A NOTE ON THE USE OF MEDIAN RANGES

BY MASAAKI SIBUYA

(Receiver March 30, 1962)

In setting up quality control charts, the mean-range is often used to estimate the population standard deviation. E. B. Ferrel [1] has pointed out the possibility of using, instead of the mean-range, the median-range which is efficient enough for that purpose. In this paper Ferrel has given a table of expected values of the median-range for different values of n, the sample size. These are asymptotic values which are obtained under the assumption that the number, N, of ranges from which the median-range is obtained, is very large. In fact, they are the 50% points of the distributions of ranges from normal samples. These values also appear in [2]. In this note we examine an asymptotic formula for the expected value of the median-range in normal samples.

The author is thankful to Dr. A. Matthai for presenting the problem for investigation.

In general, the expected value of the median \tilde{X} in a sample of size N from the population with probability density function f(x) is shown (see [3]) to be

(1)
$$E(\tilde{X}) = x_{0.5} - \frac{1}{8(N+2)} \frac{f'(x_{0.5})}{f^{3}(x_{0.5})} + O(\frac{1}{N^{2}})$$
, when N is odd,

and

(2)
$$E(\tilde{X}) = x_{0.5} - \frac{1}{8(N+1)} \frac{f'(x_{0.5})}{f^{3}(x_{0.5})} + O(\frac{1}{N^{2}})$$
, when N is even,

where $x_{0.5}$ is the 50% point of the distribution.

From the tables of the probability density function of the range [4], $f(x_{0.5})$ have been computed by interpolation and $f'(x_{0.5})$ by numerical differentiation.

Let R be the median of N ranges in independent normal samples of size n.

Then

(3)
$$\frac{E(\tilde{R})}{\sigma} = \begin{cases} d_m + \frac{e}{N+2} + O\left(\frac{1}{N^2}\right), & \text{when } N \text{ is odd,} \\ d_m + \frac{e}{N+1} + O\left(\frac{1}{N^2}\right), & \text{when } N \text{ is even,} \end{cases}$$

where d_m and e are function of n, values of which are shown in the following table 1.

In setting up quality control charts, the second term which is small may be neglected.

Tuble 1			
n	d_m	e	
2	0.95387	0.29519	
3	1.588	0.162	
4	1.978	0.124	
5	2.257	0.108	
6	2.472	0.098	
7	2.645	0.093	
8	2.791	0.090	
9	2.915	0.086	
10	3.024	0.084	

Table 1

In case n=2, the distribution function of normal range is

(4)
$$F(R) = 2\Phi\left(\frac{R}{\sqrt{2}\sigma}\right) - 1, \qquad 0 < R < \infty,$$

where $\Phi(x)$ is the distribution function of standard normal distribution. Further, if N is odd, i.e., N=2M+1,

(5)
$$\frac{E(\tilde{R})}{\sigma} = \frac{2\sqrt{2}N!}{(M!)^2} \int_0^\infty x[2\Phi(x)-1]^M [2-2\Phi(x)]^M d\Phi(x).$$

The values of (5) were computed for N=3 (2) 15 by numerical integration, the results of which are shown in table 2 with the approximate values based on (3). The variances and the efficiency of \tilde{R} relative to the mean-range \bar{R} in the estimation of σ were also computed at the same time.

 $E(\widetilde{R})/\sigma$ $V(\overline{R}/E(R))$ $V(\widetilde{R})/\sigma^2$ N $/V(\widetilde{R}/E(\widetilde{R}))$ Exact Approx. 0.6068 1.013 0.33637 1.03572 3 0.9960.218070.5306 5 1.00685 7 0.99295 0.9870.161280.4985 0.98481 0.9810.127940.48089 0.97946 0.9770.10603 0.469511 0.09052 0.461813 0.975690.9740.9712 0.07897 0.45610.9728915 0.97072 0.9694 0.07003 0.451817

Table 2

THE INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

- E. B. Ferrel, "Control Charts using midranges and medians," Industrial Quality Control, Vol. 5 (1953) No. 4, pp. 30-40.
- [2] H. L. Harter, "Tables of range and Studentized range," Ann. Math. Stat., Vol. 31 (1960), pp. 1122-1147.
- [3] C. E. Clark and G. T. Williams, "Distributions of the members of an ordered sample," Ann. Math. Stat., Vol. 28 (1958), pp. 862-870.
- [4] M. Sibuya and H. Toda, "Tables of the probability density function of range in normal samples," Ann. Inst. Stat. Math., Vol. 8 (1957), pp. 155-165.