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Summary

G. Marsaglia [6] proposed a new method for generating exponential
random variables. In this note, his method is modified and generalized
for generating y* random variables with even degrees of freedom. Remarks
refer to general }* and normal random variable generators.

1. Introduction

The procedure to generate an exponential random variable from
a uniform random variable is not complicated, it is only to calculate the
logarithmic function once. It is, however, interesting to consider alterna-
tive approaches based on stochastic models including an exponential
distribution. Von Neumann’s well-known method [7] is too artificial,
and it requires, indeed, more machine time than the straightforward
one. Butler’s modification [3] seems not an essential improvement. On
the other hand G. Marsaglia’s method [6] is practical enough.

Let M be a random variable which has the geometric distribution,

(1) Pr(M=m)=(e—1)/em** , m=0,1,2, -,
and let N be one with the 0-truncated Poisson distribution,
(2) Pr(N=n)=1/(e—1)n! , n=1,2,3, ««-.

Suppose a sample of random size N, (U, U,, ---, Uy), is observed from
the uniform distribution on (0,1). Then a random variable

(3) X=M+min([]1’ l]:n cy UN)
has the exponential distribution
(4) Pr(X<z)=1—e¢", 0<x<oo .

It should be noticed that in this method there is freedom in choos-
ing parameters of geometric and truncated Poisson distributions. Their
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values may be determined properly according to properties of the com-
puter and the uniform random variable generator to be used.

Before discussing this point, a ‘statistical meaning’ of Marsaglia’s
method is stated.

2. Generating Poisson process

In Poisson process with parameter A, the probability that N events
occur within one of successive intervals of the same length ¢ is

(5) Pr(N=n)=e2(\t)*/n! , n=0,1,2, «-.,

and under the condition that » events fall in an interval, these events
(V, +++, V) has the same conditional distribution as a sample of size
n from the (0, t) uniform distribution,

(6) nlt—dv,dv,- - -dv, , 0<y, <V, < o0 <V, <L

Conversely, let {N,}(v=1, 2, ---) be a sequence of independent random
numbers with probabilities (5), and let N, events fall randomly in the
interval I,=((v—1)t, vt). Denote the coordinates of the events by Y,<
Y,<---. Then the events constitute a Poisson process with parameter A
and {X,=Y,—Y, )}, (v=1,2,...; ¥,=0), is a sequence of independent
random number with the density

(7) Aer 0<ez<<oo ,

This fact is shown, for example, in Doob [4] (VIII §4). X defined
by (3) corresponds to X, in case A=t=1, the number of vacant
intervals preceding the first event is represented by M, and the number
of events in the interval where events occur at first is represented by N.

3. Choosing parameters

Now, the new method is described as follows.
Let M be a random variable with the probabilities

(8) Pr(M=m)=(e*—1)/e*™+" , m=0,1,2, ..,
where ££>0, and let N be the one with

(9) Pr(N=n)=p"/(e*—1)n! , n=1,2,8, ..
Then
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X=p{M+min(U,, ---, Uy)}
has the exponential distribution (4).
In this case
E(M+1)=e*[(e*—1),
EJN)=pte*|(e*—1) .
E,(M+1) is a decreasing function and E(M+1)=w, E.(M+1)=1, while

E.(N) is an increasing one and E(N)=0, E.(N)=c. N is the number
of times generating uniform random numbers and selecting the minimum

(10)

of new random number and the previous minimum. M is the number
of times looking up the table of cumulative probabilities of M. The
latter work may be easier than the former. Denote by o(<1) the ratio
of machine time which is necessary for looking up an entry of table to
one for generating and discriminating a uniform random variable once.
The value of ¢ which minimizes pE,(M+1)+E (N) is a root of

(1) e —(L+m)=p .

Some optimum values of ¢ are shown in Table 1. For a middle
size drum computer p is about 0.835, and for another larger computer
with random access memory and ‘table look up’ operation code p is less
than 0.10.

TABLE 1
Optimum value of

o #  EuM+1) Eu(N)
0.72 1.00 1.58 1.58
0.4 .78 1.85 1.44
0.3 .69 2.01 1.38
0.2 .57 2.30 1.31
0.1 .42 2.92 1.22

Although the gain due to the choice of optimum g is small, £=1/2 is
recommended to larger binary-system computers.

Another value p=log2=-0.698 (¢*=2) is also recommended for
binary-system computers. Because the geometric distribution for this
value

Pr(M=m)=2-"+V | m=0,1,2, ---,
is easily realized by the ‘shift count’ operation of uniform random
variables,
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If the machine time for generating a uniform random number is
rather longer, the successive differences X,=Y,— Y, X;=Y,—Y,, ---
may be used.

4. * random variables

Monte Carlo computation in queuing problems needs often random
variables which have the gamma distribution. A usual generating method
is to add & exponential random variables to get a ¥* random variables
with 2k degrees of freedom. The above analysis suggests the following
procedure.

Let {M} be a sequence of Poisson random integers with mean .
Let L be a random integer such that the inequalities

(12) M+ Myt oo+ M <k<M+M,+---+M,,

hold, and put

(18) N=k—(M,+M,+---+ M), 1=N=M,.
Then the random variable

(14) X=p[L—1+{the Nth smallest of (U, U,---, Uy}

has the y* distribution with 2k degrees of freedom.

EM)=y, TABLE 2
(15) E(L)=1+ i“ "ie"“—@u—)’: . k o #+E(L)
{=im=o m!
‘ 3.503
In this procedure E(M,)+ E(L), the ex- 2 1.5 3.342
pected number of necessary uniform 2 3.591
random variables for generating one ¥ ] 55 i'ggg
variable, may be regarded as a criterion 3' 5:164
for choosing p. Table 2 suggests a way P 7 000
how to choose ¢ for some values of k. 10 3 6.833
When % is large, to avoid the use 3.5 6.857
of sequence {M,;}, more direct selection 3 8.500
of L, M,, N may be suggested. The 15 ; :'igg

event E; that the inequality (13) is
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satisfied, has the probability

1— ;e“# =1,

(16) Pr(L=1)=1, E;L {e"‘“”” {p(zj—!l)}f _e_ﬂ%f}, I1>2
and under this condition,

Pr(ML=m|E1)=e—»ﬁ"Yl /Pr(El) , | N=k,

an Pr(N=n|E,)=e¢-+1- {F‘gc 173" °_° /Pr(E’), 122,

Pr(M,=m|N=mn)=e" w ,2,, 'L'uj s m=n.

Comparing three uniform random variables with three probability tables,
two of which have double entries, we may decrease the number of
necessary random numbers.

5. Some remarks

In order to get x* random variables with 2n41 degrees of freedom,
random variables with 1 degree of freedom, which might be generated
by the method mentioned below, are added to ones with 2n degrees of
freedom. For y* with non-integral degrees of freedom v, I. Takahashi
[8] suggested a rejection technique.

Generate y* random variable T with 2n (2n<v<2n42) degrees of
freedom and uniform random variable U. Accept T if

@8) U<(

T——_)-> T® exp(——Q—T) , e=yv—2n, 0<p<l1,

1-p

and reject it if the inequality is not satisfied to get new 7T and U.
Maximum acceptance probability is attained at p=e/y, and it is at worst
about 709.

As exponential random variables are obtained cheaper, generation
of normal random variables should be reconsidered. Box and Muller
[1] suggested the use of a ‘polar representation’ of bivariate non-cor-
related normal variable. Let U, and U, have uniform distributions.

X=1v"—21og U,cos 2z U,

(19)
Y=1"—2log U, sin 27U,
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are independent normal deviates. In this expression —log U, may be re-
placed by an exponential random variables, and the pair (cos 2z U,, sin 2z U,)
by

-0, 200,

20 y ’
20) Ui+ Uy Ui+ U;

if 0<U+ U1,

where =+ is a random sign. For computers with floating point arithmetic
operation

X=+UV2T( U+ U,

(21) Y=xUV2T[(Ui+U)),

U+ U1,
where T is an exponential random variable and two =+’s are independent
random signs, may be preferable. This technique follows from ideas in [5]

and [7].

Normal random numbers are generated also from exponential ones
making use of a rejection technique [2]. It is based on the factorization

/o -2
L2 , o<<z<1,
(22) /_2_6_;_’_ T
T /2_]7..: e—i(z_z)ﬁze—z(z—n ’ 1<z<oo .

We generate uniform random variables U and exponential ones 7.
Choose Procedure I and II respectively with probability 2/3 and 1/3.

Procedure I. Accept U, if U<2T

23
(23) Procedure II. Accept T, if (1+7T,/2)*<2T,

The average number of operations are shown below. The notation exp.
means the generation of an exponential random variable, and similarly
unif. The latter method is supposed to be preferable for many

computers.
operation exp. unif. sq. root mult. div
(19, 20) 1. 2.55 1 3.55 2
(23) 1.60  1.80 1.20

Finally, a * random variable with 1 degree of freedom is generated
by T[l14coszU]. For X=cos7#U a rejection technique due to Butler
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[3] is recommended. That is, accept
' X=1-U; if (1+X)U<1
and attach a random sign to X.
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