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Summary

Two types of necessary conditions are given for the convergence of
Kullback-Leibler’s mean information, one of which is connected with an
asymptotic equivalence of two sequences of probability measures, and in
special cases, with convergence of a sequence of probability distributions.
The other is given in terms of the generalized probability density
functions.

1. Introduction

Let (R, S, m) be a o-finite measure space, and consider the family,
V(R, S, m), of all probability distributions defined on (R, S, m), which
are absolutely continuous with respect to m. For any X and Y belong-
ing to V(R, S, m) with gpdf.’s f(z) and g(z), the Kullback-Leibler mean
information is defined, in a generalized form, by

(1) I(X: Y)= SRf(z) log:g(%) dm,

where no restriction is imposed on the inclusion relation between their
carriers D(X) and D(Y) [1], i.e., for the following expression of (1)

(2) I(X: Y)={S

R-D(X)—-D(Y) D(X)-D(Y) D(Y)-D(X)

e, oy | @ 0 L am,
DEIADY) 9(?)
the first and the third integrals are always assumed to be zero, while
the second one is assumed to be infinity if m(D(X)—D(Y))>0 and to
be zero otherwise. It will easily be shown, for this generalized defini-
tion, that I(X: Y)=0 with equality when and only when f(z)=g(z)
(a.e. m) on R.

Sufficient conditions for the convergence of the type as

IX:Y)>I(X:Y), (1 > ),
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have been investigated under the situation that D(X;)=D(Y) up to a
set of measure (m) zero for all i, and D(X)=D(Y) up to a set of
measure (m) zero [2], [3]. These results may easily be extended to the
case of generalized definition of that information. As far as the present
author is aware, any necessary condition has not been found yet, except
the one by Kullback [3] in some special case, but his result seems to be
invalidated by a false argument.

In the present paper, we shall derive two types of necessary con-
ditions for the convergence of the information measure such as

(3) I(X,:Y)>0 (i oo),

with the generalized definition (1). The first of these, guarantees equi-
valence in the limit of two sequences {X;}(:=1, 2, ++-)and {Y;}(¢=1,2, -+ +).
Hence, in particular, if we take X;=X for all ¢, or Y=Y for all 4,
then it relates to convergence of probability distributions, as will be
seen in Corollaries 1 and 2, and in some examples in the final section.
The second condition will be given by a sort of in-measure convergence
of probability density functions, which will be shown in Theorem 2 and
its corollaries.

2. Necessary conditions

We shall begin with the following

LEMMA 1. Let {p(2)} (1=1,2, --+) be a sequence of nonnegative, in-
tegrable (m) functions defined over a o-finite measure space (R, S, m),
and let {E} (i=1,2, «-+) be a sequence of measurable subsets of R such
that

L p@)dm—>0  (i—>oo).

Then it holds that, for any >0,
m(E, {z; p(z)Zze}) >0 (i —> o).
PROOF. The result follows immediately from the inequality

[, peram={] 5, oz T SE‘M _,[p@dm

Zeem(E {z; pi2e}).

LEMMA 2. Let p(2) be a mnon-negative measurable function defined
over R. Then it holds that
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(4) () logp(z)=p(z)—1+%(p(z)—l)’/h(z),

where h(z) 18 a measurable function such that
(5) min{l, p(2)} <h(z)<max{l, p(2)},

and, in particular, if p(z)=0, then h(z)=1/2.

The proof of this lemma will be omitted, since it is found in [4].

A necessary condition for (3) is given by the following

THEOREM 1. For any sequences {X;} (1=1,2, «++) and {Y} (i=1,
2, «+:), of the members of V(R, S, m), with corresponding gpds.’s {f(2)},
(t=1,2, ««¢), and {9(2)} (1=1,2,+++), the condition

(6) IX:: Yo={ £ 1og 28 dm 0, (> ),
B 942)

wmplies that

(7) [, l7@-a@1dm >0 (> ).

PROOF. Put, for each ¢,

A= {z;f(2)=0, g9{2)=0},
Bi={z;f(2)>0, g(2)=0},
Ci={z;f(2)=0, g(2)>0},

Di={z3/@>0, 0()>0, 0<2E <1},

[z, @) _y
Ei={z:5()>0, (>0, 28 =1},

1. f{z)
F,_{z.f,.(z)>o 942)>0, 1()>1}

Then, these subsets constitute an m-partition of R. Here we can assume,
without any loss of generality, that m(B,)=0 for 1=1, 2, «++, because
the condition (6) requires the finiteness of I(X;: Y;)’s for, at least, suf-
ficiently large values of 7.

By the remark on the definition (1) in the preceding section, I(X;: Y))
becomes "

1(X,: V)= iz) log £42) g"; dm.

ci+Di+Ei+Fi

Hence, setting dy,=gdm, and
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.fi(z)/gi(z)y lf zECi+Di+Ei+Fia
0, otherwise,

pi(z)={
we get, by Lemma 2,

8)  1x:n=[ (pe-1+ LoEe-1meE)du,

C.,+D,+F

DAt i 1

; S% dp+ {Svi +Sn~ }—;-(p‘(z)-— 1)/h{2)-dp: .

Therefore, the condition (6) implies that

(9) [, au—o0,

(9 [, @-11m@ a0,
and

9y [, e@-1R@)-du—o0.
as 1 —> oo,

Using the relation (5) in Lemma 2, we have the following :

(10) [, du={ o dm,
(10y [, ®@-Vha)-dpz |, @@)-10) dm,
and

4 —1)/hd2)-dp —1yp 8
(10) [, p@=1ihia)dpz |, i) -13 LE. dm.

Now, we shall examine the integral of (7). Under the condition
(6), it is easy to see that

a1 | Jr@-g@iam =

i+D;

[ F@—g@ldm.

Here, we have
[, 1@ —gtdm=_g()dm,

and, using the Schwarz inequality,

[, 1F@-g@am= 1p@-1lo6 dm
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= /|, @@-170@dm-| o) dm

</|, ®@-170()dm.

Analogously, we get

[, 170-a@Nims,[, @@-17 EE dn.

Hence, it follows from (9), (9), (9)”, (10), (10)’, (10)” and (11), that
[ lr@—o@idm—0 o),

which proves (7).

As immediate consequences of this result we obtain the following
corollaries.

COROLLARY 1. Let {X)} (1=1,2,-++) and Y be the members of
V(R, S, m) with gpdf.’s { f(2)} (1=1, 2, «-+) and g(2). Then, the condition

(12) IX,:Y)—>0 (i—> o)
implies that
(13) | Jf@—g@iam >0 o).

COROLLARY 2. Let X and {Y} (1=1,2,+-¢) be the members of
V(R, S, m) with gpdf.’s f(z) and {g(2)} (¢=1, 2, +++). Then, the condition

(14) I(X:Y)—>0 (i—> o)
1mplies that

(15) [lr@—-a@ldm >0 (> o).

In these corollaries we are concerned with a sort of convergence
of probability distributions. In fact, the conditions (12) and (14) can
be regarded as criterions for convergences (13) and (15) of the cor-
responding probability distributions, respectively. Relation of these results
to other convergence theorems, particularly to a useful convergence
theorem due to Scheffé [5], will be investigated in the following section.
The statistical meaning and application of the result of Theorem 1 will
be given in another place.

Now, we shall state another necessary condition.

THEOREM 2. Under the same situation as in Theorem 1, the condition
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(6) implies that, for any >0, i
(16) m({z; | fi(2)—g4z)|=¢}) > 0 (i — o0).

The proof of this theorem is straight-forward from Theorem 1 and
Lemma 1, and will be omitted. In fact, (16) is a necessary condition
for (7).

Similarly, from corollaries 1 and 2 we obtain:

COROLLARY 3. Under the same situation as in Corollary 1, the
condition (12) implies that, for any ¢>0,

@amn - m({z; | fi(2)—9(2)| Z¢}) > 0 (@ > ).
COROLLARY 4. Under the same situation as in Corollary 2, the
condition (14) implies that, for any ¢>0,

(18) m({z ;| f(2)—94(2)| z¢}) > 0 (v > o0).

3. Convergence of probability distributions

In the present section we shall mainly be concerned with the result
of Corollary 1. For the sake of convenience, we shall denote by (I)
the condition I(f;:f) >0 as 1+ > co.

A useful convergence theorem has been given by Scheffé [5], which
states that convergence of gpdf.’s

(S) f{z) > f(z) almost everywhere (m), (i - o),

implies the convergence of corresponding probability measures
(P) [[f@—r@idm 0, (i)

which is called the ‘‘ mean convergence’’, and is equivalent to
Q) Lﬂ(z) dm —> SE f()dm uniformly in E, (1 = o).

Corollary 1 of the present paper also states that (I) implies (P).
As for the implication relation between the conditions (I) and (S) we
can show the following :

THEOREM 3.

(1) (8) 7s mot necessarily stronger than (I), and
(ii) (D) is nmot mecessarily stronger than (S).
These results will be shown in turn by the following examples.

Ezample 1. Let (R, S, m) be a o-finite measure space such that
m(R)=o0, and the range of m-measure, M(S)=[0, ]. Choose a se-
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quence of measurable subsets {E,} (n=2, 3, ++-) with m(E,)=1/(nlog n)
(n=2,3,+-++). We shall define a simple function as follows:

l/(anlogn) on E, (n=2,3, +++),
0 elsewhere,

19) r@=|

where a= i‘, 1/(nlog n)*. Then this determines a gpdf. of a certain pro-
n=2
bability distribution belonging to V(R, S, m).
On the other hand, we consider a sequence of gpdf.’s which are
defined for 1=2 by '

1/(« 2log 2)—28;log 2, on E,,
f(2) on E, for 3=sn<1—1,
1/(alog n) on E, for n=1,

0 elsewhere,

(20) flz)=

where B,=(1/a) é (1—1/n)/(n(log n)?). It will be easy to see that f(z) is

a gpdf. of a certain member of V(R, S, m) for each ¢, and B; tends to
Zero as 1 —> oo,
Since

sup| £(2) —f2)| < max (B, (1~ f(alog )

it holds that fi(z) = f(2) uniformly on R, as i —>oo. Hence, the con-
dition (S) is satisfied.

Now we have

1S fy= i (L — g 1og (La2lBD -4

2log 2 \a2log 2 1l/a2log 2
& 1 1 l/alogn
1
1.5:‘% nlogn alogn 0 1/anlog n
a(2 log 2) og(l—api2log2)+ ) nlogn

Hence, remembering that i‘, 1/(nlog n) is a divergent series, we obtain
n=2
I(fi: fy=o0, (1=2,3, ),

which means that the condition (I) is not satisfied.

Example 2. Let (R, S,m) be a finite measure space such that
M(S)=[0, 1], and consider a sequence of (m)-partitions, {Z,} (n=1, 2,-+-),
such that

Z,={A.}, m(A.)=1/n* (k=1,2, -+, n'; n=1,2, ««-).
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For each A,,, let f..(2) be a function defined by

n, if zeAnkr
(21) fu@=1 1=Un  iorwise.
1-1/n

Then we obtain a sequence of gpdf.’s, {fu, fu, fur foss fr Sus furree<}.
Renumbering this sequence such that fi=f,, fi=fu, fi=fu, and so on,
we have a sequence {f(z)} (1=1,2,--).
On the other hand, let f(z) be a function which takes unity every-
where on R. Then it is obvious that the condition (S) is not fulfilled.
On the other hand, it holds, if 4 corresponds to some 7, that

1-1/n
1-1/n »

I(f: =181 (1-L)1og
n n

and, since 1 — oo implies that » — oo, the condition (I) is satisfied.
Thus, the proof of Theorem 3 is complete.
An analogous result would be obtained on the implication relation
between the condition (S) and (I)’ defined by

ay I(f :f) >0 (i=).

The above theorem means that the conditions (S) and (I) are incom-
parable with each other. Any interesting example, to which the present
result is effectively applicable, has not been found yet, but the usual
convergence of probability distributions familiar to statistical analysis
seems to be criticized by the condition (I) or (I), too, as will be seen
in the following examples.

Example 3. It is well-known that the t-distribution with degrees
of freedom 7, tends to the standard normal distribution as m — oo.
This is an in-the-mean convergence of the type (P), and the Scheffé
theorem is easily applicable.

We shall show below that the condition (I)’ is also satisfied. The
probability density function of the ¢-distribution with D.F. n is given by

_ 1 D(AD)2) [, @\
@) fw= S (1+n) | (oo <z < 00).

Denote by f(x) the pdf. of the standard normal distribution. Then
it is easily seen that

@) 17359 =—log ELBADID L [* o 1L 1og (14:2) -2 ],

Using Stirling’s formula, we have
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1g_‘/_2~/i1£”_'*i/2)—>0 (m > o).

I'(n/2)
It will be seen also that

n+11 1 g’_)<'n+1x,
2 'Og(+n =Top '

hence, from (23), it follows that

24) lim I(f :f,,)gﬁmg“’ f(@) [51; x’]dx
—lim-L =o.
N0 zn

Since I(f :f.)=0 for all n, (24) implies (I).
Example 4. The chi-square distribution with D.F. n has the pdf.
such that

—l—x("/”“exp[-—-—x-] for =0,
(25) fu@)=1{ 2" ['(n/2) 2

0 otherwise.

It has been known that the mean is » and the variance is 2n, and the
standardized variable is distributed according to the standard normal
distribution in the limit as n — oo, or the original chi-square variable
is asymptotically normally distributed with mean » and variance 2n.
In the present example, we shall examine the applicability of the
result of Theorem 1.
Put, for the asymptotic distribution,

26) 0.(8) = 57— ex xp| — & "‘)] (— o0 <T< 00).

Then the mean information becomes

@) I(f.:g)= S 7.@) log L8 Ex; dz

8 2"2/21{?7;2) [ (5—1)log =g+ T fao

Applying the Stirling formula, the first term is
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2van _ __mn—2 1
2 (n/2) 2

log og n+-72£ ,

for sufficiently large values of n. It will easily be seen that

(g—l) S:f,,(x) log s dir= (2 —1) [ l;((Z//zz)) +log 2],

and, since it holds [6] that, for sufficiently large =,

rf(g) /r (g) ~log(n/2)—1/n,

we get

(g — 1) S:f,,(x) log x dax ~ (—g- - 1) [log n—1/n],

for large n. Summarizing these results, we obtain from (27) the fol-
lowing

I(f,:g.)~1/n, for sufficiently large n,

which shows that the condition (6) of Theorem 1 holds. Hence it
follows that

So_awlfn(x) —g(x)|dx >0 (n > o0).

Example 4. .As an example for the discrete case, we shall consider
the well-known result concerning convergence of binomial distributions
to a limiting Poisson distribution. Put

: £@=(7)ra-pr— @=0,1,2 +:,m)
and
f(:c)=e“——1— (x=0,1,2, «-+),
xz!

In this case, of course, the basic measure (R, S, m) is taken such that
R is the set of all non-negative integers, S is the o-field consisting of
all subsets of R, and m is the counting measure on R.

It is known that f,(x) converges pointwise to f(x) according to the
limiting process such as n — o, mp —2 (fixed), i.e., that the Scheffé
criterion (S) is satisfied. We shall show that the condition (I) is also
satisfied. ,
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Without any loss of generality, we can assume that np=2 for
all n. By the Chebycheff inequality we have, for any fixed 4 (0<8<1—p)
such that (f+p)n becomes an integer,

S f@)=3ent .

z=(0+p)n

Hence, using the Stirling formula, we obtain

S fi@log —M_ < B fuw)log a!

z=(+p)n (n—wx)! z=(a+p)n

~ 3 | Fu@)log V2r+(n+1/2) log n—mn)

z=(6+p,

<a(log ¥V2z+(n+1/2) log n)/6*n* — 0 (n — oo).

On the other hand, using again Stirling’s formula, we obtain for
sufficiently large values of n,

28 A < L)
(28) > ful®) og( ), = Efn(w)[(n+§) ogn

—x— (n—x-{-—é-)log (n—m)] .

Since
(n—2x+1/2)log (n—x)=(n—2x+1/2) log n— (w—£+—x—) log 1—x/m)~"/=
n  2n
=(n+1/2) log n—xlog n—(x—2*/n+x/2n),

the right-hand member of (28) is bounded to the above by 2log n+p/2.
Now, the Kullback-Leibler mean information is evaluated as follows:
for sufficiently large =, it holds that

I(f.: )= Zf,.(iv)[log ) +Ai—2zlog 2+ log p

+(n—2)log (1) |
<ilog n+p/2+2—nplog A+nplog p

+(n—mnp) log (1—p),

from which, using the approximation (n—2) log (1—p)~ —Ai+2/n, we get
the condition (I).
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