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1. The problem

Let (X, Y) be a bi-variate random variable. Assume that an obser-
vation on X is a quantal response datum, that is, we cannot observe
its value directly but only whether or not it is larger than a constant
s (say), which we have given in advance. Further, assume that
another component Y is real-valued and may be measured only when
X is larger than s. Our problem is to estimate, in such a situation, the
parameters of the distribution of (X, Y). We give at first some
examples which may occur in practice.

Example 1. An electric detonator consists of two parts, that is,
the initiating explosive around an electric bridge and the larger charge of
sensitive high explosive. Excited by electric current through the
bridge, the initiating explosive begins to burst, and next the larger
charge is fired by flying sparks. The excitation time X, the time neces-
sary for the ignition, and the bursting time Y, the time interval from
the beginning to the burst, are main characteristic values of detona-
tor. We cannot measure the excitation time directly, but we see only
whether or not the detonator bursts when the circuit is closed during
a given time, and at the same time for the fired detonators we can observe
the bursting time. In this case the component Y is observed when the
component X is less than s.

Example 2. In bioassay we have a problem to study the relation
between the response of animals to some poison and the weight (or some
other characteristic) of some internal organ. In this case we can measure
the weight of the internal organ only for animals which died by the
poison of dose s.

Example 3. Electric engineers may concern about the relation
between the dielectric breakdown strength of material X and its other
characteristic after being examined by a breakdown test Y. We can

251



252 MASAAKI SIBUYA

test whether the material is destroyed or not at given high voltage s.

In example 2 and 3 the parameters of the distribution of (X, Y) may
change according to the value s which we have given. Such a case is
refered to in the last section.

A generalization of probit analysis in another direction, the study of
the case where the response may take more than two “states” according
to the values of more than two stimuli, are given by J. Aitchison and
S. D. Silvey [2].

2. The model
Let the simultaneous distribution of (X, Y) be denoted by F'(x, ¥; 6).

The vector-valued parameter ¢ are, in many cases, composed of three
parts;
6=(a, 8,7),

where a and B are respectively the parameters for the marginal distri-
bution function of X and Y, and v is the parameter expressing the
dependence between X and Y. That is, we may write as

G(z; @)=F(z, «; 0)
and
H(y; B)=F(c0,y; 0) .

We do not observe X directly but observe a random variable as-
sociated with X by the relation

1 if Xz=s,

5, (X)=
(X) 0 if X<s,

where s is a control variable. The probability that §,(X) takes the value
1 is equal to p=1—G(s, ). The component Y is observed only when
8,(X)=1.

The distribution function of Y under the condition that X =s is

H(yls, O)={H(y; B)—F(s, y; O)}/p,

and the conditional probability density, if it exists, is
0
h’ ys, 0)=—H(yl8’ 0) .
l oy

We observe n,, n,, -+, n, trials at the levels s,, s,, « -+, s, respectively.
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Let m,, m,, «--, m, responses occur, at each level, and for these res-
ponses let the data vy, «++, Yim Y, ** %, Yamys ** 5 Yir» = *» Yim, D€ Obtained.
The probability density for these random variables is

k . m;
g('fﬁe)p g™ ,l;[l k(y:,ls:, 6) ,
where
=1—-G(s;, a) ,

and its log-likelihood function is

L©)= 5 {ect(n—m) log ¢+ 3 log luss O} ,
where
Uyls, 6)=1ph(yls, 6) .

From the assumption for 6, the maximum likelihood equations are

n,—m; 0¢; 1 al(ye)
> e Ty oa

’

1ol g
3 l(le) aﬁ

1 ol
i l(yu) o

3. Bi-variate normal distribution

For the bi-variate normal distribution N(z,, u,; o2, 6%; p), with the
probability density function ¢(z, y; 8), we have

-5}

where
Tz(s—ﬂz)laz y vz(y_#v)lo'v 5
and
s=—t—ex(-2),  o@=| swit;

0=(u,, 03; 1y, 033 0) .

Substituting the expressions
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( ol(y) _

o, =¢(s,9;0) ,
oly)_ .
ao_z ¢(s’ y’ 0)1. H
6l('y)=l 1]__ . paz
e (yls, 6) a #(8, ¥; 0)—011 ,
D _yyis, 00714, 4; 0221 ,
oo, a, gy
W) _ 4o g (77 07)
- yr 0 -l = )
\ o0 7, :0) -0

into the maximum likelihood equations and rearranging them, we have
the system of equations

Vitg ; (n—m,)N(t;)= 'ZJ M(Ti_pmj) ’

Q

VI=F 5o m)z‘N(z')—Zz'M( ;

VI—p Ti— 7
2= ZM(m —

@{‘Z 77?:""'”}= Z Wsi (‘1;/1 p%’])

J

5 Orig—pry M (T2 pr;.,) 0,

where

ME=¢@[{1-0E)}, NE)=4(©)2E),
7'-1‘:(81'—/‘!3)/0'2 ’ niiz(yii_ﬂv)/o-v ’ m= gmi .

To solve this system of equations, we have to take some complicated
successive approximation process.

4, The moment method

For the bi-variate normal distribution, we have

E(Yle)=p,+220(@—pt.) ,
V(Ylz)=(1-0)d;,

and from these
E(Y|X zs)=p,+ps,M(7) ,
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V(Y|X z8)y=0,—pa, M(t}{M(r)—7},

where

M(r)=¢(t)[{1-0()} ,

T= (8 -ut“z)/az .

It is easy to see that the conditional variance satisfies the inequality

1-0)o,< V(X z8)<0j .

If we disregard the supplemental variable Y, we can estimate g, and
g, by the usual probit analysis technique (see e.g. [1]). We denote the
estimates by Z, and &, and put 7,=(s;—[,)/,.

Computing the means %; and the unbiased variance s, for the values
at the " level (i=1,2, .-+, k), and fitting straight lines to the points
(@i, M(2,)) and (s}, M(Z,{M(£,)—%}), we can estimate the other parame-
ters. As conditional variance of Y is large in comparison with condi-
tional expectation, we have to take large sample to estimate p accurately.

TABLE 1
Data of one experiment
levels 84 —1.2 -0.8 —0.4 0 0.4 0.8 1.2 1.6
no. of
trials ne 50 50 50 50 50 50 50 50
no. of
obsv. z’s ™t 47 43 42 30 26 18 7 5
p=.4 Y —.006 .020 .180 .308 1.112 .566 .743 .510
8 1.316 .739 .829 .653 784 .758 .890 .278
p=.7 Yi —.016 .060 .229 494 .436 .878 1.112 .970
8 1.092 .736 .713 .570 .668 .636 .626 .275
p=.9 Y —.024 .091 .248 .611 .690 1.068 1.328 1.288
s{,, .902 .725 .535 .526 484 .483 .330 212
TABLE 2
Estimates of parameters
4 — — —
No. of p= 4 p= N } P—.g
exp. 1 )i III v I 11 111 v I 11 I 1\
Bz |—.052 —.119 —.046 .051 — Do — — Do —
Gz .900 1.053 .959 1.026
by |—.289 —.028 —.015 —.033(—.232 —.084 —.026 .014/—.150 —.127 —.034 056
&3 _ .951  .748 1.241 .792] 1.108 .780 1.114 .866| 1.154 .839 1.020 .918
IA .658 .267 .356 .456| .843 .668 .645 .743| .944 .939 .857 .918
P2 .071 0 .813 0 .761 0 872,295 .965 .668 .930 .868

/\ /\
f1 is based on poy, and ; on pigl.

/\
#2=0 means a negative value of pZs3.
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So far, we assumed that the parameters y,, g,, p were not affected
by the values of s. Using the above moment method, however, we can
estimate at least £, when it is a function of s, since po, appears in
both regression equations.

For N(0,0,1,1, p), 0=0.4,0.7,0.9, four experiments were made.
¥
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Each of them consists of data such as in Table 1. For simplicity, the
same values of x’s and the same additional normal random variables
were used to generate y’s with different correlations. The results in
Table 1 are shown also in Figure 1 and 2. Estimates of the population
parameters are summarized in Table 2. Regression coefficients are esti-
mated from a straight line fitted by the simple least square method,
although some weighted least square may be preferable.
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