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Summary

In a previous paper [3] the author considered a computer technique
for generating exponential random variables and its applications to the
generation of random variables of other types. He suggested to combine
the new exponential random variable generator with J. C. Butcher’s
method [1] to get normal random deviates. In this note, an improve-
ment of the idea is shown with a remark on the rejection techmque
in the Monte Carlo method.

1. Remark on the rejection technique

The rejection technique for generating a random variable X with
a probability density function

f@)=Mk(x)g(x), a=zz=b, (1)
where g(z) is also a probability density function on [a, b], and

0<k(®)<1, a=sz=b,
Mz=1,

is explained by some authors as follows.

Let {U} be a sequence of independent random variables distributed
uniformly on (0,1), which may be quasi-random numbers obtained by a
suitable method, and let {7,} be a sequence of those which are converted
from quasi-random numbers so that they have the probability density
function g(t). Then generate U, and T,. If

KT)zU, : (2)

accept T, as a random variable X. Otherwise, generate (U;, T,
(Uy, Ty),++~ until the inequality is satisfied.

In this procedure, however, there is an abuse of uniform random
variables. In fact, we can fix the first U, to test the inequality 2),
and we have to change only T until it is satisfied. Because, for a fixed
value of U,=u the accepted T has the probability density function g(£)
truncated on a set
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Su={x; k(x)zu}. (3)

Therefore, the probability that the X, the accepted 7, falls on a
measurable set Ac[a, b] is

PX(X€ A)=P™(T.¢ A|T, accepted)
=[.Pr(Tie ans)du/| Pr(Tie S
=[] 00n¢; saat au/[ | o0ne; Sat an
= s0nway| gonw ds
= s

" where y(t; A) is the indicator function of a set A.
The probability of the acceptance of T, is equal to M-}, the same
value for two cases, in which U’s are changed and are not changed.
The remark is valid for more complicated rejection techniques. We
consider here the mixture-rejection technique. Let us assume that the
probability density function of X is decomposed as

F@)= N af@)= = Mo @@,

g”;a,=1. (4)

We generate the random variable X with the density fi(x) by the
above mentioned method with the frequency @,. Then we obtain the
sequence of random variables X’s with the density f(x). In this case,
two schemes in Fig. 1 are possible. In both schemes, a,M, times of
productions and tests of X are necessary in average per one X for
each procedure. Therefore, the first scheme saves the labor to select a

15t scheme
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Fig. 1. Mixture-rejection technique.
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procedure and to generate U when X is rejected.

2. Normal random variable generator

We generate the absolute values of normal deviates, and consider a
decomposition of the type of (4).

@ exp(—2a%/2)=8(8)-1-x( ; (0, £))/¢

— . V2[x §—8() , exp(—'/2)—exp(—&Y2) . x(x;(0,$)
HEO=SO a5 50 T—exp(—&12) G

6Ot cxp(@2)—26) - exp(—@—12) -
=GO} - gV 2 exp(#12)— ) - exp(—@—212)
Lexp(~2@—9) 2@ G, ), (5)
where

SO=VEcexn(-¢12,  GO=v Z[exp(—w2n, 0<e<s,

CHS (1): o gg; Z;

It is a decomposition of the normal distribution into three distributions
as Fig. 2. Now we investigate the procedures for generating the three
distributions. We select each of them with frequencies a;=8(¢),
a,=G(&)—8(§), and a;=1—G(£) respectively.

el
1)

SNl

Fig. 2. Decomposition of normal density.

(1°) In the first procedure we generate a random variable distributed
uniformly on (0, &) to acecept it as X.

(2°) Generate random variables U, uniform on (0, 1), and X®, uniform
on (0, ¢), and accept X® if
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exp (— X*/2)—exp (—£'/2) -
i—ep(—8)) = ()

or equivalently
X®/2< —log {U(1—exp(—§'/2))+exp(—&'/2)}. (7)

It should be noticed that the random variable of the right-hand side
of the inequality (7) has the probability density

exp(—v)/(1—exp(—§'2)), 0<v<E)2, (8)

the exponential distribution with truncated upper tail.
The discussion in the papers [2, 8] shows the following fact.
Let N be O-truncated Poisson random variable with parameter g,

P(N=m)=(1—exp(—p) " exp(—pp'fn!, nm=1,2,++  (9)

and let U,, U,,-++ be uniform random variables on (0,1). Then the
variable
V*=pmin (Uy,++-, Uy) (10)
has the density
exp(—v)/(1—exp(—p)), 0<v<p.

Therefore the second procedure reduces to the following operations.
Generate O-truncated Poisson variate N with parameter £/2. Compute

V=min (Uy,+++, Uy).

Generate a nuiform randon variable U, and accept ¢U=X® as X if

usv.
The probability of the acceptance of ¢U is
M;'={G(E)—SEY{ V2[x£—S() an
(3°) Generate the random variable X® with the density
2exp(—A(x—¢)), << oo, 12)

and the uniform variable U.

Accept X®, if

exp{—(X®-2'/2} 2z U,

or equivalently ‘
(X®—22< —log U. (13)

The right hand side of (18) is the standard exponential deviate.
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Let Y, and Y, be standard exponential deviates. We take up X®
=Y,/A+¢ as X, if

_;_(%-;-e—z)'g Y. (14)

In the papers [2,3], the following technique was suggested for
generating the standard exponential deviate.
Generate the geometric random variable M ;
P(M=m)=pqm, m=0, 1,0-. ,
p=1—exp(—y), - (15)
and the O-truncated Poisson random variable N, with the probability
distribution (9). Then
Y=p{M+min (U,,++-, Uy} (16)
is a standard exponential deviate. The relation

ML Y<p(M+1) , (0%

saves slightly the time of the test (14).
If fact, if we put

et (% ss-a) 2]

p.=P{%(%+s—x)’z;z(M+1)} : (18)

Ds=1—p;—ps,
then, under the condition that the third procedure is selected the test

(e <o
or : 19)
1 (—lgf-+e—z)’>y(M+1)

2

continues (1—p;)~! times in average. With the proportion p,/(1—p,) Y,
is accepted through the test (19), and with the proportion p,/(1—7,),
the further test (14) is necessary.

The probability of the acceptance of X® is

M= (1~ GO} - 5 exp(— (#/2)+2) (20)

and the average number of the generation of Y is M,.



164 MASAAKI SIBUYA

3. Determining the values of the parameters

Now we determine the values of & and 2 taking into account
practical aspects of computer programing. We are interested in the use
of binary system computers rather than decimal system ones.

The function a,= v/2/z¢exp(—£&Y/2) takes its maximum value at
=1, while a, is increasing and a; is decreasing function of £&. Therefore,
we should choose & larger than 1. If we insist on the generation of
normal variates with variance 1, we have to choose such values of ¢ as
1 or 2 to avoid multiplications §x U in procedures 1° and 2°. On
many computers multiplication takes several times as long machine-time
as addition. Therefore, one multiplication in the routine will off set the
result of selection of such a value of & as minimizes, for example, the
average number of uniform random variables consumed.

The value of 21 affects on only M,, and minimizes it when

A=§/2+ V/(€/2¢+1. It must be also a simple value to avoid multiplica-
tions, and we put A=2 for £=1 and 2, in view of Table 1. The value
of the parameter p in the third procedure is independent of & or . We,

TABLE 1.
M;1: the acceptance probability in the 3rd
: procedure.
§ 2 M,
1 1.525
1
2 1.257
2 1.187
2
4 4.384
TABLE 2.

Average numbers of uniform (U), Poisson (NV), geometric (M) and exponential (Y)
random variables consumed to generate one normal random
variable in procedures 1°, 2° and 3°.

Operation Frequency E=1, 1=2, p=1/2 §=2, A=2, p=2
1°-U a 0.4839 0.2160
2° N a 0.1987 0.7385
U; aE(N) 0.2526 1.7083
U2 ayM, 0.3139 1.3798
3 Y asM; 0.3989 0.0540
M as 0.3173 0.0455
N asps/(1—p2) 0.1249 0.0393
U; asps/(L—p2)- E(N) 0.1587 0.0910
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however, use the same sub-routine to generate truncated Poisson variable
N in both the second and the third procedures. The average number of
operations per one X in each procedures are listed in Table 2 for two
sets of values of the parameters. .

On a medium-size scientific computer HIPAC-103, if we get the
quasi-random numbers by the mixed congruence method, the average
machine time per one X is approximately 430 and 610 cycles (1 cycle=40 us)
for £=1 and 2 respectively. In Fig. 3 the flow chart is shown with
frequencies of each routes per one X for £=1.

V=min(V,U;)
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