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1. Introduction

Let (X, YY), ---,(X,, Y,) be a sequence of independent bivariate
random variables with the common bivariate distribution function (d.f.)
F(x,y), and with marginal d.f.’s Fi(x) and Fy(y); let

Un=max (Xlr Y Xn); V,.=maX(I’1, tt %y Yn) .

The forms of the univariate limiting d.f.’s of U, and the necessary and
sufficient conditions on F) for convergence of the d.f. of U, to one of
the limiting forms are well known [2].

It is the object of this paper to establish the conditions under which
the random pair (U,, V,) has a limiting bivariate distribution. The
possible forms of these distributions have been completely discussed in
[1], [6], and [7].

In the following it is assumed that the marginal d.f.’s Fi(z) and
F,(y) are such that U, and V, each have univariate limiting d.f.’s @,(x)
and @,(y). This is equivalent to the assertion [2] that there exist

sequences {a,}, {b.}, {c.}, and {d,} such that for all z and y,
( 1 ) lim En(anx+bn)=¢1(x)

lim F(c.y+d.)=2.(y) .
The joint d.f. of (U,, V,) is
P{U, =z, V,=y}=F"(z, v);

therefore, (U,, V,) has a limiting d.f. &(x,y) with marginal limiting
d.f.’s @,(x) and @,(y) if and only if

(2) lim F~(a,x+b,, c,y+d,)=2(x,y) .

n-—»00

It is shown in [6] that @(x, y) is necessarily of the form

* Work done under a grant from the National Science Foundation. The author thanks
Professor E.J. Gumbel for proposing the problem, and for many discussions.
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(3) 0w, Y)=Pu(y)Ps(w) s e

where x(t) is defined for t=0, is continuous and convex, and satisfies
the inequalities

max (—t, —=1)=x(t)=<0 .

2. Conditions for convergence

In the following, it is assumed that Fij(x) and Fy(y) are strictly
increasing and continuous, so that they have inverse functions. This
assumption is not essential but serves to simplify the proof of the theo-
rem; some sort of ‘‘inverse’’ function can always be constructed for a
d.f. (cf. [1]).

Since F,, 1=1, 2, have inverses, it is possible to express F'(z,y) in
the form

F(z, y)=H(—log F\(x), —log Fy(y)) ,
where H(u, v)—1 as (u, v)—(0,0) .
THEOREM 1. A necessary and sufficient condition that (U,, V,)

have a limiting d.f. &(x,y) of the form (3) is that for every u>0,
>0,

(4) li_zE n[H(u/n, vin)—1]= —u[X(v/u)+1]—v .

ProoF. It will be shown that (2) holds if and only if (4) holds.
(i) H=(2):
It will be shown that
lim H*(—log Fi(a,x+b,), —log Fy(c,y+d,))=9(x, y) .

n—oo

By taking logs on both sides of the above relation and using thz loza-
rithmic expansion

log H~H—1 (H-1),
one can see that the first assertion is equivalent to
(5) lim n[H(—n" log F{(a,@+b,), —n~log F{(e,y+d,)—1]
= log &,(x)[x(log ?.(y)/log ?,(x))+1]+ log @y(y) .
If (4) holds for >0, v>0, then it holds uniformly in % and v, since
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H(u, v) is a monotonic function in each of its variables and x is a con-
tinuous function; then (5) follows immediately from (4).

(il)) (2=4):

The reasoning in the preceding paragraph shows that it is sufficient
to show that (5) implies (4).

Let # and v be any fixed positive numbers. Since —Ilog @,(z) and

—log @,(y) are continuous functions of x and are monotonically increasing
[2], there exist numbers w and z such that

—log @,(w)=u; —log @,(2)=v .

It is a consequence of (1) and the monotonicity of the functions @; that
for every >0, there exists an integer N sufficiently large so that for
all n=N,

—n log Fy(a,(w+e)+b,)<u
<—nlog Fi(a,(w—e)+bd,);

—mnlog Fy(c.(z+¢e)+d,)<v
<—nlog Fyc.(z—€)+d,) .

Since H(u, v) is monotonically non-increasing in each of its variables,
n[H(—n"log Fi(a,(w+e)+b,), —n* log Fy(c.(2+¢)+d.))—1]
<n[H(ufn, vjn)—1]
én[H( —n lOg Fln(a’n(w —'6) + bn)7 —nt 10g F;(C”(Z—'E) +dn)) - 1];

as m— oo, the above inequalities become, by virtue of (5),

log @,(w+e¢)[x(log @:(2+¢)/log @,(w+e))+1]
+log @,(z+¢) < lim n[H(u/n, v/n)—1]
< lim n[H(u/n, vin)—1]
<log @,(w—¢)[x(log @(2—¢)/log ¢, (w—¢))+1]
+log @,(z—¢) .
Since ¢ is arbitrarily small and the extreme terms in the above in-
equalities are continuous functions of ¢, (4) follows.

COROLLARY 1. U, and V, are asymptotically independent if and
only if for every u>0, v>0,

(6) li_l.‘& w(H(u/n, v/n)—1)=—u—ov .
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Proor. This follows from the fact that
O(z, Y)=P\(x)P(y)

if and only if x=0.

Remark. In applications it is not necessary to compute the function
H for all values of u and v but only for those values near (0, 0).

3. Examples

The important case of the bivariate normal distribution has already
been treated in [1] and [6] where it was shown that U, and V, are
asymptotically independent. Other examples will be given here.

(a) The following bivariate distribution may be found in [3]:

F(x, y)= exp {—[(—log Fy(z))"+(—log F,())"]'"} ;
(m=1)

here,
H(u, v)= exp{—[u"+o"]'"},
and it follows from Theorem 1 that
O(x, y)= exp {—[(—log 2,(x))"+(—log P,(y))"]""} .
(b) The following distribution is a generalization of the one con-
sidered in [4]:
F(z, y)=[(F(@)"+(F@)*—1]";
here,
H(u, v)=[e*+e°—1]?
and it follows from Theorem 1 that

¢(x: 1/)= ¢1(w)¢z(y) .

4, The k-dimensional case

Let (X, +-+, X.,) n=1,2, .-+ be a sequence of independent random
k-dimensional vectors with the common multivariate d.f. F(x,, ---, x.),
and marginal d.f.’s Fi(x), i=1, .-+, k. For each n, let

Z,,=max X; 1=1, ---, k.
isn

The general form of the k-dimensional limiting d.f. of
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Z—n‘:(Zl.M cy Zk.n)

is unknown. In this section conditions will be given which are sufficient
for the convergence of the d.f. of Z, to the product d.f.
(7) O,(2,)Dy(,) * + - Do)
where &;,i=1, ---, k, is a univariate limiting d.f. of Z;,. In this case
Z;,,1=1, +++, k are asymptotically independent.

Let u;,v=1,.--,k, be the least upper bound of all # such that
Fy(z)<1; u; may be infinite.

THEOREM 2.*' Let F; [z, x;) denote the bivariate d.f. of (X; ., X;..).
If for every i and j,

: 1-Fyz)—Fx)+ Fif(z;, 2;) _
8 1 FAGZ ] J i) —
(8) m-zﬁ-’l(l"ltl—-"r) 1-Fii(=;, =) 0

then Z, has the limiting d.f. given by (7).

ProoF. Since it has been assumed in the introduction that Fy(x) is
in the domain of attraction of @,(x), (1) holds for k£ pairs of sequences

*) Concerning Theorem 2, the referee suggested a necessary condition for asymptotic

independence:
Denote
Pr(Zi>z2)=9;
Pr(Zi> 2, -+, 25> 2:)=9
Then, if
['4
im =0 A
Z¢—ug max (P, - -, Pk) @)
Zy has the limiting d.f. (7).
Because, (10) is expressed as
limi=F
2P
and from the relations
20+ F—-1=20
XP¢<k max (@, --,Pi) (B)
we have
_ 4 <1-F <1

kmax (@y,---,0x) ~ Ty

In case k=2, the condition (A), which is slightly weaker than that in Theorem 2, is
also sufficient. In case k=3, however, it seems that (A) is not sufficient nor the condition
in Theorem 2 is necessary.
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{a.;} and {b,.}, i=1, ---, k. It will be shown that

s ™M@, % +b,q, o0, Qi+, i)
9 hm ,1V1 %19 y Wy kUi n.k =1
( ) n=eo Fln(a'n.lxl_'_bn,l)' * °F:(an.kxk +bn.k)

1

which will complete the proof.
After taking logs in (9) and using the logarithmic expansion, it is
not hard for one to see that (9) is equivalent to

(10) lim l_F(akn.1w1+bn.1y M) a,,,km,,ji-b,,,,,) =1.
o 3, [1—Fi(@,:+b,.9)]

Let A;,i=1, ..., k, denote the event
{}(i,n>an,iwi+bu,i} ’
then (10) is equivalent to

k k
(11) lim P(U 4,)/3; P(4)=1.
Let B;,1=1, ---, k, denote the event

{Xi.n>wt’} ’

then (8) is equivalent to

P(B;B;)

| I _P(BB) _
a2 gt P(B; U B)

Now P(ij A,) may be written as
i=1

P (';1 A‘)= ,ﬁij(Ai)— S P(AA) -,

so that it remains to be shown, from (11), that

>, P(AA)— -
(13) lim|1— & }:1 )
"*‘”{ > P(4)

Since, from (12),

P(BB) _ P(BB) _,
P(B)+P(B) P(B,UB)

it follows that

P(A.A)

P+ PAy) O
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since there are a finite number of terms in the numerator of the fraction
in the brackets in (18), and each is no greater than

max P(4;4,)
+.J
the assertion (18) follows and the proof of the theorem is complete.

Remark. It has been shown in [1] that (8) holds for every bivariate
normal d.f., so that the theorem holds for every multivariate normal d.f..

5. The case of the minima

All of the results given above for the maxima are analogous to those
which are obtainable for the minima; the ‘‘isomorphism’’ between the
two cases is discussed in [1] and [5].
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