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1. Introduction and summary

At present, the spectral method is used very commonly for the
analysis of an electrical or mechanical system. The spectral method is
used not only for the estimation of the individual spectral density funec-
tions of the input and output of the system but also for the estimation
of the frequency characteristics of the system.

" The statistical method of estimation of the frequency characteristics
of a system is best suited for this purpose as it can be applied without
disturbing the normal operation of the system and even under the ex-
istence of the additive disturbance of extraneous noises. Statistical
method for the estimation of the power spectral density has been brought
to a considerable development by the valuable contributions of many
statisticians, for example, those of J. W. Tukey [4, 9]. As for the
estimation of the frequency response function of a linear and time-
invariant system we have a paper by N. R. Goodman [8]. The method
described by Goodman was a direct application of the method of estima-
tion of the spectral density to that of the crosspectral density, but some
experimenters who applied this kind of method to their numerical data
experienced the very low coherency of their estimates. As far as we
know, this fact was first recognized experimentally and announced by
J. F. Darzell and Y. Yamanouchi [6].

The fruitful results of the method of estimation of the spectral
density are mainly due to its success in reducing the variance by using
proper smoothing operations. Methods of smoothing or averaging such
as those named ‘‘ hanning >’ and ‘‘ hamming ’’ and so forth were derived
as those which have desirable properties of concentration of the effective
range of smoothing. The smoothing operation is carried out by taking
the product of the sample covariance function and a smoothing kernel
or a lag window. It is well known that the autocovariance function
does not contain any information about the phase of each frequency
component contained in the original data. However, the crosscovariance
function contains information of the phase, and the alignment of the
phase shift of the frequency response function at frequencies in the
effective range of the smoothing is most important to get a valid estimate
of the amplitude gain. In Goodman’s paper little attention was paid to
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this fact. Some experimenters who applied the same kind of method
directly to their numerical data observed a very low coherency of their
estimates at frequencies near the peak of the amplitude gain.

In 1960 we gave a proof that this low coherency is due to the inap-
propriate use of the lag window [3] and showed that, in the case of
Darzell and Yamanouchi [6], the shifting of the time axis of one of
the data greatly improves the coherency [11]. Almost at the same time
Darzell and W. J. Pierson Jr. published an interesting paper in which
the proper use of the time shift operation was also recommended to
avoid the reduction in coherency [7]. Because of the reasons stated in
the preceding paper [1, p. 2], discussions in this paper will be restricted
to the lag windows of trigonometric sum type which are defined in
section 2. First the sampling variability of the estimate of a frequency
response function obtained by using a smoothing operation will be evaluated
and then the bias caused by use of a lag window will be analysed. Even
if the amplitude gain of the system under investigation is assumed to
be locally constant or linear in the range of the smoothing operation,
rapid change of the phase shift may still occur, and it is shown that
this tends to reduce the value of the estimate of the amplitude gain.
When we recall that in the physically realizable minimum-phase system
the rate of change of the phase shift with respect to the increase of
frequency is large at the peak of the amplitude gain [10, p. 45], we
can see that this observation is of general meaning. Further the bias
due to the use of the window is observed to be usually small in the
case of the estimation of the phase shift. Taking into account that
for the input of white noise the overall reduction in coherency is kept
minimum when the integral of the square of a crosscovariance function
multiplied by the lag window is maximum, it is recommended, to obtain
a good overall view, in the practical application of the present estima-
tion procedure, first to shift the time axis of the crosscovariance function
so as to situate the origin at the maximum of the envelope of the
sample crosscovariance function. The result of the analysis of the sampl-
ing variability of the estimate shows that at frequencies where the
values of the coherency are high the lag window of which the Fourier
transform, or the spectral window, has narrow bandwidth should be
used. Numerical comparison of the windows are made and the use of
the window Q, which has been recommended for estimation of the power
spectral density in the preceding paper, is recommended for this case
too. Sampling variability of an estimate of the coherency is discussed
and the mean and the variance of the estimate are numerically given
for some typical cases. Formulae for approximate evaluation of these
two quantities are also given. Construction of the confidence regiorn
for the frequency response function is tentatively suggested. In the
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final section some numerical examples are given to show a practical
meaning of the contents of this paper.

2. Sampling variability of the estimate

In this section an estimation procedure of the frequency response
function of a linear time-invariant system will be discussed and the
sampling variability of the estimate will be evaluated. The evaluation
proceeds entirely analogously to that of the estimate of the spectral
density function treated in the preceding paper [1]. All the stochastic
processes treated in this parer are assumed to be Gaussian. Therefore
the results of the evaluation of the sampling variability of the estimate
have only the meaning of rough approximation to non-Gaussian cases.
Even for the Gaussian case the evaluation can be carried out only ap-
proximately, so in practical applications of the method it is most recom-
mended to check the sampling variability of the estimate numerically
by some artificial experiments. ,

We observe here two stationary stochastic processes x(t) and y(t)
which are real and are related by

w(t)=| " exp(erift)iz(f)*
y(O)=|" exp@rift) A L) +n(t)

where A(f) is the frequency response function or the gain of the system
under consideration and n(t) is a Gaussian process which is independent
of the process z(t), and which represents the additive disturbance of
the extraneous noise. «(t) and n(t) are assumed to have absolutely con-
tinuous power spectral distributions with power spectral density functions
p(f) and p,(f) respectively, and to have zero-means.

We shall assume p,(f), p.(f) and |A(f)| to be bounded continuous
functions of f.

Under the present assumption the process y(t) has an absolutely con-
tinuous power spectral distribution with power spectral density p,(f)

given by
)= AN ') +2.(f)-

We shall also use the Fourier representation of n(t)

* This is the Fourier representation of x(f) and Z(f) is a complex orthogonal process with

E{dZ(f)|*=p(f)df.
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n(t)= S:exp(2nift)dN(f).

It is known that when y(t) represents a stationary output of a linear
time-invariant system, of which the impulsive response function is (%),
and which is distorted with an additive random noise n(t), i.e.,

y(t)= S:x(t—r)h(t)dr—l-n(t),

we have
A(f)= S:exp( —onife)h(c)dx.

|A(f)| is called the amplitude gain of the system and ¢(f)=arg A(f)
the phase shift of the system. Now, suppose data are given and are
represented by

{(x(®), y()); —T<t<T}.
After the preceding paper [1, p. 3] we define for integral v’s

X(ﬁ): é_ ST exp(—Zziz—yT—t>x(t)dt

Y (ZLT> =——;_?gi exp ( —2r1 _ZET t) y(t)dt
N <;—T> =71_Tgirexp(—2 2L )n(t)dt
Then
X () =\ Wil —r)dzs)
Y (gp) =W (g —r)anman+y ()
N (o) =" We(2p—r)ane)
where

Wo(f)= " exp(—2rift)dt .

~/2TS

Throughout the present paper it is assumed that 7T is sufficiently large
so that, the real and the imaginary parts of X(v/2T)’s or N(y¢/2T)’s
can be considered to be mutually independent Gaussian random variables
with zero means and variances p,(v/2T)/2 or p.(¢/2T)/2, respectively,
for positive v and g, as was observed in the preceding paper, [1. p. 5].
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Obviously, from the assumption of this paper it follows that X(v/2T)’s
and N(¢/2T)’s are mutually independent.

Hereafter, in this section, we shall adopt the extremely simplified
assumption of constant A(f). Then

[~ we(2—sr)aazn=al 2| we(zm—r)azn

2T

and

(o) * (57

where =~ means ‘‘ equal to’’ under the present assumption. From this
result one may imagine that the statistic

Y (57X (55) =4 (35 % (57

X

AT
IX(—;:F>2 - (2T) X(;T)

will form an estimate of A(v/27T). However, taking into account that
(p(v/2T))7Y| X(v/2T)|* is distributed approximately as a »' with d.f. 2,
we can see that the square of the absolute value of the error term
X(v/2T)™* N(»/2T) will not have finite expectation. This fact suggests
that the statistic of this type will not be an appropriate one for the
estimation of A(f), and that it will be necessary to increase the d.f.
of the denominator to obtain a reliable estimate. Using proper weight
{w,} (satisfying 3} w,=1) we now introduce our estimate A(f,):

 SwYGAXGA) *
AL =TS XA

where f,=p/2T. For this estimate we have

A(f)=A(f)+ 2 w,lX(f,,—fu)I”

Taking into account that we have almost surely >3|X( fu)|”=KT[ x(t)| *dt

T
and 33| N( f,)|’=§ |n(t)|’dt, we get, in case w,’s (v=y) are small enough
v -7
and the last quantity in the following is finite,

*In this paper we shall use the notation Z in place of ): and Z} in place of Z + E} .

y=--co y=—co v=p+1
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E, ; wuN(fp—fv)X(f#—fv) ‘2
* 2 wyl X(f;t_fv)l : ‘
N(fi=fIN(fi=f) X (L, f)X(fﬂ—fw):l

152 0, X7,
S e, I X (= F)
[Ivgw,IX(fﬂ—ﬁ)lzlz }” "

S w1 X ()

S wiX(, f>|2|2}”"(f’

—Z‘Eww El:

< Maxlw IE[

where the symbol ~ means ‘‘approximately equal to’’ when T is suf-
ficiently large so that p.(f,—f.) can be considered to be a constant p,( £
in evaluating the quantity under consideration. For almost all the lag
windows which will be used practially it holds that Max|w, |=w, and

w,=|w,| at those v’s where |w,| is large. Therefore, in this case, the
last term may be replaced by

wE [: ]pn( ).

1
S wX(f,=F)"

In this paper we approximately regard the distribution of variable
Z w,| X(f,—f)I'pf,)7! as a I'distribution, or more roughly as a y-dis-
trlbutlon of which characteristics are given by E(Z w,| X(f,—1)* and

z(E w,| X(f.—f)?). If a y’-distribution is adopted, 1ts d.f. k is given by

AE S w| XLV
DS w | X(£,=£)) T Siwl

h=the nearest integer to

and when £>2

Pl s i

Thus an evaluation formula of the magnitude of the relative error of
our estimate fi(f,,) is given by

()
h=2 [A(£)'pAF)

A(f)

This evaluation may seem to be somewhat conservative. However, when
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we compare numerically the present result with a more optimistic one,
which is obtained by assuming > {w,|*| X(f.—fI)Y X w|X(f.—F)

=>Tw/> w, and is given by replacing w, in the above formula by
SYw?, we can see that the difference is small, say of the order of 10

to 209, in the sense of root mean square, for the windows of ordinary
use. From this result we may conclude that we can conveniently use
any of these two formulae for the evaluation and analysis of the sampl-
ing variability of our estimate.

Following the definition in the preceding paper [1] let us call the
weight {w,} a spectral window corresponding to a lag window W(t) when
it satisfies

=117 exp(—2i 2
w,_ﬁg_Texp < 2r1 5T t > W(t)dt.

The lag window of trigonometric sum type of the kth order is defined by

— *
Wi(t)= n_Z_ a, exp (27':@2 T ) [t|1< T,
_1 ¢ . n _
= :é‘ a, exp (2n@2—ﬂ:t> [t|="T,
=0 [¢1> T,

where a,’s are real and a_,=a,.
For the lag windows of trigonometric sum type
1 2T,

T
—__ dt =
o ZTS—TW(t)t 2T

(223

z_i 2 m 9
Slw,b=pe| |WOPd=212 3 |a|
and

h=the nearest integer to 2 (2T)———1—-— .

Tol o 7 |aup

n=-—k
The coherency 7*(f) at the frequency f is defined by

o £y— A Pp.(f)
rin= p(f)

—1_Plf)
p(f)
* If ¥|w,|< +oo is necessary, we have only to modify this W(f) to be smooth at =+ T
See also [;, p- 9].




30 HIROTUGU AKAIKE and YASUFUMI YAMANOUCHI

When we assume that h is fairly large so that A(h—2)~! can be taken
to be nearly equal to 1, the final evaluation formula of the relative
accuracy of our estimate of the frequency response function will be
given by

g AL —Af)

T, 1-7(f)
A7) 2a ‘

2T P(f)

If the above stated second evaluation formula is adopted,

Tag & @11 |

| A(f)—A(f) .
2T n==x T’(f#)

A(f)

By using this result and that of the analysis of bias, which will be
given in the following section 3, the design principle of the optimum
lag window of trigonometric sum type may be given entirely analogously
as in the preceding paper. Therefore, we can see that the results of
the analysis of the windows obtained in the preceding paper are all
useful for this case too.

We have derived the present evaluation formulae under the assump-
tion that A(f) can be considered to be a constant in the range of the
smoothing. The assumption of this kind caused little trouble in the case
of estimation of the power spectral density, but in the case of estimation
of the frequency response function the situation is different.

The lag windows of trigonometric sum type that have been used
hitherto are all symmetric with respect to the y-axis hence are free
from the biases of odd orders and they caused little trouble in the
estimation of the power spectral density even in the case where the
density function showed large linear variation. As to the estimation at
the peaks and valleys of the power spectral density function, statisticians
say that they are estimating the ‘‘ averaged power spectra’’. In the
estimation of the frequency response function the situation is the same
and one must satisfy himself with an estimate of the ‘‘averaged fre-
quency response function’’. However, there exists a difference in
that the total power remains unchanged by averaging while the
frequency response function may even ‘‘disappear’’ by averaging when
the variation of phase shift exists. The apparent reduction in the
amplitude gain is thus introduced by averaging and in case where the
main concern of the experimenter is in the analysis of the coherency
or of the linearity of the system such an estimate may be quite
useless or even misleading.

In the following section the bias introduced by averaging in the
estimation of the frequency response function will be discussed.
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3. Bias due to smoothing
In this section we adopt the approximation to regard
Y(f#)zA(fv)X(f#)-*—N(f;) )u=0; + la + 2’ s

which will hold strictly only when the x(t) is circulating with period 27 and
will hold approximately in the sense of mean square, as T tends to infinity.
Then assuming the existence of E[X}|w, || X(f,—fI)/Zw.| X(f.—1f)|*] we

have

BA(S)~ SAS—1)E| zwﬁgff}l)l] '

For the sake of simplicity put x=w,| X(f,—f.)|* and y= EL w,| X(f,—f)I*.

Even under present assumption that | X(f,—f.)|’s are mutually independent
and follow distributions of y’-type with d.f. 2, the quantity x/(x+y) may
not have any finite expectation when some of the w,’s take negative values.
Obviously this is due to the positive probability of x+y being in the
neighbourhood of zero, and if this probability is very small we may
practically restrict our consideration to the case where z+y is greater
than some positive constant. For evaluation of the expectation of z/(x+y)
in this restricted sense we shall here approximate z/(x+y) by (x/(x+y)),
which is defined as

() g b (- )

where 2,=FEx, y,=Ey, de=x—x, add dy=y—vy,. When the coefficient
of variation of x+y, which is approximately equal to +2/h, is, fairly
small, say less than 1/3, this approximation will give an estimate of
the bias of z/(x+y) from x,/(x,+,) .

The expectation of (z/(x+v)), is

E( x ): % _ Ex) | xE(dx+4y) n E(4x) )
c+yls 2ty (@) (@ +v0)* (%o +90)*

Under the assumption of this paper
Lo =w,pf,—1.)
Zo+t=3 wp.(f,—f)
E(dz) =wip:(f,—f.)
E(dr+dy) =3 wipi(f,—f)
E(dzx) =2(w,pf,—f))
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when p,(f) is considered to be nearly a constant in the neighourhood of

f., and it can be seen that the ratio of the last term of the right hand

side of E(x/(x+v)), to the third term is nearly equal to 2w/>) w}. Taking
i

into account the relations

2T,,

Y=o

223

> wi= 221,} Sa;

for the lag windows of trigonometric sum type, we can see that when
h defined in section 2 or T/T, is fairly large this last term usually
takes a very small value for the windws used ordinarily. For the
evaluation, therefore E(x/(x+y)), will be used in place of E(x/(z+¥)).

where E(x/(x+y)), is defined as

B(_® __ % (4 E(dz+4y)\ _ E(4x) )
<x+y>" xo"'yu( + (@ +9) ) (@ +9)

This E(x/(x+y)), gives the accurate result of E(X w.|X(f.—f)Y
St w,| X (f.—f)]")=1 when it is formully applied to the evaluation of in-
dividual E(w,| X(f,—f)*/> w,|X(f,—f)|?), which is a main reason why

we have adopted this Eﬁ(xy/(w-l—y)), in the present investigation.*
When we assume that p,(f) is locally flat around f, we have

BA(S)=5 AU, —F) w1+ 3 w)—w})

where the expectation should be understood in the restricted sense
as mentioned above. When the assumption of local flatness of
2.(f) is not satisfied, we have only to replace w,’s in this formula of
E(A\(fp)) by w;’s which are proportional to w.p.(f.—f.).

We analyse here the effect of smoothing operation when the as-
sumption of constant A(f,—f,) is not admitted. Besides the bias of

E(f’l\(f,,)) from A(f,), the variation of A(f,—f,) causes the sampling
variability of the term Z wA(f,—1) X(f. f)lZ/Z w,| X(f,—1f)I*.
However, taking into account that there usually exists 1nev1table sampl-
ing variability due to the additive noise, we shall limit our attension to
the analysis of the bias of E(/f(fp)) from A(f,) assuming that p.(f) is
locally flat around f,. It should be noted that when A(f) can be con-

* Strict evaluation of E(x/(x-+y)) is possible if w;>0 and wa po( fr—f2) #wi' pa( fu—f2) (A% ')
hold, but the result is not directly applicable to the present analysis.
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sidered to be a constant in the effective range of the smoothing operation
the assumption of local flatness of p.(f) is unnecessary to keep our
estimate unbiased. This shows that the local flatness of the amplitude
gain and that of phase shift have great influence on the estimation of
the frequency response function. Therefore, we can guess that in this
case some sort of ‘‘preflatening > operation will play the important
role which was played by the prewhitening operation in the estimation
of the power spectral density function.

Now let us consider the case where A(f) admits the local ap-

proximation
A(f,—f)=a(l+8f.+1f?) exp @rif.T,)*

where B,y and T, are real constants and a=A(f,). Then
BA(f)~S A, ~F) w143 w)—wl)
=a(3 w, exp Z2ﬂifuTﬂ)+ﬂ > w.f, exp(2nif,T,)
+r 2 w.flexp 2xif,T,))(1+ 3 wi)
—a(”g wiexp 2xif.T,)+5 3 zz)ffp exp (2wif, T))+7 3 wif ! exp (2rif.T,))

=a(W(T) 45— W(T,)+ @iy W(T.)

(e (W (L) = WHT)+ o fo (1) W)
o o
oty W= WHT){C. 3)
where (C. 3) shows summability by the 8rd Cesaro mean [1. p. 7],

W) =( w%)“Sl W(t—s)W(s)ds,

: d
T)=2% w ,
WT)=2- W),
W(T)=% w
()= gz 70|,
W(T)=-2 W) l
“dt =1,

. d2
w2y @ Trrxe
w(T)=Lw (t)LT”.

* This local approximation of the frequency response function constitutes the basis of our
present analysis. Its extension to the cases with the polynomial factor of higher degrees is
straightforward.
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and the existence of these quantities is assumed. The second term of

this last expression of E(A( f.)) represents the contribution of E(x/(x+1y))
—E(x)/E(x+vy) and usually is very small while the first term represents
the main effect of the smoothing operation. Hereafter, we restrict our
attension to this first term. This term is analogous to that obtained in
the preceding paper [1, p. 7] by the analysis of the bias in the estima-
tion of the power spectral density. However, there is one important

difference in that W(0), W(0) and W(O) of the formers are replaced by

W(T,), W(T,,) and W(T,,) in the present formulae, respectively.
Taking into account that 27T, represents —d[arg A(f)]/df] r=r,» We

can see that this appearance of T, in the formula is showing that the
allignment of the phase shift between the output and input is essential
for the estimation of A(f). This fact was entirely disregarded in the
paper by Goodman [8]. As to the lag windows of trigonometric sum
type hitherto used, W(T,) is less than one except for the case where
T,=0 holds, hence even if the contributions of the term ff,, ff} are
small the estimate may suffer a significant decrease in the amplitude
gain by the contribution of T,.

Taking into account the very rapid change of phase shift of the
frequency response function of the ship model treated by Darzell and
Yamonouchi [6], this gives a theoretical explanation to the apparently
very low amplitude gain, accordingly to the apparently very low coherency,
observed there at the frequencies where the amplitude gain showed a
significant peak in the analysis of the response of the ship model to
the waves.

The present representation of the bias suggests a method how to
remedy this defect of the window. For we can see that if we replace
w, by w, exp (—2xif,T,) or W(t) by W(t—T,) then we have

52w, exp (2L T)A(,~F) = WO+ L WO+T WO) €, 3),

and if we use the window W2, *) which was defined in the preceding
paper and for which W(O):W(O):O holds, we have

Ey w, eXp (—21rifI,,)A(f,,—f,)=a (C. 3).

However, if we try to use this procedure practically, we have to
put an estimate of T, in place of T, itself, and this suggests the neces-
sity of the use of lag windows with somewhat flat tops. It is known
that in a physically realizable minium-phase system there exists functional
relationship between the amplitude gain and the phase shift, so to know
of T, is actually to know of the shape of the amplitude gain near the
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frequency f,, which we are struggling to obtain. Fortunately, however,
it can be seen, by inserting some concrete values into the present evalua-
tion formula of the bias, that even when |T,| is fairly large W(T.,)

—(r/(2rr))’W(T,,) may sometimes be much greater then |(8/27) W(T,.)l and
the bias of the phase shift due to the smoothing is relatively small.
This fact and the following consideration of the overall reduction in the
gain shows that we can usually get a reliable estimate of the phase
shift and thus of T,, and the estimate is used to obtain the final estimate
of A(f,).

To get an overall view of the effect of the smoothing on the fre-
quency response function we make an analysis in the time domain [3].
It is assumed that A(f) is the Fourier transform of some function A(t)
and is represented as

A=\’

,eXP (—2rift)h(t)dt .
Then we have

SwA(f,~f)=|" exp (~2wif )Wkt .
and

(37) SIS wac—rr={ | woneora
() Stacz={" inora.

From these formulae and the fact that W(t) is usually less than unity,
it can be seen that, to keep minimum the overall reduction in the gain,

W(t) which gives the maximum of ST | W(t)h(t)|*dt should be used.
-1

In the practical application of our estimation procedure we can observe
the sample crosscovariance function which is a convolution of A(t) with
the sample autocovariance function of w(t) distorted by the existence of
some additive disturbance x(t), and the sample crosscovariance function
provides some information of the shape of k(t), especially when some
type of overall prewhitening operation is applied to the input.* Therefore
in case where the input is considered to be fairly white in the range
of our concern, we can obtain a fairly good overall estimate of A(f) by
shifting the center of the lag window or the origin of the time axis of
the sample crosscovariance function to that time point ¢ where the
maximum of the absolute value of the sample crosscovariance function
occurs. From the result of the foregoing analysis, it can be seen that

* As to the overall prewhitening operation, some numerical examples are illustrated in the
former paper by one of the authors [2].
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the local whiteness of the input is desired to keep the estimate of the
frequency response function unbiased and overall whiteness is only
necessary to get a good primary estimate.

We shall here analyse the effect of the smoothing operation for a
certain concrete type of A(f). We assume

h(t)= «/‘10)152’ exp (—Cw,t) sin V1= w,t) t=0

=0 t<0.

Then we have

A(f)=

@@+ 2wy A e (i9)

]

This A(f) is the frequency response function of the system of which
behavior is described by the second order differential equation

7 d? d _
(TWJFTE +K)0o(t)—K0,(t)

where 6,(t) and 6,(t) represent the input and output of the system and

,_ K

T
_ 2
C—~—2\/ﬁ"

Consider the case where {1 or very lightly damped oscillating system
with one degree of freedom. In this case |A(f)| shows its peak near
its natural resonant frequency f,=w,/2x, and a value of T, at f,=f.,
which appeared in the local approximation formula of A(f), will be
given by

T,= 1 d¢ 1

2 df lr=r, Cwn

Further, if we define 4f.(>0) and 4f_(>0) by
| A(f,+4F ) =] A(f.—Af.) l=%1A(fn)l ,

then under the condition {1 we have
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Af o+ Af. =50

From these two results we get the relation

1 1
r=1_ 1
) # T Af++Af_

For example, when 4f,+4f_=1 c.p.s. we have to shift the window 1/=
second to the right of origin. This 4f, +4f_ is usually called the band-
width of the filter or of A(f) and our present result shows that the amount
of shift T, is inversely proportional to the bandwidth of the filter. This
knowledge will prevent the danger of using a lag window with W/( T,)=0.
Now we evaluate the bias induced on the present A(f) by the use of
windows of trigonometric sum type. It is assumed that every window

is shifted by the amount K=1/{w, and that 7,>K. Adopt the ap-
proximation

. —iw, 1
A(futf)= 5 o tize

around the natural frequency f,. Then we have

S AU~fe s = SeXp( Cont) Wittt

= A()Go)| exp(— Loty Wy(tyit
Now

Szoexp(—Cwnt) Wt dt

~ 3 SK”’" 2ni Y (t—K
-~ Sa, exp(— i ))exp(—cw,,t) Co,dt
and when we define

= Zon 7<'—EJ‘IFTJ§—1‘>

we get for k=3
AD(C)=S:°exp(-—Cwnt) W) Co,dit

=a°{1——exp (— (1"'%))}

)
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TABLE 1. Comparison of biases induced on A(f)

W0, a) W0, 5/a) | Wi(0, ap) W0, a)
a 0.3333 0.5272 0.5132 0.2000
a=a 0.3333 0.2364 0.2434 0.2000
ay=a-3 * * * 0. 2000
a=a_s * * * *
An@) 0.5050 0.6267 0.6179 0.2146
An(1) 0.7938 0.8492 0.8452 0.5873
Ap(1/2) 0.9293 0.9497 0.9482 0.8338
Ap(1/4) 0.9800 0.9859 0.9855 0.9456
W2, a) Wy(2, /) W2, ap) W2, a)
a 0.4857 0.4675 0.6398 0.3333
ay=a_, 0.3429 0.2350 0.2401 0.2857
a=a_y —0.0587 —0.0588 —0.0600 0.1429
as= a—3 * * * - 0. 0952
An(2) 0.6893 0.7630 0.7594 0.4169
An(l) 0.9097 0.9330 0.9319 0.8171
Ar(1/2) 0.9804 0.9862 0.9860 0.9496
Ap(1/4) 0.9978 0.9983 0.9984 0.9916
2 : (s
+a, -1cos p+psin p+exp{ — 14—
1+p p
-}—a,g——z——2 {cos 20+2p sin 2p—exp (— <1+£))}
1+(2p) P
+a3———2——7 {cos 3p+3psin 3p+exp (— (1-}—3))} .
1+(3p) I

The result of numerical computation of this A,(¢) for the windows treated
in the preceding paper [1] is given in table 1, for the values of p=2, 1,
1/2 and 1/4 which correspond to the values of T,==T, 22T, 4=T and
8z1. The result shows that p must be kept less than 1 for the ordinary
purpose of estimation and that the window Q(a,=0.64 a,=a_,=0.24
a,=a_,=—0.06) introduced in the preceding paper, which is approximately
the same with W2, «B), will be quite suited for ordinary use.

4. Sampling variability of the estimate of coherency

As was seen in section 2, the value of coherency is necessary for
eAaluation of the accuracy of our estimate of the frequency response
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by the use of windows of trigonometric sum type.

W0, B/a) | W0, ap) W3(0, ) Wy(0, /) Wy(0, af)
0.6202 0.4282 0.1429 0.6129 0.4229
0.2358 0.2433 0.1429 0.2182 0.2124

—0.0459 0.0426 0.1429 —0.0431 0.0434

* * 0.1429 0.0184 0.0327
0.7326 0.5206 0.1498 0.7135 0.4959
0.9145 0.7851 0.4039 0.8822 0.7335
0.9782 0.9219 0.7336 0.9610 0.8%42
0.9957 0.9762 0.9030 0.9885 0.9646

T |

W2, /a) Wi2,af) | Wik | W& p@) | Widap)
0.6643 0.5571 0.5671 0.7085 0.7029
0.2306 0.2610 0.3247 0.2186 0.2228

—0.0609 —0.0190 —0.1299 —0.0875 —0.0891
0.0041 —0.0205 0.0216 0.0146 0.0149
0.7793 0.6780 0.7725 0.8218 0.8198
0.9385 0.9048 0.9375 0.9526 0.8198
0.9879 0.9777 0.9890 0.9923 0.9923
0.9987 0.9969 0.9992 0.99%4 0.9996

function. In practical applications, it is often more necessary for making

39

a decision whether such analysis of linear relation between x(t) and y(t)

has a practical meaning or not. We define sample coherency 7(f) at
f. by

A=A e S
R ST (T

This #(f,) will be an estimate of the true coherency ;’(f,), and the
sampling variability of this estimate will be treated in the following.
It was shown in the preceding section that the main trouble in the
estimation is the bias of the estimate, and that by using the shift
operation and lag window, properly combined, we can evade this difficulty.
In this section we discuss the sampling variability of the estimate of
the coherency under the extremely simplified condition of constant A(f)
and constant p.(f) and w,=1/n(v=1,2,3, .-, 7). This condition is
identical to that adopted in the paper [8] by Goodman, and we can show
that in this case our estimation procedure reduces to that of the clas-
sical regression estimate and all the necessary information is directly

available from the standard text of mathematical statistics. We adopt
the notations
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A=R.A(f)
B=L.A(f)

03v=-;— p(f)

o}=% f)

si=5 PAN=I Aot o
2 AN
r'=coherency =‘_4@|2ﬂ=(142 +B?) (i&)
Oy oy

where R, and I, denote ‘‘the real part of >’ and ‘‘the imaginary part
of »’, respectively. Following the analysis in section 2 we have

UY,V=AUX,v_BVX,v+ UN,'»
Vy,,,’-:BUX,p'I'AVX,»'l‘ VN,p

and it is assumed that Ux,, Vx., Uy, V. are mutually independent
Gaussion random variables with zero means and variances D*(Uy,)
=D¥Vy)=0% D Uy.)=D(Vy,)=0k=0{1—7"). The 4-dimensional pro-
bability density function ¢(u,, v,, %, v.) of (Uy,, Vy., Ux,, Vx,) at
(4y, v , U, v;) is, therefore, given by

1 ( 1 a1 s )
= — U1V
AUy, Vyy Uy Vo) Smot exp S {u 43}

2 — 2 —_ 2
R — J S — > - v Buz A : .
X ora? a—7 exp ( 205 (1—7) {(u,— Au,+ Bv,)' + (v, ) })
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Now, for a random sample (Uy., Vy., Ux., Vi.); v=u+1, v,+2, «--,

vo+mn) the maximum-likelihood estimates A and B of A and B are
given by

v0+n v0+n v0+n v+

0
"N E+1UY'vUX,v+ Z+1VY,PVX,V ~ 2+1VY,vUX,v— E.HUY,DVX,v
— v=y y=vy — v=yy y=v,
A votn vo+n ’ B vo+n vo+n
> Ui+ > Vi, > Ui+ X Vi,
v=v0+1 v=v0+1 . v=v0+1 v=u0+1

and the sample coherency #* is given as

v+ vo+n

A+BY S Ut S Vi)
v=v+1 =y +1

=

v0+n vo+n
> Uy, + X Vi,

v=v0+1 y=v0+1

After a moment’s consideration, we come to know that we are making
here a regression analysis of the form

Y=AX +BX;,+¢
where
YZ(UY,vo-H’ Uy,»0+2y cc UY,v0+m VY,u0+1’ Vy,u0+2’ °cy VY,u0+n)'
AX1=(UX,V +19 UX,» +25 °° % UX,u +ny VX,v +1y VX,» +2y *°° VX,,, +n)'
0 0 0 0 (] 0
)Q=(— VX,VOH, - VX,v0+2’ c0ey, — VX,v0+nv UX,»0+1, Ux,u0+2y“'y UY,v0+n)’
€ =(UN,v0+17 UN,u0+27 c UN,v0+ny VN,v0+17 VN,v0+2""1 VN,v0+n)’

where ’ denotes the transpose of the vector. Statistical properties of

A and B are well known and the sample coherency #* is the square of
multiple correlation coefficient between (X, X;) and Y. Taking into
account of the fact that the inner product (X, X,> of vectors X, and
X, is identically equal to zero, we can at once get the representation

(e, ey =(A—AXX,, X)) +(B—BXX, X5+, &

where ¢=Y—AX,—BX, and (,> denotes the inner product of vectors.
Fisher’s lemma can be applied [5, p. 379] to this representation and we
know that the right hand side members, when divided by ¢%, are mutually
independently distributed as x”’s with d.f. 1, 1 and 2(n—1), respectively.
The sample coherency 7* can be represented as

o (AX, X)+B(X X))
(AKX, Xy +BHX,, X+, 8)(63)

and we can see that the numerator is a non-central y’-variable with d.f.
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2 and non-centrality 7*<X;, X;>/(1—y*)o%. Taking into account the fact
that (X, X,>/o% is distributed as a y’-variable with d.f. 2n, we can see
that the distribution of the sample coherency #* is that of the square
of the sample multiple correlation coefficient when the corresponding
population value is equal to y* and a straightforward calculation shows
that its probability density p(¢) at #*=¢ is given by

(1 1 I'(n+k) \yireria __Fye-1-1
pO=a 7):§)F(n)l"(n—1)(l“(k+1)>;7c -0

where »=y’. This is identical with the formula (4.60) of Goodman’s
paper [8] if 2 in the latter is replaced by *.

This p({) will give an approximation to the true distribution of the
sample coherency 7'(f,) for general spectral window {w,}, and for the
analysis of the sampling variability of the sample coherency 7(f.), ob-
tained by using a lag window of trigonometric sum type, one should

take the nearest integer to (277 T,,,)(1/2(Zf;cla?, |) as the » in the above con-
sideration. For the sake of typographical simplicity we hereafter use
the letter ¢ in place of 7. Now, E({) and E(® are given by
. I'(n+k)  kE+1
E)=>1-
Q== e Ge+1) Tin”

N (1 ) I'(n+k) k+1 k42 k
EE)=01-2) = Tm)(+1) ktn ktntl @ °

Numerical computations of E({) and D*Z) by these formulae for values
of » and 7 which will often be met in practical applications are tabulated
in table 2.

Fig. 1 shows the results of a sampling experiment of estimation
of the coherency using the windows hamming and Q. Necessary infor-
mation about the true A(f) of this case will be given in fig’s in section
6. It seems that, at least for this example, E({) and D*() obtained by
using the present distribution of ¢ provide us with good estimates of
the corresponding true values of the distribution of the sample coherency.
However, it must be borne in mind that this estimation is valid ‘ only
when the bias due to smoothing is negligibly small.

4

For ,o=1—E we have

_ 1
=FE(p)=_T
0 =E(p) P p+ po—1

* In Goodman’s paper, Z and z in (4.8.6.) and (4.16.6) should bte read as Z? and 22
respectively.
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D(p) {
=__EM<-2 — L> THEORETICAL
(n—2)'(n—3) Fret 2n ri) l—
h ESTIMATED
where {{m hm  K=07
-__ 7 - s hm K=4 ‘
A va ket

The factor 5'=(1—7)/y is neces- '° et HAMMILG

sary for evaluation of the relative
accuracy of the estimate of the
frequency response function and
sometimes we have to substitute
its sample value p~'=(1—{)/C for

this. For evaluation of the error 05"_ E@-0©)
of this last value, the knowledge '

of E{) and D%¢) will con- M =450
veniently be used. From the h=36

relation {=p/(14p) we have for
p=p,+4p the local approximation

[ +<ii£) dp. 0 ; . Il
1+Po dp =p, —_— —_—
124T 64T
Fig. 1. Sampling experiment of estimation
of coherency.

Using this approximation we
have

E@Q)=_-"
O=12

DY0)= 2n(n—1) (p'+p+1/2n)
(n—2y'(n—3) (1+&)"

In table 2 the values obtained by using the present approximation:
are compared with the corresponding theoretical values. The result is
also illustrated in fig. 2. It can be seen that, in this range of parameters,
our formulae provide us with estimates which are accurate enough for
the purpose of practical applications. Moreover, our approximation shows
that D?({) is approximately inversely proportional to =, this is quite
natural and useful for the design of experiment and analysis. The above
result of sampling experiment seems to show that the simplified con-
dition of this section gives a fairly reasonable approximation to the true
distribution of the estimate of coherency. From this it can be inferred
that it will not be quite useless to mention here of the confidence region
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TABLE 2. Comparison of the approximate
values with their corresponding
theoretical values. E () . s
‘ /
\ ! E() 0.9y /.%
7
n=5 n=10 n=20 08 /
7 . 7
Ao [T+ A4 | T || 4 | T
071 / : THEORETICAL
0.4 | 0.59 | 0.48 | 0.49 | 0.44 | 0.44 | 0.42 / """ A APPROXIMATE
0.5 0.67 | 0.56 | 0.58 | 0.53 | 0.54 | 0.51  06F :/ o T
0.6 | 0.74 | 0.64 | 0.67 | 0.62 | 0.63 | 0.61 /°/ —— A =8
0.7 || 0.81{0.72 } 0.75 | 0.71 || 0.73 | 0.70 05 & /5’ o T i
0.8 0.88 | 0.81 | 0.84 | 0.80 | 0.82 | 0.80 g/ = A
0.9|0.94 090 0.92]0.901] 091|090 04 ~ 5T a0
—a— A -
D)
n=>5 n=10 n=20 \ D ()
(o)
"Nl alT)al | al T o °
o
L 1
0.4 0.27 |0.21 | 0.17 | 0.16 || 0.12 | 0.12 "~
0.5 0.24]0.20 0.16 | 0.15 | 0.1 | 0.11  0.I5[ N
0.6 | 0.20 [ 0.18 || 0.14 | 0.14 | 0.10 | 0.10 A~ B\E °
0.7 | 0.15]0.16 | 0.11 | 0.11 | 0.08 | 0.08 g gk T~ \' .
0.8 0.10 | 0.12 | 0.08 | 0.08 | 0.06 | 0.06 \\E\o
0.9 | 0.05 | 0.07 | 0.04 | 0.05 | 0.03 | 0.03
0.05} \;
C.V.()=EQD(Q) o5k
=5 =1 =20
n n=10 " wlk CV. 2)
"\ A | T | 4 ; Tl al T
0.4 0.46 | 0.44 | 0.36 | 0.36 | 0.28 | 0.28 0.3 .
0.5 0.36 | 0.36 | 0.28 1 0.29 | 0.21 | 0.21 \o
0.2 ',
0.6 | 0.27 | 0.29 | 0.21 { 0.22 | 0.15 | 0.16 \QE\O
0.7 ]0.19]0.22 | 0.14 | 0.16 | 0.11 | 0.11 NN
0.1F \U\
0.8 0.12]0.15 | 0.09 | 0.10 || 0.07 | 0.07 e§§
0.9 | 0.06 | 0.08 | 0.04 | 0.05|| 0.03 ] 0.03 o ) , ; | T -
04 05 06 07 08 09
®*  A: approximate —7
#%)  T: theoretical

Fig. 2. Comparison of the approximate values
with their corresponding theoretical values.

of the estimate of the frequency response funection under that condition.
We have obtained the relation

G, > =(A—AW(X,, X)) +(B—BXX,, Xp>+ 4, ¢

where the right-hand side members, when divided by ¢%, are mutually
independently distributed according to the y!-distributions with d.f. 1, 1
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and 2(n—1), respectively. From this relation we can see that the
statistic ' which is defined by

) {A—AP+(B-B}KX, X)
&8
where (X, X>=(X,, X>=(X,, X)), is distributed according to the F-
distribution with d.f.s 2 and 2(n—1).
Therefore the confidence region S of (A, B) with confidence coef-
ficient 6 is given as follows.

= a . /\_a2 A_ 2 <€yé> —
S={(w o @-ay+(B-prs 0o 16,2, 20-1)

F=(n—-1

where F(d, 2, 2(n—1)) is defined by the relation
Prob (FLF(5, 2, 2(n—1))=0.

When the lag window of trigonometric sum type is used to get ff(f,,),
(&, 8/(X, X> and n in this expression are replaced by

iy DA TGN
TS WX

k .
and the nearest integer to 2T/T,)(1/2 3 ai), respectively, to obtain an
n=—k

approximate region R to the above confidence region for A(f,) with
confidence coefficient 4, i.e., the region R in the complex domain is obtained
from the following relation.

=[G 14(7)~6Irs Lo (22D Art | P, 2, 2m— 1)
n /

-1 i)-l‘l‘(f#)
where
n=the nearest integer to ETZ kl
23 a;
n=—k

j)yy(fp)z Zv.‘x ’w,,l },(.f,u_fv)lz
f)‘”(f,,): 2” vaX(fp—fV)lz'

We will here briefly mention about practical meaning of the use of the
present confidence region. The results of analysis of sampling variabilities
of ﬁ( f.) and 7*(f,) in this and former sections are used mainly for the
design of experiment and are taken into consideration before the data
are obtained. On the other hand after the data have been obtained the

confidence region will indicate the precision of our estimate ﬁ(f,,) by
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using the information contained in the present data, where X(f,)’s are
treated as fixed variables. It can be seen, as was stated in the former
paper [2, p. 142], that in these circumstances we may apply, without
disturbing the sampling variability of the estimate ﬁ(f,,), any sort of
prewhitening operation to the data of input {z(t)} after they are obtained,
if only the operation is not dependent on the records of output {y(¢)}.

The setup adopted in this section is a quite rough approximation to
the real state where the lag window of trigonometric sum type is used
and its utility must be checked by some artificial sampling experiments.

5. Computation scheme for the estimation of the frequency response
function

In this section a computation scheme will be described to make our
estimation procedure of the frequency response function practical. First

we shall slightly modify the form of our estimate. Our estimate [l\(f,,)
of the frequency response function was defined as

/\(f)— g qu(fp_f») X(fp_fu)
)T S WX

We have
5w, Y(£,~£) X(,—7)

_ 1 (7 (” o M=V . p—v
—%}wyﬁs_Tg_Texp( 2r1 oT t>y(t)exp(2m oT s)w(s)dtds

sl
=2 Wor

S:ST,GXP (—Zﬂi T (t—9)y(O)a(e)dtds

= Z‘, w, EITKTS:exp (—Zni ”2_; r) Y(z+8)x(s)dsdr

y()=y(t—2T) when t>T
=y(t+2T) when t<-—T.

Therefore if we put

é,,x(f)=_21T_S:g(z+s)x(s)ds

we have
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S wY(f,~f) X(F=F)= ’pr:exp (—Zni = z‘) G, (c)dz

= STTexp ( —27r'i2—yT ‘r) W(z)C,.(z)dz

= Si"; exp ( — 21 E#T r) W(T)éy.r(z. )dr .

We define here C,.(zr) by
T—r
C,lr)= %S » Y(z+s)x(s)ds =0

= %Sl_ Y(r+s)x(s)ds =<0

and C,.(c) by
éyz(f) = éw(r) —Cu(2).

C‘W(r)=%S:_Ty(f+s—2T)x(s)ds r=0

_ 1 —T-z
_ﬁL Y(c+s+2T)x(s)ds  ©<0.
If in the above obtained expression of 3} w, Y (f.,—f.) X(f.—f.) we replace

é,,r(r) by C.,(z), and if T is sufficiently la;ge so that Ey(s)x(s), Ey(t)y(s), and
Ex(t)x(s) can all be considered to be negligibly small for [t—s|>2(T—T,),
we obtain a statistic which has almost the same mean as that of the
former one and has a variance smaller than that of the former, i.e.,

the contribution of C,.(r) to 3 w,Y(f.—f,) X(f,—f.) can be considered to
have a zero-mean and to be orthogonal to the contribution of C,.(z).
If we correspondingly replace 3} w,| X(f,—f.)|* in the definition of A( f.)
by :

STTexp (—Zni—sz‘r) W (e)Conlz)de

where C,,(r) is by definition

cm(f)=§1f§:"'xqf|+t)x(t)dt,

then our new estimate X( f.) is given by
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A(f)

= (S_Texp (— Zni—zﬁT— ‘r) W(T)ny(f)df) (g:exp (_27”:—2% 2') W(T)Cm(‘l')df)

-1

This A( f,) can be represented in the form

gy ST @2T—AT) X(2T—v/AT)
= [ X 2T — /AT

where
wFLS:eXp (-2::«;1”:7,.1:) W (t)dt
X(f)= 7%._1_,8 :exp(—— i fo)e(t)dt
Y(f)= %ngrexp(— i foyy()ds -

When A(f) can be considered to be nearly a constant in the effective
range of the smoothing operation, we can get from this expression of

Z( f,) the relation which has formed the basis of the analysis of this
paper :
- > W, N (/2T —»/AT) X (p/2T—v/[4T)
A(f)=A y
S S ST AP (P VDL

where

N(f)=7%SiTeXp(—znift)n(t)dt.
Taking into account the fact that by the present replacement of @W(r)

and C..(c) by C,.(r) and C..(c) the mean values of the denominator and
numerator of the estimate of A(f,) are affected very little and the
variances are reduced, we can see that our analysis of the bias in section
3 maintains its validity for our present new estimate, and further, that
sampling variability of the new estimate will not exceed that of the
former one. We have adopted ﬁ( f) in the stage of analysis of the
sampling variability of our estimate because of its simplicity of statistical
structure, but by our present argument we can see that 2( f) will be
more stable than 21\( f,) though the difference will actually be small. For

practical applications, therefore we had better use ;f(f,,) instead of ff(f,,),
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and for evaluation of the sampling variability of Z( f,) and its related

quantities the results obtained for A( f,) will be applied.

Usually in the practical computation of our estimate only the values
of C,(r) and C,(z) at those values of r which are integral multiples of
some fixed constant 4r are available. If 4r is choosen to be small
enough so that the powers of x(t) and y(f) at frequencies higher than
1/247 are negligibly small and

P> So.(f+1)
,(f)> ,§01’V(f+dit) '

hold in the range of f of our present concern, we can replace the
integrals of C,.(z) and C.,.(r) by the corresponding sums of C,,(4r) and
C..(ld7), i.e.,

" exp (2ri-Lh | W(DC,u(0)d
Lexp( mﬁr) ()C,u(c)dx
can be replaced by
—oni Kok
43 exp ( 2mi L lAT) W (147)C,.(140),
and
T
—oni P
S_Texp ( 271 2T r) W (z)C.o(t)dz
by
_oni
#e5exp ( 2mi L Mf) W (142)C..(147).

For our trigonometric window we have

W(ldr)= 3 a.exp (2m' L uf) when |14z |< T,
2T,

m

:—l—(f‘_,a exp(ZmI s lAv:)) when l4r=T
2 Wik " 2T m

=—k m

=0 otherwise,

* If the mecessary modification of the coherency is admitted, this condition may be replaced
by the weaker one |A(f)|2p,(f)>>k§o]A(f+ k/d7)|2po f+ R/ d7).
** The summation Y] is extended all over the I's satisfying [ldr]|<T.
7
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and we get our final computation scheme for the estimate ff( 0SFL1/247)
of the frequency response function:
1) For T,=hdr we calculate

B =4z, _z’:‘,nexp( —2riflde)C A (1<)

B f) =4 3% exp(—2eif147)C1(140)

where
C,’,Fx(ldf):ny(lAT) —h <l<h

=—;—CW(MT) l=h

C*(4r)=C..(47) —h<l<h
- % (d)  l=xh.

'2) We smooth these p,.(f) and p..(f) by the smoothing coeflicient
{a,} to obtain

bl =ln:i_‘ka@w -37)

b= 2 @b f—g5) -

3) The estimate ﬁ( f) is given by

A J— p?lx(f )
D=

The estimate 7*(f) of coherency ;*(f) is given by

A2 f)__lA ) 2pa:x(f)
A 5 Du(f)
where ,,(f) is obtained by replacing « by y in the definition of 2..(f).

The confidence region R for A(f) can be obtained by putting these ff( f)
Dee(f) and p,,(f) into the formula given in the preceding section. The
following approximations which are derived from that of R will also

be useful.

'I‘

S IAN-AN | /T 1T 1502 201
A7) vz gy ~1)F 6. 2. 20210,

| () — 6 gsin-l(«/ﬁ(fﬁ(lf) 1)FG, 2, 2—1)} 25
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where

é(f)=arg A(f)
#(f)=arg A(f)

n=the nearest integer to (

2T ) 1
T 2 Zk] ai

n=—k
“and F (5,2, 2(n—1)) is given by the following relation for F73,_,, which
is distributed according to the F-distribution with d.f.s. 2 and 2(n—1)

Pr{Fg(n~l)§F(6! 27 2(7’1—1))} =5’

and it is tacitly assumed that 7*(f) and the quantity inside the square
root are together positive and less than 1. When we use the shifted
window Wi(t)= W(t—Kd4t) to compensate for the variation of phase
shift, we usually adopt the following computing scheme

Dy f) =exp(—2nif Kdo)pyax(f)

where p,.x(f) is obtained by replacing C,.(147) by C.((l+K)dz) in the
definition of p,.(f).

In case where |Kdr| is not very small compared with T,, it will be
more advisable to recalculate C,.(I47) by using {x(t), y(t+ Kde);—T<t=T}
in place of {x(t), y(t);—T<t<T} or at least to replace the factor 1/2T
in the definitions of C..(r) and C,(z) by the factor 1/(27—|K4r|). When
the original data is given in the form {(x(ndt), y(ndt));n=1,2, ---, M}
and dr=mdt (m; positive integer) we use in the above computation
formulae those C,(14t) and C,,(4r) defined by the following :

ny(mf)=%”’z_‘:" y((Im+n)d)zx(ndt) when 120
=ﬂ ﬁ y((lm +n) d)z(ndt) when 1<0
Clldr) == 21 w1+ m) ) ().

When 4r is sufficiently small as was assumed in the beginning of this
section, the sampling variabilities of these estimates are considered to be
almost the same as those of the estimates discussed in the previous
sections.

As to the proper choice of the lag window W(z) or {a.} the neces-
sary informations are available in the preceding paper and in section 2
of this paper. One thing to be noted here is that, at those frequencies
where coherencies are high, one should use {a,} of which the bandwidth
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Fig. 3. Effect of the selection
of windows. Perfectly coherent

case.

Fig. 4. Estimates of amplitude
gain and phase shift with ap-
proximate 95% confidence
limits. Necessary informations
of coherency are given in Fig.

1 of §4.
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defined in [1] is rather narrow.

6. Numerical examples

Figs. 3 and 4 give the results of applications of our statistical esti-
mation procedure of the frequency response function, using various {a,}
and K, to artificial time series. From these results, we can see that
the approximations adopted in this paper do not impair the practical
applicability of the results of our discussion. For instance, we can see
that our estimates of the phase are fairly free from the bias due to
smoothing, however, the gain suffers rather significant bias by the
improper selection of the window.

The change of the phase shift in this artificial model is not very
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rapid, but in practical applications we often meet a system with phase
shift varying much more rapidly and, correspondingly, with very sharp
peak of the amplitude gain. In these circumstances, use of the properly
shifted window with narrow bandwidth becomes more important to obtain
a bias-free result. Fig. 5 gives the results of analysis of the response
of a ship model. Here the input is the height of wave and the output

1.0 1.0

v Rl
1Y6) e

o--- RESPONSE -T0
SINUSOIDAL INPUT

L !
0 20 C.PS.

0 7«
¢
_5 —
_]0 [
746 ' h=120
) -5
0.l tad.
1 1 1 1

1 1
05 I 2 5 10 20 CPS.
(K=3, Q)

1 I R S
001 | 2 5 10 20 C.PS.

Fig. 6. Analysis of the linear relation between the front axle and the frame of an
automobile. (by courtesy of Mr. I. Kanesige of the Isuzu Motor Company)
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is the roll of the ship model. In this example we can see that the
shifted windows produced more reliable estimates at frequencies ranging
from (20/60) % (1/0.6) c.p.s. to (30/60)x(1/0.6) c.p.s.. The estimates of
the power spectra of the input and output of these examples were given
in the preceding paper [1, p. 20, Figs. 2, 3], and taking into account of
the shape of the power spectrum of the input we can guess that some type
of prewhitening operation is necessary to obtain reliable estimates in the
wider range of frequencies. It seems that for this example our new
window @ is better suited than that of hamming, and fairly large bias due
to smoothing still remains at the peak of the amplitude gain.

Fig. 6 shows the results of the analysis, using Q, of the relation
between the oscillation of the front axle and that of the frame of an
automobile. We can see that the estimate of the amplitude gain thus
obtained is in fairly good agreement with that obtained by the ordinary
frequency response test only in the case T,=2404t. This is due to
the existence of very sharp peaks around 9 c.p.s. and the estimate
of the phase shift explains these circumstances more clearly. The shift
K4z of the time axis of about 0.8 second will be necessary to get more
reliable estimates at this frequency.

We have illustrated these two examples of ship model and automo-
bile for the purpose of showing the complexity of practical problems.
For practical applications, much more skillful use of the method will be
necessary, but we believe that the use of well designed and properly
shifted window will eventually lead to successful results.
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