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1. Introduction and summary

In this paper we treat a stochastic model of moving particles, in
connection with a certain congestion phenomenon which arises when a
crowd of people swarm in a narrow area.

The model we consider becomes, under some natural assumptions, a
homogeneous Markov chain with a transition pattern, and is similar to
the Ehrenfest model which can be interpreted as diffusion with a central
force (Feller [1]). However, in our model, more restrictions to the
movement of the particles are imposed than in the Ehrenfest model.
Moreover, our model is treated two-dimensionally.

In section 2 we shall define this model, and in section 3 we shall
derive the limiting distribution of the position of particle when the time
tends to infinity. Generally, this limiting distribution is seen to be such
that the central part has more probability mass than the peripheral
part, which means that we have more congestion in the central part.

From a practical viewpoint, the study of actual occurrence of the
situation above the critical level of congestion is more important than
that of the limiting behavior. We treat this problem in section 4.
However it is very difficult to deal with this problem on the basis of
the model considered, so we set up another model which is simpler than
the original one. We take up the time of duration above and below
the ecritical level on the basis of this simplified model. We shall give
the means and variances of these times.

2. A model concerning a certain congestion phenomenon

The congestion phenomenon we are going to consider here is con-
cerning a time-honored custom, in Japan, called ‘“motimaki’’ in Japanese.
This is a custom of scattering about a lot of rice cakes (‘‘moti”’ in
Japanese) in celebration of a certain happy event. These cakes symbolize
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good luck, so that people swarm to get the scattered cakes. The open
space, where the event takes place, is crowded with people, and cakes
are thrown toward the crowd from a scaffold. Every time cakes are
thrown the crowd moves toward the falling, giving rise to a congestion
of considerable degree.

It is conceivable in this process that there will be many ecritical
moments when the congestion happens to come up to such a level that
a mere chance might cause some serious accident or other. The occur-
rence of the situation above such a critical level may be the natural
consequence originating from the mechanism of the movement of the
crowd. Our main concern is this point.

In this section we formulate a model which represents the mechanism
of the above-mentioned process of “motimaki”. Instead of the area in
which the process goes on we consider a rectangle A. Let the breadth
and length of A be M and M’ respectively, both being positive integers.
We partition A into MM’ small squares with the side of unit length,
and consider particles each of which moves about from one square to
another. Each of these particles represents the individual member of
the crowd gathering in the area to pick up the cakes. Now we represent
these squares by co-ordinates (7, 7), 1=1,2, ---, M;j=1,2, .-+, M.

M A
N '
j ' (3,5) M
2
1
1 2 3eteecorcssesncencesarsoscasss Fosesctsrensecrnrscanee M
Fig. 1

We consider that the cakes are thrown on one of the squares at
reglilar time intervals, and that every falling gives an impetus which
causes the crowd to move toward the spot of falling. To formulate
this we assume that at regular time intervals one of the squares is
selected, and that at the same time each particle is stimulated to move
to the direction of the selected square.
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As for the selection among the squares and the movement of any
particle toward the selected square under the attraction we make the
following assumptions:

(i) Each square is selected at regular time intervals with equal
probability, that is, the cakes are thrown on the area at random. The
consecutive selections are independent.

(ii) Every time a square is selected, each of the particles may
move into some neighboring square, which is determined by the following
rules (iii), (iv) and (v), but it may also occur that some of the particles
do not move by some selections according to these rules.

(ili) There are some integers R and R'(1=<R<M—1,1<R'=sM'—1)
such that only the particles on the square with the co-ordinates (%, )
satisfying the condition

i—R<k<i+R, j—R'SI<j+R’ (1)

may move, when the selected square has the co-ordinates (%, 7).

This means that members of the crowd distant from the spot of
falling do not move at all.

(iv) When a square (%, j) was selected, any particle in the squares
with co-ordinates (k, ) satisfying (1) has a positive probability M0<A=1)
of moving to a neighboring square, which is determined according to
the rule stated in (v) below.

This assumption expresses the situation that in the movement of
the crowd there is disturbance which is caused by the mutual jostling
among members of the crowd.

Now, for simplicity, we assume that at each falling the movements
to the neighboring squares of the particles in the domain of the above-
mentioned squares, are mutually independent.

(v) The neighboring square mentioned in (iv) is the one with the
co-ordinates (k’,1’) such that

k—1 if i<k,
K=k if i=k,
k+1 if i>k,
-1 if j<1,
r=t  if j=k,
I+1 if j5>1.
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In the next section we deal with the movement of an arbitrary
patricle on A on the assumptions (i), (ii), (iii), (iv) and (v).

3. The limiting distribution of the position of a particle

In this section we derive the limiting distribution of the position of
an arbitrary particle in the model stated in the previous section when
the time tends to infinity.

By assumption it is clear that the system of the movement of an
arbitrary particle forms a homogeneous Markov chain with the states
(,7),+=1,2, .-+, M;j=1,2, ---, M. We denote the transition probabili-
ties of the chain by »uj;w), %, k=1,2, «--, M; j,1=1,2, ---, M".

Now for each (7,7), we consider the rectangle I;, which is the
common part of A and the rectangle with the center (¢, 7) and having the
breadth and length of 2R+1 and 2R’+1 respectively. The sides of I,;;
is partitioned into six parts I, I,, I, I,, I, and I, as shown in Fig. 2. I,
and I, have unit length. We denote the length of I, I, I, and I, by
Ma;; \,, Ma; ;1,, M'B; ;,, M'B; ;1 respectively and put «;=1/M,B,;=
1/M’'. Moreover we define a;=8;=0 for all integers k+i—1,1,i+1

:‘f-l?hr--r(--_--@-x\
A ' ot :
VR
Is b (39)) :/
j I, Gi 7
I, ' ] E R
It I Is o
7
Fig. 2.
and l#j—1,7,7+1, and put
M
Ai=a; o+ ,= kz=:{ (£ 2P (2)
M
Bj:Bj.j—1+Bjj+Bj,j+1= ZJIBJ'I' ( 3 )

Then it can easily be seen that the transition probabilities p.; un
are expressed as follows:
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Dinan=MuB; for i#k or j#l (4)
and
Dipan=1+MauB;;—A;B;). (5)

Now it is obvious that the chain is irreducible, and, being finite
chain, it is ergodic. That is, the n-step transition probabilities »{}w,
have the limits £,,, which are independent of the initial state (7, J),
when 7 tends to infinity, ¢, k=1,2, ---, M; j, 1=1,2, ---, M’. These &4,
are the unique solution of the following equations (Feller [1]):

’

M M
Ewy= Z > EanPanan » (6)

1=1 j=1

’

M
ZIE(I:I)=1 ’ Ewy>0, (7)

=1

where £k=1,2, -+, M and 1=1,2, ..., M".
Using (4) and (5), (6) becomes

Mz

a
Il
-

M M
Exn=\ '_g _‘;::'1 Eun@uli+Emy—Newn A B, .

As A+#0, we have

M M’
EuwnAeB= ‘2;”2:1 EunulBi -
Therefore, putting
E(kl)AkBlzn.(kl), k=1; 2’ cc M; l=1! 2’ cccy M'y (8)

we have the following equation equivalent to (6):

M M’
Ty = 2{ 2; TniBh , (9)
==
where
o B
ak =ik ¥ — Pl (10)
ik A,‘ ) k1 ‘B,' ’

for k=1,2, -+, M and {=1,2, ..., M'.

It is obvious from (2) and (3) that the matrices (af) and (8}) are
stochastic matrices, and each of the chains, which have the transition
probabilities given by these matrices, is ergodic. Let the limiting distri-

butions of these chains be {7} and {¢}} respectively. These are the
solutions of the equations
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= Swiak, >0 -y
and

(=616, >0 (12)
respectively.

It follows that m,,=nick, k=1,2, .+, M;1=1,2,..., M’, give a
solution of the equation (9), and all 7, are positive. Therefore the
nit¥|ALB, give a solution of (6), and all of them are positive. Conse-
quently, if we put

E(kl)=7}bClr k=1’ 2’ ey M; l=1) 2; ccy M’ ’ (13)
where
R/ (14)

=y ¥
e=LI15e (15)

N ;k ’
for k=1,2, -+, M;1=1,2, ..., M’, then the £, give a solution of (6)
and satisfy (7). This is the limiting distribution which is required.
To express £,, more explicitly we have to solve the equation (11)
or (12). First we derive the {»}} solving the equation (11). We dis-
tinguish two cases.

Case (1°): o<rsM-L
In this case, we have for 1<1<R
tn=1,
a=L,
Therefore we have
A= R};* (16)

and
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R
a?i = T
L1 R+’L
L St i} R+1: ’
s =1
1,41 R+'l: ’

for 1<1<R.
For R+1<1<M—R we have

ai.i+1=ai.i—l=% y
Qa; i=l‘ ’
M

S0 we have

Ai:.@Mil_ , (16)’
and

a;’f,.ﬂ:a;'fi_l:L ,

2R+1
" O2R+1’

for R+1<i=M—R.
Moreover, for M—R+1=<1<M we have

Therefore,

and
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a'f". =—ML
U MAR+1—1
1" M+R+1—7°
1
a:‘i— T T e
Y M+ R+1—5

for M—R+1<i<M.
All the af, with k+#i—1, ,i+1 are zero.
Now the equation (11) becomes as follows:

*= R k *
Tk R+k_1:7k—1+R+k77k R+k+1vk+1’
for 1=k=<R, 7} being defined to be zero,
*__ R * 1 * R *
iy Ly Ly
for R+2<k<M—R-1,
* R 1 R .
Ne+1= 2R7]R+2R+17]3+1+2R+1773+2 ’
v;—B_ ZRI-i-]_”M R+1+2R+17H—R+ Rval—R'l'l ’
x__ M+1—k * 1 * R *
K Vo Ll v -y Uy vy e L
for M—R+1<k<M, n%,, being defined to be zero.

Solving these equations we get {7}} as follows. %} is undetermined.

- R+k R*
N =TN-r1= Rl om 1),771, for 1<k<R, 17)
s_2B+1 R . g0 Ri1<k<M—R (18)
”‘7 R+1 (R 1)' vl ’
Case (2°): M 1 ——<R=M-1.

In the same way as in the case (1°) we can rewrite the equation (11)

as follows:
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Solving these equations we get {7x} as follows. 7y is undetermined.

R+k R*!

Y = 1),771, for 1=sk=M—R,

{
Ve =Ni—kn1=

(3=
_ M-
pr= Mk RYE . g0 M- Ry1<k<R.

R+1 ( ) (M—R)'

Now {7} are determined as follows.
Case (1°):
From (14), (16), (16)’, (16)"”, (17) and (18) we obtain

k-1 R
Ne=Ny—xn= R /22 R +(M 2R)—

G—Dl 2 & G ®=1)
for 1<k=R,
_ RR—I - —1
n= Gl 28 et M2 ey

for R+1<k<M—R.

Just in the same way we have for

«__ R * k *
= Rrk—1 27"_1+R+k7'“ Bkl
for 1=k=M—R-—1, 77 being defined to be zero,
Ni-r= Mli V-1t 771—12+ MMR " N¥—pt ,
77:=J—w—i_1%_—'k7]:—1+ﬂ77:+1%77:+1 ’
for M—R+1=<k<R,
Nan= MMRﬂR+M7)R+1+ MR—l Na+a »
[ Vo o Ll v - g L Ly v g -y
for R+2=<k=M, 0¥, being defined to be zero.

Case (2°):
Rk 1 M—R R' 1 R AR;'—];> RH R
—_ —_ B - o — B
7”"77""°+“(k—1)1/ 2 (¢_1)1+{,-=.§_33+1 ( i—l)}(M—R)! ’
M—R

for 1=k=<M—R,

173
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De= (]{}:]]‘;) RX-E /2 HE—:IR R " { ZR‘, (ﬁ:i) } RX-R (22)
F (k—l) (M—R)!/ ™ & @G—1)!  L=ihn ( i—l) (M—R)!’
- M—R

for M—R+1=<k=R.
Replacing M and R by M’ and R’ respectively in the above formulae
we can get {¢;} as follows;

Case (1°): o<r=¥ -l
_ _ Rll—l R Rrj—x - , RI—-1
f= =g 2 S e (M 2Ry (23)
for 1<I<R’',
_ R'®-1 B R - ~ RE-
C‘"(R'—nz/z,;(j—l)!“M 2Ry "1 @)

for R'+1<I<M'—R'.

Case (2°): M,2_1 <R'sM'-1

R n-1 M'—R' R r3—-1 R (ﬁ::}> R’l'-B'
2 + }

(l_—l)!- = G_——]_)' i=x'Z—R+1( 7—1 )(M'—R’)’ (25)
M —R’

CLi=8uwn=

for 1<I<M'—R’,

E) pree prse e g 5 (B g

;,:( 1—1 )(M’—-R’)! 2 GOl e ( ng;:}e ) I —R)

M'—R’
(26)
for M'—R'+1=<I<R'.
In a special case {7;} or {¢;} is a binomial distribution. For instance,
when R=M—1, the {7} is the following binomial distribution:

n=%_D2 >, 1sk=M.

From the {7} and {¢;} so obtained, together with (13), the &4, can
be written explicitly. This distribution is bellshaped except that in the
case (1°) its shape is flat on some range, around the center, which
depends on the value of R or R’. Anyway the central part of A is
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more probable as the position of any particle in the long run. We
remark that this result is derived from the assumption of the equi-
probable, that is, impartial throwing of cakes on the area A. In
practical situations the throwing for the central part will be even more
frequent than assumed in our model. This means that actually the central
part of A is even more probable, as the position of any member of the
crowd, than assumed in our model. Thus our result suggests that, in
“motimaki”, congestion of considerable degree will arise in central part
of the area in the long run, and that this congestion is the natural con-
sequence originating from the mechanism of the movement of the ecrowd.

4. Occurrence of critical level

In this section we treat the occurrence of the situation above the
critical level of congestion in “motimaki”. To deal with this problem
we introduce another model than the one considered in the previous
sections, because it is difficult to take up the problem on the basis of
the previous model.

In this model we consider a partition of the area A into M vertical
strips of the same size as shown in Fig. 3, and we suppose that the
crowd is composed of a number of groups each of which moves about
from one strip into another. We represent these strips by co-ordinate
1, ©=1,2, .-+, M. Moreover, we suppose that, during the movement,
the original order of these groups is preserved, while it may happen
that the same strip is occupied by several groups at the same time.

1 2 B T 7
Fig. 3.

To define the critical level of congestion we consider the range of
the area occupied by the total groups. This range is defined by the
distance between the right-most group G, and the left-most group G,.
We consider that the congestion of the crowd becomes heavy if the
range of the groups exceeds a certain value C, and define the critical
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value of congestion as this value.

We define that the congestion of the crowd is above critical level
if the distance between G, and G, exceeds C, and take up the problem
of determining the mean and variance of the time of duration above or
below the critical level.

Now we have to introduce some assumptions about the movement
of the groups. According to the preéeding‘ formulation it is the move-
ments of G, and G, that directly determine the occurrence of the situation
above the critical level as considered above. We, therefore, make as-
sumptions concerning the movements of G, and G,. Of course, in practice
their movements will be restricted by the movements of the other groups.
But we consider here rather rough and discard the exact consideration
of the influence of other groups. We assume the following:

(i) The cakes are thrown on one of the strips at regular time
intervals with equal probability. The consecutive throwings are inde-

pendent.
(ii) M is an even integer: M=2N. At the beginning of the process

of “motimaki”, the difference between the co-ordinates of the strips,
on which G, and G, lie, are even.

(ili) Every time the cakes are thrown the movements of G, and
G, may occur, though it is also probable that in some throwing one or
both of G, and G, do not move. The way of this movement is determined
by the following rules (iv), (v) and (vi).

(iv) When G, lies on a strip with the co-ordinate 4, 1=i=M-2,
and the cakes are thrown on a strip with the co-ordinate 7, 1+2=j=M, G,
moves onto the strip ¢+2, while G, does not move. Similarly, when G,
lies on a strip with the co-ordinate k, 8<k <M, and the cakes are thrown
on a strip with the co-ordinate !, 1=<I<k—2, G, moves onto the strip
k—2, while G, does not move.

We add here, for simplicity, the proviso that, when G, lies on the
strip M and the cakes are thrown on the strip 1, G, does not move, and
when G, lies on the strip 1 and the cakes are thrown on the strip M,
G, does not move.

(v) When G, lies on a strip with the co-ordinate %,2<¢<M, and
the cakes are thrown on a strip which lies on the left of G, but is not
on the left of G;, then G, moves onto the strip ¢—1. Similarly, when
G, lies on a strip with the co-ordinate k, 1<k<M—1, and the cakes are
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thrown on a strip which is on the right of G, but not on the right of
G,, then G, moves onto the strip k+1.

(vi) In other cases the movement of G, or G, does not occur in
the throwing concerned.

The assumption (iv) states that, when the cakes are thrown outside
the strips of G, and G,, only the nearer groups can move. This as-
sumption is adopted to express roughly the disturbance of other groups
lying between G, and G,, as well as the situation that the members of
the crowd distant from the spot of falling will not participate in the
movement caused by this falling. Moreover the disturbance of other
groups is contained in the assumptions (iv) and (v) which state that
the movement of G, or G, is a one-step transfer when the cakes are
thrown between them, while the mevement is a two-step transfer when
the cakes are thrown outside of them.

Next we determine the mean and variance of the time during which
the congestion is above or below the critical level, under these assumptions.
For this purpose we consider the consecutive distances between G, and
G, in the course of the process of “motimaki”. The possible values of
these distances are 0,2,4,...,2N—2. If we represent these by
0,1,2, ..., N—1, then the above assumptions give a homogeneous Markov
chain with the states 0,1,2,-.., N—1 and the following transition
probabilities:

—2N__2k___3_ 0<k<N-2

Pran=""r
Pex=sr, 1SksN-2
pk,kﬂ:%";—l, 1<k<N-1
no=.

p;;=0 for other 1, .

It is obvious that this chain is irreducible. Further, being a finite
chain, the chain is ergodic.

First let 2k(C+1<k<N-—1) be the initial distance between G, and
G,, and we take up the time which is required for the system to attain
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for the first time to the state C. We denote by u,, the probability
that this time is equal to »,n=1,2,.--. Then >, u;.=1, because
the chain is ergodic. .

Now it is easily seen that the u; , satisfies the following difference
equation:

Uk, nt1= %2';—’6—3 K+, n+2‘11v +—gl%‘uk—1.n . (27)
This equation holds only for C+2=<k=N—2,n=1. But if we put
Ug..=0, n=1 (28)
Uy a=Uy—-1,n » nz=1 (29)
Uy o=0, C+1=<k=N (30)
u0,0=1 ’ (31)

then (27) holds for C+1=<k=N-—1,n=0.
All the moments of the probability distribution {u,,} are finite, that
is,
ay = i N U, < (32)
n=1

for all integers v=1.
To see this, consider the factorial moment generating function

g’k(s): iuknsn ) C+1§k§N—1 .
n=0

Then

= i n(n+1)e««(n—v+1)u, 8"
ds’ a=1

for |s|<1,v=1. In the power series of the right-hand side of this
identity, all coefficients are positive. Therefore, if >\, n(n+1).«-(n—
v+ 1)U, =, then lim,. ,(d"/ds*)pi(s)=c. From this it is seen that
in order to prove (32) it suffices to show that lim,.,,(d"/ds*)p(s) con-
verges (v=1).

From (27) it is easily seen that the @.(s) satisfies the following
difference equation:

pu(e)={EE =0, o)+ Lo+ B e (o)} (33)

for C+1=k<N-—1. From (33), (28), (29) and (31) we can show that
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all of the @,(s) are rational functions. On the other hand lim,.,_p.(s)=
SieoUi,,=1, s0 s=1 is not a pole of the rational function ¢,(s). Conse-
quently lim,., ,(d"/ds*)p.(s) converges. Thus we have (32).

Now we determine the mean m,, and the variance v,, of the
probability distribution {u,,}. These are defined as

Mo=aP= 3 nits, ,
n=1
Veo=af —{af’P= 3w, —mi, .
n=1
For the m, , we have, from (27) together with the relation >, #,=

1, the following difference equation:

m""’=2N—2§];_3

for C+1<k=<N-1.
Moreover, from (29) we have

(Mier1,0+1) +§§_v(mk,0 +1) +%(mk—1.o+ 1) (34)

My o=My_y.q - ’ (35)

From (34) we have
(2N—2k—38)(my11,0— My c)+2N=(2k—1)(m; .0 — M _, 0) (36)

for C+1=k=N-1.

Putting
Mpt1,0— My, 0=0 , C<k=<N-1, (37)
we obtain from (36) and (85)

(2N—2k—3)a,+2N=(2k—1)a,, (38)

for C+1<k=<N-1,
ay_=0. (39)

From (38) and (89) we have
2N

S, 40
Y (40)

Now define 8,, C<k<N—2 by the following relation:
_ (2N—2k—5)2N—2k—T)---531 8, . (41)

T (2N—3)(2N—5).«+(2k+38)(2k+1)
Here, in the case of k=N—2, the numerator of the right-hand of (41)
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is to be interpreted as unity.
From (40) and (41) we have
By-=2N. 42)
Substitute (41) for «; in (38). Then (38) becomes, after a simple

calculation, the following relation:
(2N—2)
2k ) _
Bi+2N~—_r=8,,, (43)

N-1
%)
C+1=<k=N-2.
Adding the both sides of this equality with respect to %k ranging
from C+1 ta N—2, we obtain

2N—
Brat2N S (2 >—Bo,-

* (%)
So by (42) we have
(ZN —2)

-1

Bo=2N1=zo“+1 N—]_) (44)
("
From (43) and (44) we obtain
2N—2
N-1 ( 2j )
= 45
Bi=2N i=EH (N—.—l) (45)
J
for C<k<N-2,
Substituting (45) for B, in (41), we have, after a simple calculation,
N-2 2N—
*“2N-3 (2N—4) i (N— ) ‘
2k J
C<k<N-2.

From (37) and (46), and noting m,,=0 because of (28), we finally
obtain
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o o () o ()

o= 2 N3 (2N—4> 2 (N—l) ’ “7)
21 J
C+1=k=N-1.
As the special case of k=C+1, we have
N-2 2N—2
N-—-1 N
Mgs1,0= 2N ( ¢ ) 27 ) (48)

2N—3 (21\2%—4) P (NJ— 1) ’

This is the mean of the time during which the congestion is below the
critical level.

We can similarly deal with a;*. For these we have, from (27)
together with the relation .7, u,,=1, the following difference equation:

al =%2§I§:—3—(a&21 +2my1a,0+ 1)+ 2iN(a§=” +2m, o+ 1)

+ 2L o om o), (49)
for C+1<k=N-1.
Moreover, from (29) we have

ay=ay., . (50)

From (49) we obtain

(@N—2k—3)a,+2{(2N—2k—3)M 1.0+ 4y o+ (2k—1)m,_, o}
+2N=(2k-1)a,, , (61)

for C+1<k=N-—1, where this time «a, are defined by

a,=a,—ad (52)
for C<k<N-1.
Now define B, by (41), and put these into (51). Then we obtain
(2N;2)
Bi+B A2k /g | (53)

N-1
&)
for C+1<k=<N-—2, where the definition of B, is as follows:

B,=2{2N—2k—3)m,, , +4m, o+ (2k—1)ym,_, o+ N}, (54)
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for C+1<k<N-1.
By using (34) we can give B, the following simple form:

B,=2N(2m,.—1), for C+1<k=<N-1. (55)
From (53) we have
. <2N —2)
/3N—z+ Z Bk '~2k— =Bo . (56)
¥Z0+1 N— 1)
@

On the other hand, from (50) and (52) we have a,_,=0. Therefore, from
(51) and the definition of B,_, we obtain

By-1=@N—3)ay_,=2{—my o+4my_ c+@N—38)my_ 0+ N} .
From this and the definition (54) of By_,, we obtain
By-2=By_, . (67)
From (56) and (57) we have
2N—2
-1
k
On the other hand, from (53) we have
. 5 (250
Bt 3. B; =B, , . (59)

(58)

for C+1=<k=N-2.
Putting (58) into (59) we have

. (2N72
= 3 B (60)

i=k+1 N. !
57)
for C<k<N-2.
Substituting (60) for 8, in (41) and, after a simple calculation, we

obtain
N—2 2N—2 |
a"=2Nl—3(<21\;c—4>) ,-:m B’((;le))' o

2k J
for C<k<N-2.
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From (562) and (61), and noting a’=0 because of (28), we finally

obtain
N—2 2N—2
=g & <21\;—4)) 5.8 ’((N%% (62
2i j

for C+1=k=N-—1, where B,’s are given by (55).
Using (47), we can express a”’ as follows:
N-2 2N—2
k—1 : N-1 .
4N > ( * ) > mi.o<2+) —My,o - (63)

2N—-38 i=o (21\;?—4) ==}
{2

a® =

The variance of the distribution {u,,} is given by

N—2 2N—-2
_ ) 4N kil' ( J ) Nz_“l m.: w —’mk,g(1+mk,o) ’ (64)

Vo= 1oN_8 &2 2N—4) R (N—l)
27 j
for C+1<k=<N-1. ,
As the special case of k=C+1, we have

N—2 2N—2
I S ) 4)) 5 m(lv%;

—Mgi1,6(L+Mpy1.0) « (65)
2C

This is the variance of the time during which the congestion is below
the critical level.

Substituting C in (48) and (65) with N—C—2 respectively we obtain
the mean mj and the variance v} of the time during which the conges-
tion is above the critical level, because of the symmetry of the transi-
tion probabilities concerned. Thus we have

me= 2N (NE 2) ESh (21\5—3_2) , (66)
2N-3 <21\2f54> j=H=c-1 (N;l)
[ av (%) C5O)
Vo= SN—3 (2N—4) PYES ’mi.zv—o—z-<lv—_._1)- —mg(1+mg) , (67)
2C J

where m;;’s are given by (47).
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T 23 456 7809 1011 1zZ1B31Wk 617 C
Fig. 4.

As an example we show in Fig. 4 the relation between C and mg
for N=20.

In praectical situations pertaining to the process of “motimaki”, it
is important to foresee the danger, that may be caused by the congestion
of the erowd concerned, from the degree of compactness of this crowd
in the area of the process. From a certain standpoint the result of this
section is applicable for this purpose. We give next the rough description
of this application.

We represent the degree of the possible danger of the process by
the expected duration m} of the critical level. Here the critical value
C is considered to have some relation with the density of the crowd in
the area as a whole. Let this relation be such that C is proportionate
to this density of the crowd. Then the relation between C and m} ex-
presses the relation between the density of the crowd and the degree



STATISTICAL TREATMENT OF A CERTAIN CONGESTION PHENOMENON 185

of the possible danger.

Thus, using this relation, we shall be able to make some forecasting
about the possible danger of the process. For example, in the case
shown in Fig. 4, we forecast that the danger of the process increases
rapidly if the density of the crowd exceed the value which corresponds
to C=13.
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