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1. Introduction

In the polls we are faced to a problem how to decide which candidate
is approved to be elected. Further what percentage gain is a certain
level is a problem. In practical use we have a criterion as follows:

Let » be the number of candidates, and % the fixed number. Then
the reliable level to be elected will be 1/(k+n/k).

But this level is apt to be higher than that of actual data especially
for larger k. Therefore we have to make a better level by considering
the distribution of percentage gain of the candidate.

To solve this problem we may consider the distribution of ordered
random intervals:

‘Let us assume (n — 1) points are dropped randomly on a fixed line
of unit length. The lengths of the = intervals between points are
arranged in order of ascending magnitude

Yy Ysy s Yn

¥Y; being the 7™ smallest interval. This distribution of y; has been dis-
cussed by many authors [1], [2], [3], [4], [5], [6], but we would like to
derive the distribution of y; by another method, and consider the appli-
cation to the above-mentioned problem.

2. Derivation of the distribution function of the ordered statistic ¥,

Let (n—1) points be dropped on the interval [0, 1] and the lengths
of the n intervals between these points be arranged in order of ascending
magnitude y*, y;”, -+, y?”. Then it is well known that the probability

density function (p.d.f.) of any interval y is given by
Pr(y, n)=(n—1)1—y)**. (1)

By the mathematical induction we would like to prove the well known
formula of the p.d.f. of length of the »* smallest interval y™
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ram)=nn-(3_1) E (" Ha—vra—r+ity (2)

where the summation is carried over as long as the terms (1—y™(n—
r+14+1)) are positive.
For n=2 it is evident that the equation (2) holds because

1
>y
for =Y:

2,
f@?)= {
0, otherwise

1

for ==y

f(yé”)={0 ’
2, otherwise .

Therefore, if we assume that (2) holds for n—1, we can prove in
the following way that it is true for =:

If we get a sample value y, the conditional probability Pr(y™
=y |y, n) that y is the 7 smallest order statistic, multiplied by nP.(y, n)
=n(n—1)(1—y)** makes the p.d.f. fF(¥"=y).

On the other hand, the sum of other (n—1) values equals 1—y.

Putting t=y/(1—y) and t'=9'/(1—y), we can therefore apply (2) for
(n—1) which is the induction assumption for these (n—1) intervals which
make up the unit length in regard to t' scale.

In other words, the »® smallest interval ¢t satisfies

rtr=m—e-2(3%) 5 (-0 ("7 et —rriy-.

Hence the conditional probability Pr(y:» =y |y, n) for t<1 is given as
follows:

Pr(y}_n)zyly, n)=Pr(t(’i;l) <t, t’('n—l) >t) S f(t(n 1))dt(‘n—1) S f(t;n—l))dt;n—l)
DS o("THa—a—r+op

(-
W(r 1)2( ! (T 1)(1 (m—r+i+ly)y.

In the case of t=1, we may put f(t*")=0.
Thus we obtain, from the above argument

fy™=y)=nPr(y, n)Pr(y,” =yly, n) ,
=ntn—1)(321) & (0 ("7 Ja—n—r+i+1pm)
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and (2) for n.
Thus (2) holds for all # by the mathematical induction.

3. Derivation of the simultaneous distribution function of the ordered
statistics ¥, and ¥,

The method to derive the simultaneous probability density function
of ¥, and y, with r<s

—1 e—r—1

Fue, u=m—a—-2)(3)(, 1 re+D 5 (-1

x (T:{1>(s_2_1>{1—(8—”'+i——j)y,‘.’"—(n—3+j+ Dymp-s (3)

is quite similar to that for (2).
For n=3 it is evident that for any r and s

f@P,y)=12

because Pr(y,, ¥;, 3)=2, and Pr(y,* =y, ¥ =%lt, ¥, 3)=1 when ¢, and ¥,
lie in the existence region. On the other hand the right hand side of
(3) for =38 equals 12 for any » and s.

At first the simultaneous p.d.f. Pr(y,, ¥,7) of any ¥, and ¥, is

(n—1)(n—2)1—y,—y)""* (4)

which is easily shown. We put t,=y,/(1—%—%.) and t,=y,/(1—¥:—¥,),
and consider the t-scale: t=y/(1—y,—¥,), the sum of (n—2) intervals
being equal to 1—y,—¥,.

If we assume the equation (8) holds for n—2, we can prove that
it is true for n. For this purpose we may derive the equation

n(n—DPr(y," =y, ¥." =:l9:, Y5, W)Pr(¥;, 95, 1)
=fyP =y, yM=vy,) . (5)
Let the conditions A,, 4;, B, and B, be as follows:
At <, ’ B;: t£:;2)<tz
At >, B,: t* " >t, .
As was shown in section 2, Pr(4,x 4,)=Pr(A4,)—Pr(4,), where A4, is
the complement of A4,, so that the simultaneous p.d.f. in this special

case for A; and A, is given by the difference of simple p.d.f.. Hence,
under given ¢, and t,,



246 HIROJIRO AOYAMA

Pr(y,” =4, 4" =4:l%, ¥», 1)=Pr(4,; x 4,, B,x B,)
=Pr(A,— 4, B.—B,)=Pr(4,, B)—Pr(4,, B)

—Pr(4,, E2)+Pr(A—2, Ea) . (6)

Each term of the right hand side of (6) is calculated by the as-
sumption. For example,
Pr(4,, B)=Pr(tr* <t, t";9 <t,)
— r—2 s—r—2 —_—

=m—-3)m—0(53)(* 2 )r-vr T8 0+ ("B (75 7E)

xﬁ o (1= (67— L= —(m— s D) b7
t

0

_(;b)(r+1)%%j-__%§:j—z( 1y+,(r 1>(s ;—1)

. ] e
[(n—s+.7')(s—r—1+i—j){(1 (s=r=lt+i=h—(n—s+t)
—(1— —_ y n—3 ij 1 _ . s
A—(n—st)t) =+ ol (1= (1= (i—r+0) -

In a similar way we obtain

Pr(y =y, " =.l0, ¥, W)= ()(r+1>7:((1:+32: :Z_;( l)ﬁj(r 1)

« (7T )= r— L (n s

i O e D B o (Y)Y
x {1~ (s— 7+ i— Yo (n—s++ Ly~ (7)

because the terms vanish which do not include ¢ and 5 at the same time.
Hence from (4) and (5) f(¥, ¥™) is given by (8). Thus (8) holds in
general by the mathematical induction.

4. Derivation of the simultaneous distribution function of the ordered
statistics ¥,, ¥, and ¥,

The procedure for this problem is quite the same as the above
mentioned method. The simultaneous p.d.f. of ¥™,y™ and y™ with

r<s<u is given by

£, v, v) == - —rr+ D+ D), 1) (213)

<88 E o ()T TR i

=0 5=0 k=0

—(u—s+j—ky" —(n—u+k+Ly ;. (8)
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In this case we put the conditions

ActmP<t,  ButhU<t,,  Cutind<t,
A tro>t,  Bit¥>t,, Gt >t

with t;=y/(1—y,—¥%—¥)(1=1, 2, 3).
Then we obtain

Pr(yi™ =y, ¥ =Y ¥ =Ysl%1, Y, Ys, M)
=Pr(A,x A,, B,xB,, C;xC,)
=Pr(A,—A,, B—B,, C,—C))
=Pr(4,, B,, C)—Pr(4,, B, C)—Pr(4,, B,, C))+Pr(4,, B, C\)
—Pr(A,, B, C,)+Pr(4,, B, C))+Pr(4A, B, C;)—Pr(4,, B,, C,)
1 s—r—1 41 ,
=n('n——1)(1:(—7';)_(1)3’;2-3)11,—%)*-4 GGG EE S oo

9 (r—_1>(s—1:—1)(u—z—1){1_(3_r+i—j)y1—(u—s+j—k)yz

i J
—(n—u+k+1)y} (9)
and
Pr(y:, Y, Ys 0)=(n—1)(n—2)(n—3)1—4,— ¥, —¥s)" ™ (10)
so that

Fy®, ¥y, yM)=n(n—1)(n—2)Pr(y™ =y, Y™ =¥ Y =¥sl¥1, Y2 Y5, 1)
« Pr(y., ¥s ¥sr M) (11)

from which it follows that (8) holds.

5. Application to polls

As was mentioned in the introduction we would like to consider the
application of the problem to polls.

As before, let n and k be the number of candidates and the fixed
number, respectively. If we may take the reliable level to be elected
as the cutting point ¥* of f(¥™..) Wwith f(y{”:), we can easily obtain
y* by solving the algebraic equation f(¥ii.)=s(¥2:). In this case we
have to solve the algebraic equation of n—2 degrees. In the following
table we shall show the cutting points y* in case of n=3,4,5 and
compare them with the results from empirical formula y.=1/(k+n/k).
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n 3 4 5

k y* ya y** y* 'Ila y** y* 1!3 y**

1320420 | L | L0467 | 11=V 60372 | L [28-2v3-0 416 [0.333 | L |0.376
7 4 |15 23 5 47 6

2 |1loo2 |2 |3=0.273 20022 | L | 18-V 50963 |0.214 | Z | 0.247
5 7|11 9 rl ey 9

3 7-v8-913|3| 5=v2-0.156|0.126 | 2 | 0.175
37 13 23 14

4 0.056 | 4 | 0.101
21

As is seen from the table the empirical cutting point ¥, is larger
than y* for larger k. But in the actual situation such as in the polls
for the Members of the House of Representatives in Japan the empiri-
cal y, is sometimes approved to be a pretty good level. To get a fine
level from the above argument we can make use of the criterion

Pr(y ea=yly, n)/Pr(y2i=yly, n)
=fUPen=yIfWI=y)=A (12)

that is, the critical point y** is determined from this equation for a
proper positive constant A.

The critical point y** for A=3 are given in the above table.

In this manner we can get y** by solving the above equation, but
it is very complicated for large » and k. However, we can make use
of approximate procedure.

If we would like to get the most probable k™ largest percentage
gain ¥y,, we may solve the following equation, assuming other y; except
Y, mutually independent:

0 Vi n—k 1 k-1
2 10g{["* n—Da-yray} [ m—va-wa} 0.
0y, 0 Vi

From this equation we obtain the approximate most probable value

of Y.
p=1—"/k=1 (13)
n—1

In order to get a proper critical level y** for k™ candidate, we may
find a positive number B which satisfies the y**=(1+B)y,, but its
magnitude depends on the actual situation in the polls.
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On the other hand we can get the distribution of the difference D
between ¥ and y®, from the equation (3). That is, dropping the
affix (n) we have

F @ e =(—=Dm—2)(,  Jrr+D S (—1("7Y)
X (L= (14, — =7y, )
and
F(D)=(—1Yn—r){1—(n—r)D}*. e

Using this equation we obtain the mean of difference of percentage
gains between the k™ candidate and the (k+1)* candidate(D) as is shown
in the following table, where the mean percentage differences with
parenthesis indicate the actual ones obtained from under 20 samples.

The difference between theoretical D and actual ones comes from
the limit of the actual percentage gain in the polls. For example, the
first successful candidate does not get over 50 percent in general.
Therefore we must take into consideration the limit of region of D.

Z
N 3 4 5
@9 3.6
6 5.6 4.2 3.3
3.4) @.2)
7 4.8 3.6 2.9
2.8) @.1) @.1)
8 4.2 3.1 2.5
(1.6)
9 3.7 2.8 2.2
.1
10 3.3 2.5 2.0

For n=6, k=4(r=2), for example, y, is not greater than 0.2 in the
actual problem, so that ¥, is not smaller than (1—0.2x4)/2=0.1 and D
is not greater than 0.1.

Hence we have

. S°'15-4(1—4D)4Dd1)
D= —0.0346
S 5.4(1—4D)'dD
0

which is very near to 3.6 (cf. the above table). Of course we can
also derive this fact using the simultaneous p.d.f. f(¥,, ¥,+1, ¥.), taking
Y.=0.4.
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These results can be used to discriminate the successful candidate
from the unsuccessful one in the course of opening of the ballot.
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