
46 | 498 466  .450  .439 431 424 419 415 .41l  .408
48 | 506 474 457 .46 438 432 .42 423 419  .416
50 | .513 .481  .465 .45 .46 .40 435 430 427  .424
50r | .514  .482  .464 .453  .445 438 433 428  .424 .42

This table gives the values of b for which

S:[‘;(%):r glx)dr=1—a

where G,(x) and g.(x) refer to the c.d.f. and the density, respectively, of a standard gamma
chance variable with parameter /2.
t First term normal approximation based on (4.10) and (4.11)




