ON SOME SEQUENTIAL LIFE TESTS

By YAsusHI TAGgA
(Received Oct. 24, 1961)

1. Introduction

B. Epstein and M. Sobel proposed sequential life tests in the ex-
ponential case [1], in which a statistic V(t), called “total life”, is observed
continuously in time £ and decision is made at an instant when V()
does cross the preassigned limits. In the nonreplacement case of that
test, the probability that a decision can be made after all n items on
test have failed is smaller than one. Therefore the average test time
can not remain to be finite so long as 7, the number of test items
simultaneously placed on test, is finite. Thus they recommended the
sequential test, in which » must be determined so large that the pro-
bability not to reach any decision is negligible small and some decision
rules must be defined in advance to provide for such indeterminable
cases. However, it seems to be expensive and troublesome that a suf-
ficiently large number of items are placed on test simultaneously, because
test equipments must be so large according to the number of test items.

In this paper, the test procedures applicable to the wider class of
distributions including the exponential case will be proposed, in which
a suitable number of test items are placed on test repeatedly untill it
reaches a decision. The operating characteristic function, the average
failure (sample) number and the average test time will be obtained in
comparison with the usual sequential test without a continuous time
parameter.

2. Formulation of the problems and two lemmas

Suppose that the underlying probability density function for length
of life is f(x,8). The problem is to test a simple hypothesis H,:0=86,
against a simple alternative H,:60=46,(0,<6,), with test time as short as
possible and with errors of the first and second kinds equal to the pre-
assigned values a and B respectively. The test procedure in the non-
replacement case is defined as follows:

a) The first sample of size m, is taken from the population and
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placed on test simultaneously. Failure items are not replaced.
b) The probability ratio

( 1 ) Pl(xn’ Tty By 4 01): o f(xn‘r 01) -[I—F(t, 91):|”1—k1
P2y ¢+, Likys t; 6,) =t S (@, 6) 1—-F(t, 6,

is observed continuously in time ¢, where %k, and z; denote the number
of failures and the time of the 4 failure up to time t respectively,
and F(x, 6) is the distribution function, and it is compared continuously
with constants A and B corresponding to @ and R(0<B<1<A).

¢) So long as the probability ratio (1) remains within the limits
A and B, namely, the inequalities

(2) B< P1(mur"',kalst;91) <A
Pl(wll’ vy xlkl’ t; 00)

hold, the test is continued; as soon as the equality

(3) B=P1(xny 2ty Limys T; 6,)
Py(zy, +--, Limys T}; 6)

holds for some integer m, and time T, the test is stopped and H, is
accepted; as soon as the inequality

(4) Px(xuy *0y Limgs 6,) =>A
P)(xny oty Ximge 00)

holds for some integer m and t{=w, , the test is stopped and H, is
rejected.

d) If it happens that any decision can not be made after all items
in the first sample have failed, then the second sample of 7, items is
taken and placed on test.

e) The probability ratio

( 5 ) Py, +--, L1nys 01) . Pz(xn; ey Lagy t; 01)
Py(zy, +--, TLim,s 0) Py, +--, T,y T3 O)

is observed continuously in time ¢, where the first and second terms
correspond to the probability ratios for the first and second samples and
x,; and ¢t are measured from the beginning of the test for the second
sample.
f) The decision rule for the ratio (5) is the same as stated in c.
g) If any decision can not be made after all n, items in the second
sample have failed, then the third sample of =, items is taken and
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placed on test. And so on ...

The test procedure defined above has a mixed character of continuous
and discrete tests such that the observation is made continuously in time ¢
and the sample is replaced by a new one when all items in the sample have
failed. Therefore, it is clear that the average failure (sample) number
is finite and the average test time remains to be finite as in the case
of discrete (item by item) tests defined by A. Wald. In these points,
this test is improved compared with the test defined by B. Epstein and
M. Sobel. Moreover, n,’s may be chosen so that the cost for test is reduced
as much as possible, and the optimal n(=m,) may exist if the loss function
is chosen suitably for the test—n,’s may be different from a sample to
another, but it is convenient from a practical point of view that they are
chosen all the same.

Remark. In observing probability ratio (1), it is usually monotone
decreasing and continuous in #(x;_,<t<=,), because the ratio (1—F'(¢, 6,))/
(1—F(t, 6,)) has the same property in many cases under the condition
6,>6,. Moreover, the probability ratio (1) is changed by factor

f(=;, 6) S (=, 6,)
1-F(=;, 6,)/ 1—F(z, 6,)

when the " failure occurs at t=w;, where f(x, 6)/(1— F(x, 8)) represents
the instantaneous failure rate at t=2 and usually monotone decreasing
in @ (scale or location parameter). Therefore, it seems to be valid in
many cases that the probability ratio (1) increases every time when
failures occur and decreases during the time between failures.

Consequently, the equality (8) holds when accepting H, and the
inequalities (4) hold when rejecting H,.

Finally, two lemmas are stated for the following sections.

LEMMA 1. Let x and y be two random variables with probability
density functions f(x, ) and g(y, 0), 6 lying in some parameter space 2.
If the random variable y is a sufficient statistic of x for the parameter
6, then the sequential probability ratio tests for x and y, excluding time
parameter t and testing the simple hypothesis =0, against the simple
alternative 6=0,, are equivalent.
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Proor. There exists a transformation y=¢(x) from « to ¥y and a
function h(x) independent of 6 for which the relation

(6) S (=, 0)=h(z)g9(p(x), 6)

holds, because the random variable y is sufficient for # by assumption.
Therefore, the equality

7 f(®,06)_9@,0)
M f(z, 0) 9y, 0)

holds for all 6, and 6, in 2. Consequently, the probability ratios

y=9(x) ,

5 f(x, 6) fI 9(y., 6)) (k=1,2, --+)

i1 f(;, 6,) ’ =1 9(y,, 6,) ’ Y
have the same distribution functions, and the probability ratio tests
for x and ¥ are equivalent in the sense that the operating characteristic
functions are identical and the average sample numbers are equal, while
the average test time may be different.

COROLLARY. If there exists a functional relation y=@(x) inde-
pendent of the parameter 0 between random variables x and y, which
18 monotone and differentiable in the whole region of x, then the
sequential probability ratio tests for x and y are equivalent.

Proor. As the relation f(x, 8)=¢'(x)g(®(x), 6) holds by assumption,
y is sufficient for 6, so the condition of the lemma 1 is satisfied.

Remark. Clearly Ey(x)=FE,(y) does not necessarily holds, so the
probability ratio tests for x and y are not equivalent with respect to
the average test time.

LEMMA 2. Under the conditions of lemma 1 and the condition
that the function y=o(x) 18 monotone increasing and differentiable in
x, the probability ratio tests for x and y including continuous time
parameter t in the monreplacement case, are equivalent excepting the
average test time.

ProoF. In the probability ratio given in (5), it is clear that the
first terms for # and y are identical by Lemma 1, so it is sufficient to
show that the second term for x and y in (5) are identical. Namely.
it is sufficient to show that the relation
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i (@i, 6) [1-F(@E, 0) T 79w 6) [1-G, 0) ™
@) e o) [l—F(t, 00)] =Mooy [1—G<u, eo)]

holds, where y;=@(x;) and u=®(t). Since the first terms of both mem-
bers in (8) are identical by lemma 1, it is sufficient to show that F(t, §)=
G(u, 6) for all 6 in 2. By assumption for the function y=¢(x), mono-
tone increasing and differentiable in x, the relation

(9) f(x, O)=9'(x)9(p(x), 6)

holds for all 8. Consequently, F'(x, 8)=G(u, 6) holds for all § by inte-
grating both members of (9) from 0 to ¢, considering that the interval
(0, %) in x corresponds to (0, %) in y.

3. The sequential tests in the exponential case

3.1 Case of n,=1

Suppose that k—1 failures have been observed up to the present
time and k™ item is now on test, and let x; denote the life time of
the #** item. Then the probability ratio to obtain such observations is

(&) {3250

where ¢ denotes the time from the (k—1)* failure to the present time.
So long as the probability ratio (10) remains within limits A and B,
that is, the inequalities

(1) log B< (k—1) loge——(al—g-)( S +t>< log A
1 1 0

hold, the test is continued; the test is stopped and H, is accepted as
soon as the equality

(12) log B=(m—1) logb:—(oil—elo)(gx,.+ T)

holds for some integer m and some T(0<T<z,); the test is stopped
and H, is rejected as soon as the inequality

aasy mlogﬂ—(—l——l)ix log A

holds for some integer m(see Fig. 1).
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Fig. 1

The test procedure stated above, including continuous time parameter ¢
will be called “test I”, and the equivalent test procedure stated below,
excluding parameter ¢, be called “test II”. The procedure of test II is
as follows:

a) The same boundaries A and B are used as in the case of test I.

b) Observation is not made continuously in time, but every time
when failures occur.

¢) The test is continued so long as the inequalities

(14) log B+ log%<i z;<log A

1 =1

holds; the test is stopped and H, is accepted as soon as the inequality

(15) log B+ log %; pIF2

1

holds for some integer m; the test is stopped and H, is rejected as soon
as the inequality

(16) | Sz=log A

It is easily seen from Fig. 1 and the definitions of test I and
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IT that both acceptance and rejection of H, are equivalent for tests I
and II excepting the test time and number of failures. Then the operating
characteristic functions of test I and II are identical to L(6), say, and
errors of the first and second kinds for tests I and II are also identical
to a and B, respectively. Let 7, and r, denote the failure numbers for
tests I and II, respectively. Then the following relation

an r=7r—1 if H, is accept,
=7, if H, is rejected,
holds. Taking expectations for both sides of (17), we obtain
(18) Ey(r)=L(6) - E(r;—1)+(1—L(6)) - E(r,)
or
Eo(r,)=Eg(r,)—L(6) .
In particular,
(19) Eoo('rl) = an('rz) —-(1- a)
E,(r)= Eol('rz) -8
namely, the average failure number in test I is smaller than that in
test II by L(6)(<1). In this respect, test I is a little improved test
procedure compared with test II, which is identical to a usual sequential
probability ratio test having the boundaries A and B-(6,/d,). This is
easily seen from (14)~(16). Consequently, the operating characteristic

functions and the average failure numbers in tests I and II are approxi-
mated by the inequalities (20) and (21)

@) 21 __r6)or 1-LE)=—24"=1 it ne)>0(<0),

Ar® _pror = T 8 AN —pre
where
(%‘:—)Mm—l 1— exp(-—a%l log a>
h(0)(——i) and 80:1-— exp(——l- log a) .
6, 6, -1
(21) X ( ) - {LA6) log B+(1—L(6)) log A{ <;-'3'o(rl)

———{L(0) log B+(1—L(8))(log A+&,)} ,
(= )E()
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0,
§9=b(0l1—0lo)(1— exp(—%))*’—e(blz—elo), b=<0l1—0lo>_llog%: .

These inequalities are obtained in the same way given by A. Wald (see

(3D-

if Ey(z)>0, where Ey(2)= logﬂ — (l —l)e and
(<)

Regarding the average sample number for test I, including all items
on test which does not necessarily fail, it is cleary identical to the average
failure number Ey(r,) for test II. Finally, the average test time will
be obtained. It is easily seen that the formulas (22) hold, supposing
that the underlying distribution is exponential;

(22) Eya,+ -+« +a,+T)=0- Ey(r,)
Eyx,+ -+ +x,,)=0+ Ey(r,) .

First we prove (22) for test I.

For sufficiently large fixed integer N, the sum of random variables
#,+2,+ -+ is split into two parts S, and S such that S, ==+
cee42, +T and S] =@, ,—T)+&, 15+ -+2y if 7<N. Therefore,
the equalities N0=Ey(x,+ %+« +&5)=PyEoy(S, +S;)+(1— Py)Egy(2,+
++++2y) hold, where P, denotes the probability that » <N and E,,
and Ej5 denote the conditional expectations, given 7, <N and 7,= N, res-
pectively. (1—Py)Eg(2,+---+xy) tends to 0 when N tends to infinity
as shown by A. Wald. While

N-1 N—-1 N—-1
PNEON(S:'I)= kzzo DB (Si)= é.::] D(N—k)0=PyNO—0 kZzo kp, ,

where p, denotes the probability that test I terminates with & failures.
Consequently,

PyEox(S,)= e{’g kpu+(L—Py)(N + Ey(@, 4+ » +xN))}
holds, and by letting N tend to infinity, we obtain
Ey(S,)=0- é’; kp,=0Ey(r,) .
In the case of test II also, we can prove (22) in the same way.

3.2 The replacement case
The results in this section are useful for understanding the next
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section.
The test procecure is as follows;

~ a) n items are placed on test at the same time, which are drawn
from the population having the probability density function

(23) f(z, m:% exp (—%) , >0,

b) A new item is placed on test instead of a failure as soon as it
occurs. '

c) The test is continued as long as the inequalities

(24) log B< (k—1) log%:—(ell—-g;)(gy,-+u)< log A

hold; the test is stopped and H, is accepted as soon as the equality

0, 1 1\/=
25 log B=(m—1) log % — ___)( )
(25) og B=( )og'g1 (01 0. i=1y+U)
holds for some integer m and some U< U<y,); the test is stopped
and H, is rejected as soon as the inequality

é 1 m
(26) m logﬁ—(z—%o-) Suzlga
holds for some integer m, where y; denotes the time from the (i—1)*
failure to the ¢ failure and u denotes the time from the (k—1)* failure
to the present time.
The test procedure defined above will be called “test III”. Clearly,
the random variable y; has the probability density function

@7 9y, O)=" exp (-—%y> ,

because it is the smallest value of the sample of size #» drawn from
the population having the probability density function (23). Here we
consider the transformations z=mny and t=nu, which are monotone
increasing and differentiable in ¥ and u. Then the sequential probability
ratio tests for « and y are equivalent excepting the average test time
by Lemma 2. Therefore, test III has the same operating characteristic
function and average failure (sample) number as test I. As for the
average test time, the formula
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(28) Byt -+ +y,+ U)=%Ee(n)

holds. Namely, the average test time of test III is reduced to 1/n times
that of test I.

3.3 Nonreplacement case (n;=mn)

The test procedures a~g are stated in section 2, and the probability
ratio (5) is represented as

(29) ( %).-Elm' exp [——(791:——%-){2 :‘j x;;+ 151__‘; x,,j+(n,,—l)v}] ,

i=1 j=1
where z;; denotes the j*® smallest life time in the ** sample,

in the case when the (m+1)*® sample are now on test without making
any decision after all items in the first m samples have failed and [
failures in the (m-+1)* sample have been observed up to the present
time. This test will be called “test IV’. If numbers of the sample
are all identical to n, the logarithm of probability ratio (29) is equal to

O (1 _ 1N o S 4

(30) (mn+D) log g2 (01 00){‘;;;1 3 @+ 3 s+ l)v}.
Now, by the relations

(31) z Tii= z (n—5+ 1) — 2 5-1)

1 1

2 Bt (n—0v= 3, (0= +1)(@p;—Ln.;-) +(n—DO—2n,)

i= i=
and the transformations y,;=x;;—%;;, and u=v—z,,, the logarithm of
the probability ratio (80) is transformed into

@) (mntDlog (3~ N5 B (=i Dyt 3 (=it D

t=1 j=1

+(n—z)u} :

Since the random variable y;; represents the time between the (j—1)*
and 7** failures in the i™ sample of » items, it has the same form
of probability density function (27) replacing » by n—j+1. Therefore,
test IV is easily proved to be equivalent to test I as in the proof of
test III by means of transformations z;,,=(n—j+1)y;,—=;; has the
probability density function (23).
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The average test time for test IV is obtained by the formula,
m _ o n n 1 1 1
(33) B(E i t0)=0 5 S mu(h Bomgt 2oy
where p,, denotes the probability that test I terminates with hAn+1

failures. The proof of (33) can be made in the same way as that of the
formula (22).

4. Applications to the distributions other than the exponential one

4.1 Applications to Weibull distribution

The probability density function of the Weibull distribution is given
by

=L pert exp (=22
(34) g(z, )= 3 Pz exp( 5 ) s z>0.

where p is called a shape parameter (p>1). In this case, the mean life
is given by

(85) mp=r(1/p)gllp .
D

The hypothesis for the mean life m, is equivalent to the hypothesis
for the parameter 6, because the parameter p is a fixed constant which
determines the distribution with the parameter 4. So it is sufficient to
consider a simple hypothesis =8, and a simple alternative #=46, instead
of the hypothesis for the mean life m,. From the transformation y=2?,
it is seen that the probability density function of y is identical to that
of # in (23). Then the probability ratio tests for ¥ and z are equiva-
lent by Lemma 2. Namely, the sequential probability ratio test in
Weibull’s case, including time parameter has the same operating charac-
teristic function L(f) and the same average failure number Ey(r,) as
those of test IV equivalent to test 1. The average test time in the
Weibull’s case is difficult to obtain exactly, because times between failures
are not mutually independent and lengths of lives (2, 2, * -, 2;,) must
be considered to be order statistics in the 7® sample. As to an upper
bound for the average test time, we may use the inequality

(36) E(3 20+ W) =g S0P,

where g, is the expectation of the largest value in a sample of size n
from (34) and P, is the probability that a sequential test in Weibull’s
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case terminates at the k™ sample. The value of g, can be calculated
numerically by

1 1 1/p
(37) ﬂ,=n-0""§o<log - ) ydy .
However, the values of P,’s are not known exactly, and it is difficult
to evaluate (36). Therefore, the only remaining way is to evaluate it
directly by the Monte-Carlo method. The arguments stated above are
applicable to the family of distributions having the probability density

function

(38) Iz, e)=—?'g—z)exp (—%) . 0=2<oo,

" where @(z) is monotone increasing and differentiable in z and ®'(z)/0 is
called “instantaneous failure rate” or “hazard rate”. Namely, the se-
quential probability ratio test for z, including time parameter, is equiva-
lent to test I, excepting the average test time.

4.2 Application to the log-normal distribution
Suppose that the underlying distribution has the probability density

function

_ 1 _1 v
(39) g(u.e)—yl/.ﬁexp( 2(logy 0)), y>0.

Then the probability ratio test for ¥ including time parameter u is
equivalent to the test for x, where 2 has the probability density function

— 1 _l —0)? — oo
(40) f(x,B)—V%exp( z(x 0)), <zl oo,

by considering the transformation x= logy. Values of ratios (1) are
very troublesome to calculate, because the distribution function F'(z, 8)
or G(y, 6) is not expressed explicitly. Therefore, it is not practical to
apply the sequential probability ratio test, including continuous time
parameter, to £ or ¥ unless a high speed computer can be available.
Such circumstances will arise in general distributions other than the ex-
ponential one, so it may be rather practical to calculate the probability ratio
(1) every time failures do occur than to observe (1) continuously in time £.

5. Conclusion
The sequential probability ratio tests I~IV proposed in this paper
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(replacement and nonreplacement cases), are all equivalent for the ex-
ponential distributions, excepting the average test times. Namely, they
have the same characteristic function L(6) and the less average failure
number by L(0) as compared with usual sequential probability ratio tests
defined by A. Wald.

The replacement tests is recommended for the case of exponential
distribution from economical and practical points of view, because test
equipments are utilized completely and test time can be reduced as much
as possible in that case. However the replacement test is not difficult
to be applicable to general distributions, because times between failure
are not mutually independent. We have to utilize the sequential proba-
bility ratio test in the nonreplacement case observing the probability
ratio every time failures occur. It is very interesting but difficult to
obtain analytically the operating characteristic function and the average
failure (sample) number, and it is much more difficult to obtain the
average test time, for sequential probability ratio tests including time
parameter ¢ in general cases. It seems that we can get such results
more easily and successfully by the Monte-Carlo method than by ana-
lytical methods.
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