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Summary

In this note a computer procedure to transform uniform random
variables into random points uniformly distributed on an N-dimensional
sphere is presented. The procedure is much simpler than the ones thus
far published.

1. Introduction

As a Monte Carlo Method for solving the Dirichlet Problem and
other problems the application of spherical processes has been consider-
ed [1, 2). In order to simulate N-dimensional spherical processes on
computers, it is required to generate points which are distributed uni-
formly on N-dimensional spheres. Some procedures have been suggested
[3, 4, 5], and the one described in this note is a modification of Muller’s
procedure : Standard normal devites normalized by root sum of squares
are the Cartesian coordinates of a random point on a super sphere.

2. The procedure

The case where the dimension is even, say N=2M, is easier to
treat than the odd-dimensional case. Devide at random a unit inter-
val into M parts, that is, observe M—1 random variables distributed
uniformly on (0, 1) and arrange them according to their magnitudes ;

0=U,< U< +se < Uy < Uy=1. @
Put
K=m_ lji-ly 7::1:"', M’ (2)

and let R, .-+, R, be other independent uniform random variables.
Then (X,, X;,+++, X,») defined by

Xzi—l—_‘ LY K CcOoS 27f.R1, N

i 3
)(ﬂi = ;\/K Sin27fR,;, i:l,-~‘, M’ ( )

is a random point on a 2M-dimensional unit sphere with its center at
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the origin. As is well known, the pair of random variables (cos 2zR,
sin 2rR) may be generated from uniform random variables R, R, by a
rejection technique: Accept the pair

R R Ri—Ri  2RR
¢ S S S : >, = =2 4
vmrmr tvEem) o (e mar) O

if Ri+Ri<1,

where +’s are independent random signs.

In case N=2M+1 (M=1,2,--), one may take the first 2M+1
components of random points on a (2M+2)-dimensional sphere and nor-
malize them. Or, one may transform a random point (X, X, .-, Xon)
on a 2M-dimensional unit sphere into a point (X*, X%,..., X;%,)) on
a (2M+1)-dimensional unit sphere according to the procedure in [4]:
Generate S, a random variable which has the probability density func-
tion

2M—1

f(8)= Czym,—, 0<s<1, (5)

where
Co=02M—-1)11/2M—2) !!
Then, the necessary random transformation is

X:k =S‘Xn 1:—_‘1;"'7 2M

Xodn= 1-8* ©

In order to get (S, + +¥1—S7), the following rejection technique
may be used for M =2. Accept

(S=1-R: +R V143,

if
' 282> Ry(1+S). @
The technique is based on the factorization
VI ES
f(@)= V2 Co v2 Vits 24/1+s ()

(see, for example [6]), and the sampling efficiency, the inverse of the
probability of the acceptance in (7), is equal to ¥2C,,. See Table 1.
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Table 1
M N V2Cn
2 5 2.1213
3 7 2.6517
4 9 3.0936
5 1 3.4803
6 13 3.8283
7 15 4.1473
8 17 4.4436
9 19 4.7213
10 21 4.9836
When M=1 (or N=3),
(VI=R*, +R) 9)

is the required pair, and no rejection is necessary. The pair combined
with (4) and (6) is a simpler procedure than that of Cook [3]. Accord-
ing to his method, if R}+R}+ R34+ R2<1 one accepts

4
X,=2RRARR)3 R,
‘X'z= 2(R3R4—R1R2)/ E R %:

4
X.=(R1+Ri—Ri—R)/3] R}

as a random point. The machine time will be, however, not so differ-
ent since the latter needs no square root computation.

3. Analysis

It is heuristically explained by the following two facts that the
method described above is a modification of Muller’s procedure.

(i) If T and R are respectively exponential and uniform random
variables, then

V2T cos 2zR
V2T sin 2zR

are independent normal random variables.
(ii) If T,--+, Ty are independent exponential random variables,

(10)

M M
then Tl/iz Tiyeoo, T,,/iZ T, are equivalent to intervals randomly par-
=1 =1

titioned from a unit interval.
We give a direct proof. Consider a polar coordinate system in N
(=2M)-dimensional space :
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2, =7sin 6, sin ;s ++sin 0y_; sin Oy_,,
X, =7sin 6, sin Gy« « +sin Oy_, cos Oy_;,

(11)

Ly_ =7 sin 6; cos 0,

Ty =7C08s0,

In this system the area element on the unit sphere is expressed as
N-2

dA=sin""2 0, sin ¥~ 0, « +sin 6y_, [ db; 12)
i=1

[dA| is, expect for a multiplier, the probability element of the uniform
distribution on the sphere. Denote a random point which has such a
distribution by »

V., =sin 6, sin Oy« «+sin Oy_, sin O,_,,

V, =sin6,sin B+« «sin Oy_, cos Oy_,,

(13)
Vy_1=s8in 6, cos 6,,
Vy =cos 6,
It is easy to see that (Wi, ..., Wy_,) defined by
W=2V% (i=1-+, N-1) (14)
j=1

have the joint probability density
N—-1
COl‘lSt X { m( Wz_ Wl)( W3_ Wz)' . '( WN—I— WN_‘;)(]. - WN—l)} -1, 1]31 d m,
Oé W1.S_“'§WN—1§1- (15)
From this it follows that

Yi=W,=Vi+V; Y,=W,—W,=Vi+ Vi---,
Yir=Wyo— Wy_y=Vis+ Vi,

Z=Wi Wy, Zy=(Wy;— W)[(W,— W,),=-, (16)
ZM—-1: ( WN—a“ WN—4)/ ( WN——Z - WN—4)1
Zy =(Wya—Wyo)/1=Wys);

have the joint probability density

const x 1] dyl[[] (z(1—2)) ~"dz, )
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M-1
0=y, Sy.s1, 021,
im1

which shows that Y’s (Z Y;<1) are equivalent to random partition, and

that Z’s are 1ndependent to Y’s and have the same distribution as
(cos 2zR)*. These facts justify the procedure.
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