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1. Introduction

In the previous paper ([3]), we gave some new epidemic models for
predicting the propagation of epidemics. However, we must consider
the validity of these deterministic or stochastic models in the light of
the real epidemic data, that is, we must consider whether our models
are really useful in predicting the number of patients in future. After
that, the usefulness of epidemic models is proved. Now the time-con-
tinuous models of epidemic which has been developed since Kermack
and McKendrick are all theoretical and, still, we have few chance to
see its application to epidemic data. Therefore, we doubt whether their
models are useful for prediction.

In the present paper, we shall state properties of our deterministic
and stochastic epidemic models in the community where the assumption
of homogeneous mixing is satisfied and predict the number of infectious
cases at the time ¢, applying the above models to the case of influenza
in Isesaki City, Gumma Prefecture, in october, 1957. From so doing,
we shall be able to see the validity of our models.

We must explain the following two points before we analyse the
epidemic models.

The first is to derive the method of communication of infectious
disease. As shown in the previous paper, we treat only the diseases
that are infectious in the sense of being communicable at the appro-
priate stage of the development in an infected individual by adequate
contact with susceptible persons. Now, let us assume that the epidemic
is started by the introduction of some infected individuals to a popula-
tion of the susceptible. As soon as the germs unter into the body of
susceptible persons by the adequate contact with infected individuals,
they undergo certain biological developments within the body during
the incubation period, but any kind of infectious material is not exhaled.
The difficulty in treating the problems lies in the existence of carriers.
There are individuals who are apparently healthy without any manifest

147



148 SIGEKI SAKINO

symptom, but discharge the germ micro-organisms and can communicate
the disease to others. Little has been done yet on this point, though it
is very important. The purpose of the present paper is to treat this
problem mathematically under some assumptions. As shown in the pre-
vious paper, it is an important fact that all of the susceptible who
have had the effective contact with infected person do not always get
sick. Even if the micro-organisms would enter into the body of a
susceptible person, he would not necessarily show recognizable symptoms.
According to the kind of disease, it does not make difference in
producing the permanent or temporary immunity in the body of infected
persons whether the susceptible who have had the effective contact have
recognizable symptoms or not. Considering poliomyelitis, for example,
it is said that the rate of the risk of onset when the susceptibles are
exposed to the viruses at the same time is less than 1 percent, and the
other 99 percent or more of persons do not contract the disease. Yet,
most of those infected cases, both with apparent infection and inapparent
infection, will acquire temporary or permanent immunity. Now, let us
call these cases of inapparent infection followed by the acquisition of im-
munity ‘‘ inapparent immunes’’. Taking into account these inapparent
immunes, we feel more or less dissatisfaction for the epidemic models
which have been developed since pioneers Hamer, Ross, Soper and Mec-
Kendrick. As shown in the next section, we shall construct epidemic
models taking into consideration the above fact.

The second that we want to point out is the reason why we have
taken up the data of influenza epidemic among school-children as an
example of epidemic model. The epidemic of influenza commonly af-
fects a high percentage of the population. Once the epidemic takes
place, it is not unusual that the incidence rate for all ages amounts
to as high as 809% or 409. The rate tends to be higher at pre-
school and school ages than at any other ages. Therefore, from the
viewpoint of health or school-management, the local public health au-
thorities must take any preventive measure against the epidemic of
influenza with emphasis on school-children. For example, the closing of
schools may be employed, if it is considered to be effective in checking
spread. In case we accept that the closing of school is being of value,
we should try to know when it will be desirable to make decision of prac-
tising this. If we can know the adequate time for the school closing,
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we will be able to expect the most effective way of minimizing the
propagation of disease of school community. For this purpose, we must
estimate the time when the number of patients of influenza becomes
maximum, and the number of patients at that time on the basis of the
data for the first several days in the beginning of the epidemic. Thus,
if the closure of school is revealed to be effective in controlling the
influenza epidemic, we shall be able to give the scientific basis on this
counter measure. For such purpose, we surveyed the propagation of
influenza among school-children selecting one school district in Isesaki
City, Gumma Prefecture.

In sections 3, 4 we shall give prediction of the time of the maximum
number of influenza patients using our influenza data.

2. Deterministic treatment (i)

Let us assume that the epidemic is started by the introduction of
a infectious individuals into a population of % susceptibles and this com-
munity of total size m+a comprises, at time ¢, x susceptibles, ¥ infec-
tives in circulation, and z removals who are isolated, dead or recovered
and healthy immune. Thus x+y+2z=n+a. As in the previous paper,
let 8, B, and v denote the incidence rate, the inapparent immune rate
and the removal rate, respectively.

In the infinitesimal time interval (¢, t+dt), therefore, there are B,
xydt new infections, B,xydt new inapparent immune cases, and vyydt
removals from infectious cases. The basic differential equations are
easily seen to be

do _

v (B.zy + B.2y)

%—f:Blwy—w 1)
dz _

-Jt——-ﬁzxy +7Y

Making use of the relative removal rates g,=(5,/53,), 0;=(7/8,), we shall
be able to give the solution of the above differential equations (1).
From the first and second of the above equations, we get, by division,
after integration,
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— n 0, @ 0
=(a+ - log m)— + log « . 2
R T E A N T @
From the second of (1),
y=a exp{S:(x—p,)dt}éa if n=p,, (2)
and
%?ti>o if n>x>p,, (2")
%<O if n>p,>. 2"

From (2"), (2'"), the peak of the epidemic curve occures at x=p,. Further,
from the first of (1) and (2), the parametric solution is given by

" dw
t=
L w(K—w+p, log w) @

where K=a(1+p,)+n—p,logn. Let 7, be the unique positive root in
0<9<p, of

NK—71+p;lof 7)=0 . (3)

Then 7, represents the number of susceptibles at t=co, and there-
fore, 7,—0 as p,—0. Therefore, [(n—2,)/(8,+8,)] B, represents the number
of infective and [(n—%,)/(8,+8,)] B; inapparent immune cases at t=oo.
This is of considerable importance in understanding the mechanism un-
derlying the absence or occurence of outbreaks of epidemic disease.

The numerical solution y, of differential equations (1) is approximate-
ly given by the mean value 5, of s, which will be stated in section 4.

However, in this model, the time when the infectives contracted is
not considered. Really, we must remember that the recovering time
depends on the time of contracting. Therefore, we need to improve
this model. In the next section, we shall give a new deterministic
model depending on the contracting time and apply our improved model
to the data of influenza.

3. Deterministic treatment (ii)

In this section, we shall construct an epidemic model considering
the time of contracting.

Now let G(r, t) be the probability that one person infected at the
time 7 will not recover before the time ¢. That is, G(r, t) shows the
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probability of duration of disease from the infected moment 7 to the
time t. Further, let h,(t) dt denote the number of persons infected in
the infinitesimal time interval (¢, t+dt) and h,(t)d¢ the number of in-
apparent immunes, and let F'(f) be the number of infectives at the
time t and the initial number of infectives equal to F'(0)=a. Then,
according to the principle of Hamer’s epidemic propagation, we can get
the following equations

m(t)=B.F®{n—{ (@) +hNdc} ,
h®)=BFOn—| (i) +hends} )
FO)={ @6, dr+a60, 1) ,

where n is the number of susceptibles at the initial ¢=0, B, infection
rate and B, inapparent immune rate. Now, putting hy(t)=h.(t)—h,(0), we
are able to give a non-linear integral equation of Volterra’s type from
the equations (4), that is

k)= Bet, o, ROz +£(0) ®
where
Ret, 7, Fu@) =] {n— LB yde—(5,+ 8 )mat}ih(e) + na)G(E, 0

— BB ofie) +8nGH0, 1)) ®

1

f(t)=8ma G(0, t)—Bna . (7

We assume that f(t) satisfies the Lipshitz condition, A,(¢) is bounded
in 0=<t<7 and R(t, 7, k(7)) is continuous in the domain D(0<t<7, 0=7 <7,
0<h,<h,). Then, R(t,7, k(7)) satisfies the Lipshitz condition in the
domain D with respect to h(7)®, f(0)=0, and so, there is the unique
solution of the non-linear equation (56). Therefore, we can give the
number of new infections h,(t) from k,(t) in the unit interval (¢, £+1).
Using the deterministic non-linear integral equation (5), we canvpre-
dict the number of patients of influenza in school-children at the time ¢.
Next, the recovering time distribution of influenza is shown in Fig. 1.
When we fitted the I'-type distribution to our data and tested goodness
of fit, w>value was given by 4.17%x10~* and the variance by D*®*)=
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(2.1x107*)’. Thus, it can be said that the I'-type distribution fits faire-
ly well to our data.

g(t)
0.2F
l- O estimated value
X X observation
x *
° o
o
3 x
0.1p o X
° o
°
® ®
.0
° x 2 °
o
X 1 i
0 5 10 t (day)
Fig. 1. The recovering time distribution

Next, when we observed the propagation of influenza in school-children
for two months from october, 1957, the rates of contraction of lower
classes and the upper classes in school-children were as follows.

contraction the number the number the rate of
of infectives of non-infec- apparent
class at t=o0 tions immune
lower classes 444 432 0.507
upper classes 409 408 0.501

Table. The rate of apparent immune

In this table it is seen that the rate of contraction of school-children
is about 50 percent. Judging from this result, we assumed that the
infection rate 5, equals to the rate of inapparent immune B, that is,

half of contact members reduces to the infectious members and the
other half to the cases of inapparent immunes.

Therefore, R(t, 7, k(7)) in the non-linear equation (5) is rewritten as

R(t, 7, h(z))= Bl[{n—ZS:h}(z')df—2,81nat}(ﬁl(r)+,6’lm)G(z', )
—2a(l(z) +Bna)G(0, 9|

From Hamer’s principle of epidemic propagation, the parameter 3, is
estimated as,
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|1 o Fe)(n—2{"F@ar) .

B w ) ' ®)
Using the data of the first 10 days from the start of influenza, we
obtained the estimated value 5,=1.94x10~* and the mean recovering
time t—7=5.2 days and the variance v,_.,=10.0. From the mean
time {—7 and the variance v,_,, we determined the I-type distribu-
tion 1—G(t—7). From this recovering time distribution 1—G(t—7) and
the parameter 5,=1.94x10~*, we can derive the numerical solution h,(t)
of the non-linear integral equation (5). As shown in the part of solid
line in Fig. 2, the peak of the number of the new patients fits fairly
well to the data of influenza. Therefore, we find that we can predict
the time of the peak of the number of infectives using the data of
the first 10 days.

)
100

e B =174 X 1074, 2=0
— = =194 %104

t (day)

Fig. 2. The number of the new infectines at time ¢.

If 8,=0, the estimated value of B, during the first 10 days is 1.74 x 10—,
Then, the epidemic curve of influenza shows much larger values than
observations. Thus it does not seem that the model with 8,=0 is useful
to predict the number of the new infectives at the time ¢.
Furthermore, we can calculate the number of infectives at the
time ¢ from the third of equation (4). The numerical values of F(t)
are shown in Fig. 3. We find that our result coincides, fairly well
with observations. Judging from this result, the authorities of public
health will be able to decide an adequate time of taking preventive
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measures against the epidemic of influenza and to bring the maximum
effect of the prevention against the epidemic of influenza among school-
children.

Ft)
4001

ceee B1=174x10"¢, B =0
\\ — pl=ﬂ‘=1.94)(10_‘

1 | [ L
0 10 20 30 40 t (day)

Fig. 3.

Now, we cannot estimate the breadth of fluctuation at every time
when we use such a deterministic model. In the next section, we shall
construct the stochastic epidemic model by taking into account such a
fact.

4, Stochastic treatment

Whether or not an infective person actually communicates his dis-
ease to susceptible persons is plainly a matter of chance. The magni-
tude of this chance may depends on the virulence of the organisms,
the extent to which they are discharged, the natural resistance of the
susceptibles, the degree of the latter’s proximity to the infectives, and
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soon. As will be seen in this chapter, suitable assumptions are such
that the chance of one new infective or one inapparent immune case
in a very short time interval is jointly proportional to the length of the
time interval, and the numbers of susceptibles and infectives.

Models based on the above assumptions usually imply that in the
community considered all susceptibles and infectives mix together hom-
ogeneously. As a first approximation, this idea is almost nearly realized
in small groups as households, but is generally at variance with
the observed facts in a large group as a town or city. When we try
to deal with stochastic processes in large communities, this should al-
ways be borne in mind.

Now, we shall state, simply, the real stochastic epidemic model
which is shown in the previous paper and apply our model to the data
of influenza.

Let us assume that the epidemic is started by the introduction of
a infectious individuals into a population of » susceptibles. Therefore,
we have the community, the size of which is #+a individuals at time
t=0. Suppose that, at the time ¢, there are r susceptibles, s infectives
in circulation and ¢ individuals who are isolated, dead, or recovered.
Thus we have r+s+g=n+a. Now, suppose that, on the assumption
of the homogeneous mixing of the susceptibles and infectives in circu-
lation, the conditional probability of one new infection taking place in the
very short time interval (¢, t+dt) is given by B, rsdt where B, shows
the constant infection rate. Similarly, suppose that the conditional
probability of one new inapparent immune case in (¢, t+dt) is given by
B,rsdt where (5, in the inapparent immune rate. Further, suppose that
the conditional probability of one infectious patient being removed from
circulation in the same interval is given by rsdt. Then, we can give
the differential-difference equation on the probability P,,(f) that at the
time £ there are r susceptibles still uninfected and s infectious cases in
circulation.

——””Zz;“’ =(r+DE—D P, () +0(r+ 1P, (D)

—(r8+p:18+0:8) P, (1) + 0(s+1) P, ,1i(1) , 9)

d%z(t) = _(na+p1'na +p2a)Pna(t) ?
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where

0sr+s=n+a, 0=r=n, 0ss=n+a.

The inital condition is P,,(0)=1, and po,=(8,/8,), p.=(7/B,) show the
relative rates to the infection rate. In the previous paper ([3]), we
gave the differential-difference equation (9) and illustrated numerically
this model by the Monte Carlo Method. Now, we shall predict the
number of patients of influenza in school-children at the time ¢, using
this stochastic model. Before doing so, we must state the method of
estimation of parameters. Based on the first some day’s observations
from the start of epidemic, we can estimate the parameters and predict
the subsequence number of infectious cases.

For simplicity, we shall consider the case of inapparent immune
rate 3, to be 0. Suppose that we obtained the following sequence as the
result of observations,

I, R,---, Rkly L, Rk1+ly s Rk,9 L,---, ka’ L,
(7'0, 80); """ ’ (7'0—1, sl)v """ ’ ("'0_21 82)7 """ ’ (To_ml sm)

where I, shows the 4® occurrence of new infection and R; the j*
occurrence of now removal, (r,—1,s;) the numbers of susceptibles and
infectives when 4® new infection occurred. Although bailey gave the
variance Vimzree,=(1/mB}), assuming that (rs¢;) is independent of
(r;sit;). But (rst;) is dependent of (r;8;t;) so the variance Vijmzs.,
is not equal to (1/mB?). We considered the ratio estimate of (v/8) by
the next method. That is, we gave the distribution of the time
interval ¢,; to I, from I;

MY exp (—\YEdEy) (10)
where

AN = Bri _ B(ry—1) .
Bri+v  B(ro—t)+7

Therefore, the distribution is independent of the number of infectives
s;. Put

to=— i (11)
Brs;+7s;

and the distribution of the time interval ¢, corresponds to the distribu-
tion of the time interval between the <™ and (¢+1)* new infection.
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r; is constant when we consider the sequence of occurrences of new
infections. From (10), it is seen that the means E{r,({;—1)}=(7/B),

E{%"‘Z_,lr,-(tu—l)}:% and the variance Vimze,-n=(r/m&") tend to 0
i=o0

when m—oo. The statistic (1/m) >, r(t,;—1) is a sufficient and unbiased
estimate with the mean (v/8) and the variance (v*/mgB*). Therefore, we
can test the difference between the ratio estimates (v/8) obtained from
two different groups by means of the variance ratio test. When m is
large, the precision of the ratio estimate (v/B) from a single epidemic
would be rather high as the coefficient of variation is m~*“*. Now,
when we estimated the parameters using the first 10 day’s observations
from the start of the epidemic of influenza, the parameters B, 5, ¥
were given by

B,=1.94x10"*
B,=1.94x10~*
v =1.0x107*.

Using these parameters, we shall illustrate numerically the subse-
quence number of patients of influenza at the time ¢ by the Monte
Carlo Method. As stated in the deterministic model, there were 1673
susceptibles and 20 infectives at the start of the epidemic of influenza.
Starting from the initial number 7n=1673, a=20, we gave numerically

L S -
10 ﬁ 30 47) t (dav?

Fig. 4. The number of patients s: at time ¢.
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the five epidemic curves by the Monte Carlo Method and their mean.
The result is shown in Fig. 4. The time at the peak of the number
of infectives in the mean epidemic curve fits fairly well to the data of
influenza. Consequently, we shall be able to predict successfully the time
of the peak of the number of infectives using the first 10 day’s data
of the epidemic of influenza. Then, the authorities of public health will
be able to decide the adequate time of taking the preventive measure
against the epidemic of school-children’s influenza. If they do so, they
will be able to expect the most effective way of minimizing the propaga-
tion of disease in school community.

In sections 3, 4, we stated that these epidemic models were useful
for predicting the peak of the number of infectives of influenza
and deciding the effect of preventive measures. But one difficult prob-
lem in our model is that we shall not be able to observe the inapparent
immune cases successfully. If this problem is solved, our model will
be very useful.

5. The limiting solution of the differential-difference equation (9)

From the differential-difference equation (9), we shall derive the
limiting solution hm P,_,t) where w shows the sum of the total num-
bers of new 1nfect10ns and new inapparent immune cases up to the
time £. This solution at t=o is most easily obtained by using the
Laplace transform and its inverse with respect to time.

0. 0=| e P (b)dt, RM)>0,

O+ico (12)
P"(t)_;%ga—imem qn(x’)d)“ .

Use of the Laplace transformation (12) replaces (9) by

(r+1)(8+1)q i1, +0:i(r+1)8 iy, —{(r+ o7 +0,)8+ N},
+0,(84+1)¢,,,,=0, if r#n or s#a, (13)

and
—{(n+pn+p)a+2\}p,,+1=0, if r=n and s=a.

Any q,, whose suffices fall outside the permitted ranges is taken to be
identically zero. From the equation (12), we can calculate all the g¢,, in
succession. Expansion in terms of partial fractions for A and applic-
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ation of the inverse Laplace transformation will exhibit each P, (%).
However, no satisfactory way of handling such expressions has yet been
found.

In spite of these difficulties, useful results can be obtained if we
attempt to investigate the distribution of the value of w for t=, not
counting the initial infectives a. Since the epidemic ceases to involve
fresh susceptibles as soon as s=0, it is easily seen that P, of an epi-
demic of total size w, which does not contain the initial infectives a,
is given by

P,=lim P,_, (), 0=w=n
t—o0
=lm A ., , (14)

=lim P2Qn-101 -
A-0

These are, in effect, the equations used by Baily for computation of
the P, when 8,=0. Putting

fn=lm ¢, , (15)
we can get the following equations from (13),

('r+1)(8—1)f,+1,,_1+Pl(’l'+1)8f,+1,.—(T+PlT+p,)8f,, (16)
+p2(s+1)fr.u+1=0 ’

and
—(n+pon+0)a fra+1=0.

The equations (16) are simplified by putting

n! (7’-{- lfl,-zp1 _1>! o e

Fn=5n <n+1%)! 1+p,

G - 17

Then, we have the recurrence formula

gr+1,x—1 pl gr.a+1 —
————_gr¢+_—" 9. 1.a+ "'0 ’
1+p, ol+p) (+p)(r+—L)

1+p0, (18)

and

n=1.
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This formula is most easily solved by adapting a method used by Whittle
(1955). When we put

a,= 1
(a+o)(r+2) 19

and use the set of generating functions
H@="3g.'", 0srzn, (20)

we obtain the following system of equations from (18)

B@)= Ao+ 2)Ha@—t oo} @)

where

A direct solution of (21) shows that

(ffrpl) (e +%) H.(a), 22)

as the expression (21) of H, is a finite series in . From the equations
(21), (22), we obtain a relation

{(o+£)8 0~ (@ L) B, (29)

gr1=

B @)= oe—a)

which holds for r=n—1, n—2,--.., and also for r=n if we introduce

a function
H,,(x)=2". (24)

Therefore,

a’art, “0-1‘+ ar+1)
p

1+p)(a.—a,.,)
ar(%"'ar) a;za;l-l<"§l'+ar+2)

Hr+2(ar +l)

Hr+1(ar) +

Hr+8(ar+2) Feee

ey rm@—a.

T o) i) (25)
1+o)a,—a,.,) (1+pl)(ar_ar+2)
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ar(ar+%) a:’a;‘(a..+&>

2 pﬂ
M Hn+1 %,
Troe—an) (Fpa—ay )
oy Py
e “lort)
(1 +p1)(ar—ar+1) (1 +pl)(ar—an)

From the equations (15), (17), (22), (25), we introduce the following

relations
L) e r

(26)
=(1)oay=  (G=0,1,---m)

where i“ P,=1.
w=0

If p,=0, the relations (26) coincide with results of Foster, Whittle
and Kendall, respectively. Now, we can calculate P, from (26) as

P, =(0,0,) "' =~ +P( ”+§:>

=3 Yo e 2D o),

Ceerereeneeaens @

P (e (325) " (a0 = 2a)(525) (2t )

............ (- 1)*(”' _’f+1>1i=p( - ﬁ% P..,
P=1-S P,

Assuming that the initial a=1 infective is introduced into a popu-
lation of »=10 uninfected and susceptible individuals and 0,=0.05, we
can calculate all the P, from the equations (27). These results are
shown in Fig. 5, and all show the U-shaped distributions. It is im-
mediately clear from the figure that when the inapparent immune rate
o, is fixing, and the relative removal rate p, is large, the epidemic
tends to be small and conversely.
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n =10

P p1 =0.05

0 2 4 6 8 10

Fig. 5. Final total size of removals w at t=oo

6. Summing-up of the results

As stated in the introduction, we must construct an epidemic mode
from a real point of view. A constructed model must be useful, at
least, for predicting the number of infectious patients. If the author-
ities of public health can obtain the information on the peak of the
number of infectives in epidemic times, they will be able to take a
preventive measure against the epidemic at the appropriate time. We
think that the problem “ When to take any preventive measure against
the epidemic” will be very important for the public health authorities.

From such real point of view, we constructed the epidemic models
in section 3, 4 and investigated the validity of our models through the
data of the propagation of influenza in school-children. The point
to pay attention is that the recovering distribution 1—G(t—7) in
section 8 is essentially different from the probability of recovering in
section 4. That is, 1—G(t—7) means the probability that one person
infected at the time 7 will recover before the time ¢ and 8vsdf means
the probability that some one infective of many infectives will recover
at the time interval (¢, t+dt). Surely, when we consider whether one
infective will recover or not at the time ¢, it must depend on his in-
fective moment 7.
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The next problem through sections 2, 8, 4 is that we considered the
inapparent immune rate B, from a group of susceptibles. Considering
from the epidemiological phenomenon, B, is, generally, not zero. In
section 5, we gave the limiting solution of the stochastic differential-
difference equation (9) from mathematical interest, but this is not use-
ful for application.
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