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Summary

In [1] the author treated a characterization problem of the Shannon-
Wiener measure of information for continuous probability distributions
defined over an abstract measure space (R, S, m), where m is a o-finite
measure over a o-field S of subsets of R, whose range M(S) is such
that M(S)=[0, «]. This condition on the range of the basic measure,
however, can slightly be altered such that M(S)=[0, 1], and this mod-
ification is useful for characterization of the Kullback-Leibler mean in-
formation.

In the present paper, it is shown that the characterization proce-
dure of [1] can be applicable to continuous probability distributions
defined on a finite measure space.

1. Characterization

In the first place, we shall introduce, for the sake of precision of
our discussion, some notations about the basic measure space and the
family of probability distributions, to which our procedure of character-
izing the information will be applied. These notations were not so
clear in [1].

Let (R, S,, m,) be a finite measure space satisfying the condition
(e8; M(S)=I[0,1],
where M(S;))={m,E); E€S,}. Then it is clear that the product measure
space (R, S, m})=(ByX ByX +++ X Ry, SyX Sy X + ¢+ XSy, My XMy X o+ X M)
is also a finite measure space satisfying the condition (1), i.e., M(S32)

=[0,1]. Denote by .7~ the set of all (finite) products of the space
(R,, S, m,), which is assumed to be fixed, that is,

7 ={(R3, 8§, m;); M(S,)=[0,1] and = is finite} .

It will easily be noticed that a product of any two spaces belonging to
7 is also a member of 7.
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For any space (R, S, m) belonging to .7, denote by V(R, S, m) the
family of all probability distributions defined on (R, S, m) which are
absolutely continuous with respect to m, while V(R, S, m) designates
sub-family of V(R, S, m) consisting of all simple probability distributions,
i.e., of those having generalized probability density functions (gpdf., in
short) which are simple up to an equivalence (m). In both of these
definitions, of course, the carriers of gpdf.’s are not necessarily the
same to the whole space R. Hereafter throughout the present paper,
D(X) designates the carrier of a determination of gpdf., p(x), of a
probability distribution (or, equally, a random variable) X.

Let V(.77) be the totality of members of V(R, S, m) for all (R, S, m)’s
belonging to .7, i.e.,

W7 )=U{V(R, S, m); (R, S,m)e 7},
and analogously we shall define
VW(Z)=U{V(R,S,m); (R, S, m)e .7} .

Under this situation of basic measure space, we shall prove a con-
tinuity property of Shannon-Wiener’s information measure.

THEOREM 1. Let (R, S, m) be a finite measure space, and let X
and {X}, (t1=1,2,.-.), be the probability distributions belonging to
V(R, S, m) with respective gpdf.’s p(x) and {p;(x)}, (:1=1,2, --+). If
the conditions

(2) D(X)=D(X) (m), (¢=1,2, ---) and m(D(X)— D(X,))—0, (i—),
and
3) (X, X,-)Eeggl-,gt‘l)plp(x)—p.-(x)l—>0, (i—>x),

are satisfied, then it holds that

) [, 2@ log p(a) dm —{ p(@) log p(@) dm, (i) .
Proor. Without any loss of generality we can assume that D(X)=R.
Put, as in the proof of Theorem 2.1 of [1], '
Sf(x)=p(x) log p(x) and fi(z)=pi=) log p.(2), (t=1,2,.-+).
Then, by Lemma 2.1 (ii) of [1] and the condition (3) above, it holds
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that, for any ¢>0 there exists a positive integer N=N(¢c) such that
1= N implies

) |f(@)—Fdx)| =e(p(x)+1+¢) (m), on D(X,).

First we shall consider the case when the Shannon-Wiener infor-
mation for X, i.e., the second member of the expression (4) is definite.
The inequality (5) implies that

@)= f(2)+e(p(x)+1+¢) (m), on D(X)),
for i=N. Hence, defining a non-negative, integrable (m) function K(x) by
K(@)=|f(z)|+p()+2, on R,
we get
fdx)=K(x) (m), on R,
for all ¢(=N). Since the conditions (2) and (8) imply the almost every-

where (m) convergence of f(x) to f(x) as i— oo, it follows from Lemma
2.2 (a) (Lebesgue’s convergence theorem) that

[, f@am—] f@dm, G>e),

which is (4).

Secondly, we shall examine the case when the second member of
(4) is infinite (positive). Since the function of ¢, @(t)=t log ¢ (¢>0) is
bounded from the below, it will easily be seen that Lemma 2.2 (b) of
[1], and the a.e.(m) convergence of fi(x) to f(x) guaranteed by (2) and
(8) imply that

[, fi@) dm s, (i),

which is identical with (4) in this case. Thus the proof of the theorem
is completed.

It will be noticed that the condition (3) of the above theorem is
weaker than the condition (2.7) of Theorem 2.1 of [1], and the present
result has wider applicability.

Now, we proceed to a characterization problem. Consider a func-
tion H(X) defined over V(.77), which ranges in the space W,= WU {c},
where W is the whole real line, and depends only on a determination of
gpdf. of X. In addition to the conditions stated in the beginning of
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this section, we assume that for any members X and Y of V(9") the
conditional probability distribution of Y exists under the condition that
X is fixed.

We shall postulate some assumptions on H(X), among which the last
one is slightly weaker than that of [1]. For any E in S such that
m(E)>0, a probability distribution X; will be called a uniform distribu-
tion if it has a gpdf. given by

1/m(E), on E,
0, elsewhere, (m) .

Dx(%)= {

Assumption I. For the uniform distributions
(i) for any E in S of any space (R, S, m) belonging to .7, it holds
that 0<H(X,;)< <, and

(ii) for any X, in V(R, S, m) and any X, in V(R', S', m'), the relations
m(E)>and=m'(E’) imply that H(X)<and=H(Xj ), respectively.

Assumption II. Let X be in V(R, S, m) and X’ be in V(R', S’, m').
If at least one of the three members, H(X), Hy(X') and H(X, X') is
finite, then it holds that

(6) H(X, X')=H(X)+Hy(X"),

where H(X, X') designates the value of H for the joint distribution

(X, X') which is a member of V(RxR’', SxS’, mxm’), and
H,(X')=&*[H(X'| X)]=L H(X'| z)p(x)dm ,

in which H(X’|x) is the value of H corresponding to the conditional
probability distribution of X’ given X=uz.

Assumption III. Let X be a member of V(R,S,m) with gpdf.
p(x), and let {X}, (i=1, 2,---), be a sequence of members of V(R, S, m),
with gpdf.’s {p,(=)}, (:=1,2, --+). Then the conditions
D(X)=D(X), (1=1,2, --+) and m(D(X)—D(X;))—0, (i—>x=),

D laax, x)=ess, 500 |s@)—p@)1~0, (i)

imply that
@® H(X)—~H(X), (i—c).



CHARACTERIZATION OF SHANNON-WIENER’S MEASURE 263
Under these assumptions we can show the following

THEOREM 2. If a function H(X) satisfies assumptions I to III,
then it is expressed as

®) HX)=|_»() log p(e) dm ,

up to a multiplicative positive constant depending only on 7, where
»(x) designates any determination of gpdf. of X.

A proof of this theorem can be given in a similar manner as that
of [1]. Firstly, for a uniform distribution X, with m(E)=v(>0), it
holds that ‘

(10) H(Xy)=H(n)=c log%, (€>0),

and hence, if v=1, then H(v)=0, as was described in Lemma 3.1 of [1].

Secondly, it will be noted that it is sufficient to prove Lemma 3.2
of [1] only in the case when Z={4;}, (:=1,2, ---, k), is a finite m-par-
tition of E. Let X, be a probability distribution in V(R, S, m) with
simple gpdf. defined by

pi/'viv on As‘ (i=19 2; t0y k) ’
0, elsewhere,

) Pz(w)={

where p;>0, v;=m(A;) and >} ,p;=1. Then under the Assumptions I
and II, it is shown that

k
a2 HX)=cxp log 2o, (c>0),

12

as will be seen in the following.

Since Z is a finite m-partition, we can take a corresponding set
Z'={A}, (1=1,2, ---, k), of disjoint subsets of R such that
(13) m(AZ):pJXv,-, (i=1’ 2’ cty k)
where A=3%,p;/v;, for which it is easy to see that 1<\< . Denote
by X, the probability distribution such that, if X, falls in A; then X,.
is distributed uniformly on A} for i=1,2, --., k. The joint distribution

of X, and X,., (X;, X;), has a gpdf. on the product measure space
(RxR, SxS, mxm) given by

A, on A x AL, (i1=1,2, -4, k),
0, elsewhere,

(14) p(x, &)=
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that is, (X, X;) is a uniform distribution on the set F=3)., A, x A}
with mxm(F)=1/n. Hence, it follows from (10) that

(15) H(X,, X,)=c log )\,

where ¢ is a positive constant.
On the other hand, by (10) and (13) we obtain

H(X,rlx)=0' IOg ()‘vo'lpi)’ if xe Ain (i=1’ 2., k) ’
from which it follows that

- )
(16) Hy (Xp)=c¢ 3, p; log =—
i=1 p

+

k
=¢' log v—¢' 3, p; log—f;‘— .
=1 o

4

By Assumption II we have
H(Xm Xz')=H(Xz)+Hx,(Xz') ’
which is written, by (15) and (16) as

17) ¢ log \=H(X,)+¢' log x—c'gp.. log%— .
If, in particular, we take X, as a simple distribution on R, for which
Z={A} (1=1,2, ..., k; k>1) constitutes an m-partition of the whole
space R and v,=p;, (1=1,2, ++-, k) in (11), then A=k (>1) and it holds,
by (17), that c¢=c'.

Hence (12) follows from (17), which shows that the expression (9)
is valid for finite-simple distributions.

Finally, corresponding to the proof of Theorem 8.1 of [1], we shall
prove (9) for any probability distribution X belonging to V(R, S, m)
with a determination p(x) of gpdf.. We can choose a sequence of pro-
bability distributions in V(R, S, m), {X*} (n=1, 2, ---), whose gpdf.’s
are defined by

PV (@)=fuD)tt. (n=1,2,---),
where
0 , if o(x)<l/n,

fu@)=4p(x) , if IIn=p(x)<n,
0, if n<o(x),
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and

m=|,_fi@)m

for n=1,2, --- .
From the definition of p™(x), it is clear that

(18) d. (X, X™)=ess. sup |p(x)—p™(2)|>0, (n—>).

zED(X (%))

For each X, since p™(x) log p™ () is bounded, there exists a sequence
of finite-simple distributions {X™}, (=1, 2,--.), with respective gpdf.’s
{p(2)}, (1=1,2, --.), defined by

p.S;.‘)/'u‘(;.'), on A:;) (j=19 2’ ccty ki’n) ’
0, elsewhere,

pM(x)= {

where ZM=A{?, (=1,2,+--, k.,), is a special m-partition of R as was
constructed in the proof of Corollary 2.1 of [1], and
pé;”=§ Am PP(@)dm, vP=m(A]),

13
such that
(19) d(X™, XM)=ess. sup | p™(2)—pi"(2)| -0, (i>e).

z€
Note that, by (12), we have

Kin o .
H(XM)=c 3, pi7 log =L (1=1,2, --*)
=

(n)
Vi

for every n.

Since the right-hand member of the above expression converges, by
(19) and Theorem 1, to the right-hand member of the following expres-
sion (20), Assumption III and (19) imply that :

(20) HX")=c|_p"()log p"(z)dm

for n=1,2, «--.
Therefore, it follows from (18), Theorem 1 and Assumption III that

HX)=c|_p) log pla)im, (¢>0)

as is expected, and our characterization procedure is complete, if we
remark that Assumption I implies the last statement of the theorem
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concerning the multiplicative constant.
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