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AN APPLICATION OF THE DISCRIMINATION INFORMATION
MEASURE TO THE THEORY OF TESTING HYPOTHESES
PART II

BY Sapao IKEDA
(Received May 26, 1961)

The concept of discrimination information measure in the Kullback
information theory was applied, in the preceding paper, Part I, to the
theory of testing hypotheses in the case of parametric inference.

In the present paper, Part II, further application will be made to
the problem of testing many-sided hypotheses (Section 5). Section 6 and
the subsequent two sections will be devoted to applications of our method,
given in Section 3 of Part I, to the problems of testing hypotheses in
the non-parametric case. In Section 5, the general procedure will be
reformulated for the purpose of application to the problems of testing
non-parametric hypotheses., A unified method of deriving the most
powerful tests for a special type of testing problems will be introduced
in Section 7, and some of its examples are given in the final section.

Notation and terminology are the same as those of Part I.

5. Many-sided hypotheses

In the present section, an attempt will be made to apply the nearest
distribution consideration to the problems of testing hypotheses which
are so-called ‘“many-sided’’. Actual procedures of derivations and reali-
zations of the optimum tests for the many-sided hypotheses, in general,
have many difficulties, and as far as the author knows, no respectable
theory has been found in these directions, except for the discussion
given by E. L. Lehmann [2, Chap. 3, Sec. 7] about the two-sided
hypotheses concerning the one-parameter exponential families.

Now, consider a testing problem (H, g),, and assume that the class
of hypotheses H is covered by k (not necessarily disjoint) subclasses,

Hc 0 H,, say. Suppose, further, that there exists a set of k statistics,
i=1
T(Z), T(Z), «++, TW(Z) satisfying the conditions
(6.1) ET(Z2)]> sup E [T(Z2)], <=1,2,:--,k,
i i
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62 SADAO IKEDA

and
(5.2) C(g, T)NL(T )y w0 £0, 5=1,2, -+, k.

Then, there exists the nearest distribution for each distance problem

(HM®9; g) with the form

(5.3 - FiZ)=9() exp [1T(2)}/ M(7Y) ,

where M (t)=E,[e+"+?], and 7Y<0) is the solution of the equation

0:=(d/dz,) log M(z,) with definition 6}=E,[T(Z)], for 1=1,2, .-+, k.
The probability density function f}(z) may be regarded as the nearest

distribution in the 4** direction for the distance problem (H:g), and

the set of these fYs for 7=1,2, ---, k, is denoted by N,. Let A(N,) be
the set of all probability k-vectors, i.e.,

G4 AN)={A=0ur M) 5 BM=1 020, (=1, 2, -1, )

Then it is a convex, closed and bounded subset of a hyperplane in the
k-dimensional euclidean space. Define, as before,

5.5) NI ={f6)= ZAS1@); he W)}

Then it is clear that Nj¥0c H4®,
Consider the mean informations

(5.6) I3 g)=§,, 1(2) logi;—"*((zi))dm(z) , AeA(N).

Then these form a family of continuous functions of A\, which are defined
on the set 4(N,). Therefore, it is obvious, from the convergence theorem
of the Kullback-Leibler mean information given by the present author
[9, Theorem 1.1], that there exists at least one member M=}, A3, <+ -, A})
of A(N,) which minimizes the mean information (5. 6), that is,

6.7 I(f: 9)= gldigo) I(f3: 9) .

If we can find such a minimizing probability k-vector \’, then the nearest
distribution, f3(2), of the distance problem (N;*?: g) may have the
possibility to become the closest one, which is usable to derive an
optimum test for the testing problem (H, g)..

By virtue of the convexity of the function xlogz, it will easily be
seen that, for any \ in A(N,),
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5.8 I3 9= 3L 0),

with equality when and only when all the fz)’s are identical with each
other almost everywhere with respect to the measure m. In our present
situation, the equality in (5.8) cannot hold, therefore the above inequality,
with A’ in place of A, shows that the minimum distance (5.7) is strictly
smaller than the \’-weighted mean of I(f%:g)’s.

In order to find a minimizing k-vector \°, it will be sufficient to
minimize the following expression

k k k k
69  IE9—a Sh={ (S rdlog Srer)edm—a S,
where a is Lagrange’s multiplier, and
(5.10) WD =F@)9E), =12+ k.

It can be seen that \° is a solution of a system of equations in )\ such as

k k k

(6.11) S (fslr,- log 3, knln)gdm=§ (Z Ny log 3 M«lr;)gdm ,
R i=1 R\1=1 1=1

7=1,2, .-+, k.

In general, it is not easy to solve the above equation. We shall
try to solve it in a special case for which some strong assumptions are
imposed. Put, for each pair (¢, j),¢,5=1,2, -+, k,

(5.12) Dy;={z; ¥i(2) >vi(2)} ,
and, for simplicity, put dv(z)=g(z)dm(z). Then we obtain the following

LEMMA 5.1. Assume that, for each pair (1,5),1,5=1,2, «++, k, there
exists a one-to-one measurable transformation uy; from D,; onto D;; such
that (i) for any measurable subset S of D,;, v(S)=v(u;;(S)), and (ii) v;(z)=
¥i(u;;(2)) and +;(2)=+v:(u;;(z)). Then, the vector \'=(1/k,1/k, -+, 1/k)
18 a probability k-vector which minimsizes the value of I(f5: 9).

ProoF. From (5.11) we have for each pair (3,9),%,5=1,2, :--, k,
the equation,

(5.18) [, log (S napJav=0,

from which it follows, by definition (5.12), that

618 [ v log (Saor)av={ | (i log ()i
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By virtue of the conditions (i) and (ii) of the lemma, the left-hand
member of the above equation becomes

6:15) | ey log (Shora)dv={ ori—vdlog (S hmest)iv

where {n(¢,j); n=1,2, ---, k} is the sequence obtained from {1,2, -, k}
by interchanging ¢ and j. Hence the equation (5.14) becomes

k
Z )’n(i.i)"lfn

(5.16) [, Gri—v)tog E T gy
Dji
,.5;.'1 AV,
Therefore, if the identities
k k
(5'17) ’glxndfn(z)z ,é )‘n(i,.i)'w‘n(z) » (a'e' D) »

1,5=1,2, +++, k, hold for a certain k-vector A, then ) is a solution of
the equation (5.11). In fact, the probability k-vector \°=(1/k, 1/k, «- -, 1/k)
is a solution of (5.17), and moreover, it is unique unless +(2)’s are
linearly dependent (v), which completes the proof of our lemma.

Only the very special problems of testing hypotheses satisfy the

conditions of the above lemma. Some of them will be shown later.
Now, the procedure of derivation of the most powerful test will be

given in the following

LEMMA 5.2. Under the situations mentioned above, if there exist a set
N, of nearest distributions and a probability k-vector =%, A3, +++, \D)
which minimizes I(f3: g) for \ e A(N,), and moreover, if the test

1, if 3N exp[RTRIM)<e,
(5.18) P&=1a, if 3N exp [T M) =c,
i=1
0, otherwaise,

satisfies the size condition for the testing problem (H,9)., then it is a
most powerful test for this problem.

The proof of this lemma is omitted.

If the test ¢, given above satisfies the size condition for (H,g),,
then it will easily be seen that

(5.19) Eflef@)]=a, i=1,2, -, k.
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In other words, (5.19) is a necessary condition in order that the test ¢,
is a most powerful test for the testing problem (H,g),.

In general, the test (5.18) depends upon the alternative g through
all the constant factors, M,(z%)’s,7¥s,\¥s, ¢ and a. As was seen in
Corollary 8.1, in our present procedure the possibility of enlargement
of the alternative g to some composite alternatives A containing g,
would be certified only when all the testing problems (H,g,),’s for
g.€ A possesses the same test as that of (H,g),, as the most powerful
ones, therefore, in the general cases, we cannot enlarge the alternative
g in Lemma 5.2 to any class 4 of alternatives. Even if the test (5.18) is
reduced to a test which is independent of the first three constant factors
described above, i.e., M.’s, s and \!s, the above remark still remains
true, because the possibility of such a reduction may be guaranteed by
the special form of the generalized probability density function g(z).

We shall show below some simple examples.

Ezxample 5.1. First we shall consider a well-known two-sided hy-
potheses concerning a normal population. Let X, X, ---, X,, be a
random sample from a normal population N(z,1) with unknown mean
and variance unity. The testing problem concerned is (H,g),, where

(5.20) {H jul=p, (o is positive and given),

g:pu=0.
Since the sample mean X=(1/n) Zn‘, X, is a sufficient statistic for our
=1

present problem, we can assume, without any loss of generality, that

= x)—= n ——”—L- T— 1) |; =

H={f®)=)/ & exp[ - 2@~ |: 1120},
— (7 — n __l-—z.

g—g(x)—]/ﬁexp( zx).

Subdividing the class H into two subclasses, put

{leﬂgp,
szﬂé'—lo ’

(5.21)

(5.22)

and examine the two statistics
(5.23) TI(X)=——X ’ Tz(X)—_'X ’

corresponding to the above subclasses, respectively. Clearly, these sta-
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tistics satisfy the conditions (5.1) and (5.2), with N(p,1) and N(—p, 1)
as Ly(T,) and L(T,), respectively. After some calculations, by Lemma
2.2 (s=1), we can easily obtain

00— —
(5.24) {T‘ =0,
M, ()= M(t3)= exp (np*/2) ,

from which we can find the nearest distributions such that

11@)=y/ 2 exp [-2@-0r].

(5.25) _
2(5):/.2% exp [—-%(E+p)’] ,
and N,={f1, 3}

On the other hand, it can be verified that the conditions (i) and (ii)
of Lemma 5.1 are satisfied by the transformation u,(Z)=—Z defined
over the whole real line, since D, and D, are symmetric to each other
with respect to the origin, and

(5.26) ¥i&)= exp [—no(T(®)+p/2)] , 1=1,2.

Consequently, by Lemma 5.1, a minimizing vector is given by
A=(1/2,1/2). From Lemma 5.2 it follows that the test

1, if exp (npZ)+ exp(—np¥)=c,

5. 7 )=
(65.27) P iO, otherwise,

is a most powerful test for the testing problem (H, g),, because this
test satisfies the size condition for (H, g),. This test may be reduced to

1, if |Z|=c,

(5.28) Pd@)= {0, otherwise,

by virtue of the symmetricity and convexity of the function e”+-e~*,
of t.

A natural extension of the above example to the two-sample case
will be the following

Example 5.2. Let X, X,, -+, X, and Y,, Y,, ++, Y, be two random
samples from the normal populations N(,1) and N(v, 1) respectively,
where X,’s and Y,’s are assumed to be mutually independent.

Let (H, g), be a testing problem such that
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(5.29) iHﬁlﬂI;P and |v|2p,

g:p=0 and v=0.
For this problem, we shall consider the four statistics such as

T(Z)=—(X+Y), T(Z)=X+7,

(5.30) { i T
T(Z)=—(X-Y), T(2)=X-Y,

corresponding respectively to the four subclasses of H, given by

H:pzp,vzp, H:ps—p,v=—p,

(5.31) {
H,: p=zp,v=—p, H,:p=-—p,v2p.

Instead of these subclasses, we shall first consider the following
four subsets of the parameter space;

. - <
(5.32) {HI-F‘”%% H}:p+vs—2p,

H,:p—v=20, H:p—v=-2p.

Then, obviously H,C H!,-i=1,2,8,4. Since the statistics X and Y are
jointly sufficient for our testing problem (5.29), it will be sufficient to
consider the 2-dimensional euclidean space of z=(%,y) as the sample
space R.

Clearly the conditions (5.1) and (5.2) are satisfied by the statistics
(5.30) and the subclasses (5.82), and, it can easily be seen that

(5.33)

M,(z%)= exp { ::‘_’:‘n p=} (=M(), i=1,2,84.

Hence, the set N, of the nearest distributions consists of the following
four members: '

fi(2)=9(z) exp [-T°@+ P/ M() ,
fi(2)=9(2) exp [°@+ P/ M(T") ,
fi(2)=9(2) exp [-7°@—H)]/ M(*") ,
fiz)=g(z) exp [T"@— V)] M(z°) ,

(5.34)

where, of course,

(5.35) g(z)=Y 2"1';""' exp [——g—i’—%"] .

From (5.34) we have
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(5.36) {m(z)= exp [—°@+P)I/M(T"), +.(z)= exp [P°E+P)I/M() ,
¥o(2)= exp [T (Z— 7))/ M(z°), +.(2)= exp[r"@—P)]/M(),
and ‘
sz={(5: 17), 5+?7'<0} ’ Dn={(5r ?7), 5+g>0} ’
D13={(57 g); -y_<0} ’ D31={(Er g); g>0} ’
(537) *Du:{(x; y); x<0} ’ D“:{(f, y); 5>0} ’

Dy={(, ¥); >0}, Dyu={Z,7%); z<0},
D24={(£; g); g>0} ’ D42={(§’ @7); g<0} ’

For each pair (D,;, D;;), there exists a one-to-one transformation wu,;
from D;, to D;;, defined by

(5 38) uﬂ(‘_v-y ?7)=(_§r —?7)’ ula(‘-v-r g‘):(‘iy —'g)r u‘u(jy ?7)=(_'Ey ’.’7) ’
uas(zﬁ’ g)=(_5’ '!7): uu(E’ 17)=(:?, _?7)1 uu(ﬁ, @-)=(—5, -9,

which satisfies the conditions of Lemma 5.1, -therefore, a minimizing

vector is given by \'=(1/4, 1/4, 1/4, 1/4).

Consequently, we have a most powerful test for the testing problem

(f go) g)a

1, if Te)=c,
5.39 =
( ) ?42) 0, otherwise,

where the statistic T(Z) is defined by

(5.40) T(Z)= exp [-(X+ Y)]+ exp [2"(X+ T)]
+ exp [- (X —Y)]+ exp [*"(X—T)].

Now, it is readily seen that the members of N, given by (5.34),
correspond to the normal populations of the random variable Z=(X, Y)
with common variance (n+m)/nm and respective means (o, p), (—p, —p),
(0, —p) and (—p, p), therefore, they are the members of H,, H,, H, and
H, defined by (5.31), respectively.

The rejection region of test (5.39) is a convex domain of the sample
space R, symmetric with respect to the origin, to both Z- and y-axis,
and to the straight lines £+%=0 and T—%=0, which spreads with
increasing ¢. It is also shown that, if the rejection region of test (5.39)
is included by the square domain determined by four points (*p, +p0),
for short, then the test (5.39) satisfies the size condition for the testing
problem (H, g), given by (5.29).
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For such a case, in order to realize the test (5.39), which is now a
most powerful test for (H, g),, it is necessary to solve the size condition

(5.41) PR T(Z)<c}=a .

Unfortunately the author has not been successful in it yet.

In the above examples, closest distributions are easily guessed and
we can derive the most powerful tests also by applying the Neyman-
Pearson fundamental lemma (extended), on account of (5.19).

Example 5.3. We shall return again to the situation of the first
example of this section, and consider the problem of testing hypotheses
(H, 9)s where

H:p= r U —p,, , 0,.>0, given) ,

(5.42) p=p, or U 0 (01, 0 g1 )
g:un=0.

The class H of hypotheses may be divided into two subclasses, H=

H,U H, (say), corresponding respectively to the expressions in the defi-

nition of H given above. For these two subclasses, taking the statistics
(5.43) : T(Z)=—X and Ty(Z2)=X,

we obtain, analogously to Example 5.1,

(5.44) {t‘l’= —np,, T3=—N0,

M(t))= exp [(no))/2] , M, (z5)= exp [(np})/2],

hence, the set N, of the nearest distributions consists of the following
two probability density functions:

{ fuZ)=g(%) exp [np,T—(n0)/2] ,
fix)=g(x) exp [—np,T—(np)/2] ,
where g(%) is the same as that given by (5.21).

For the distance problem (N{*9: g), the nearest distribution is found
by obtaining the minimizing probability vector A’=(x,, 1—X,), which is
the solution of the equation

(5.4b)

(5.46) Sﬂ(«lfl(ﬂ'v) —¥4(Z)) log (W(E) + (1= M(®)) 9(@)dz =0 ,

where (%) and ¥,(%) are the second factors of the right-hand expres-
sions of (5.45), respectively, and R is the real line.
It is difficult to solve the above equation explicitly, but an approximate
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solution would be found, if necessary, by applying Newton’s method and
using a high-speed computer.

Now, the most powerful test for the testing problem (f3, 9). is
given by

1, if T@)=e,

(5.47) | Pul@)= {0, otherwise,

where the statistic 7(X) is defined by
(5.48)  T(X)=Mx,exp [n0,X—np}[2]+ (1 —),) exp [—np, X—np}/2] .

The rejection region of this test is a closed interval which is contained
in the interval (—p,, 0,), and moreover, from (5.19) the rejection prob-
abilities under f{ and fj must be equal to a, that is,

(5.49) Py(Wo)=P(W)=a,

where the set W, is the rejection region, defined by W,={Z; T(Z)<c}.

In general, the condition (5.49) determines the rejection region
completely, but the procedure of determination is not easy. It is an
outstanding question whether the test ¢, defined by (5.47) satisfies the
condition (5.49), and if it does so our procedure will provide us with a
useful method for the derivation and the realization of an optimum test
for the testing problem under consideration.

6. Most powerful tests for non-parametric problems

In the present section, the method of derivation of the most powerful
tests developped in Section 3 will be specialized for some problems of
testing hypotheses in the non-parametric case.

For most non-parametric problems, the second condition of Theorem
3.1 (or Theorem 3.2) will be readily fulfilled by a certain statistic satisfying
the first condition, because the classes of hypotheses are usually very
wide, but, on the contrary, the validity of the third condition for the
size of test is likely to be interrupted, due to just the same reason as
above. Hence, if the testing problem, is one such that the class of
hypotheses specifies directly or indirectly the tail probability of the
probability distribution of a usable statistic, then our method mentioned
in Section 3 will be applicable and a most powerful test will be obtained.
The problem of testing hypotheses which is solvable by a sign test is
a typical example of such problems.
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Let, as before, T(Z) be a vector of s real statistics of one dimension,
T(Z), T(Z), ++-, T.(Z), where Z is a random variable whose distribution
is absolutely continuous with respect to a measure m on a o-finite
measure space (R, m).

In order to widen the scope of application of our procedure, it will
be convenient to extend the definition of the mean information to the
case where the carriers of two generalized probability density functions
are different from each other (with respect to the measure m). Let D,
and D, be the carriers of the density functions f(2) and g(z) respectively.
Then, the following two cases may occur; a) m(D,—D,)>0 and b)
m(D;—D,)=0. For both of these cases, we shall define the mean
information for discrimination in favor of f against g, as before,

6.1) K f:g)=8 f(2) log L@ am .
& 9(2)

In this definition, the ‘‘power’’ of discrimination of each sample point
2, which is obtained by an observation on the random variable Z whose
density function is f(z), is measured by the value of log (f(?)/g9(?))-

Therefore, the sample points belonging to the difference D,—D,
contribute an infinite amount of mean information if m(D,—D,)>0,
while those belonging to D,—D, do no amount. From these, as is
shown also mathematically, it follows that I(f:g)=o in the case a),

and I(f: g)=§pff(z) log (f(2)/g9(z)) dm in the case b). It is easily shown

that I(f:9)=0 in the latter case.

For the above definition of the mean information, Theorem 2.1 still
holds true, where, of course, the class K(T, 6) is wider than that given
in Section 2 for the distance problem (K(T,9):g), or more precisely,
the class K(7, 6) considered in Section 2 is a subclass of K(T,6) in the
present case so that the carriers of the members of the former are all
the same as that of g(z).

In the present and the subsequent two sections, the concept of
directed distance is based upon the mean information defined by (6.1),
and this extended definition brings the wider applicabilify of our method.

First, we shall consider the testing problem (K(T,6), 9),, where
K(T, 6) is defined as

(6.2) K(T, 0)={f(2) ; E,[T(Z)]=6} .
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From Theorem 2.1 and the proof of Theorem 3.1, we easily obtain the
following

THEOREM 6.1. For some statistic T(Z), if a system of equations

(6.3) 3""7_ log M(z)=6,, (i=1,2,---,3),

has a solution °=(z}, 73, +++, T0), then the mearest distribution for the
distance problem (K(T, 0):g) exists in K(T, 6) and is of the form

(6.4) Sfuz)=g(2) exp [t°T(2)]/ M(z°) .
If the most powerful test for the testing problem (f,, 9)s, given by

1, if ©*°T(x)<e,
(6.5) P(z)=4a, if ?°T(z)=c,
0, otherwise,

satisfies the size condition for the testing problem (K(T,0), 9)., then it
18 a most powerful test for the problem (K(T,0), 9)., and hence fi(2)
given by (6.4) becomes the closest distribution.

The proof of this theorem is omitted.

Now, when we want to test a class H of hypotheses, which is
contained in K(T, 0) for a certain statistic 7(Z), against an alternative
g, it is necessary to see whether the nearest distribution (6.4) is a member
of H, and if it is so, the test given by (6.5) will be most powerful for
the testing problem (H, g),, provided that it satisfies the size condition
for this problem.

For a certain type of problems of testing non-parametric hypotheses,
it is often the case that we can find a statistic such that the class of
hypotheses and the alternative are specified almost completely by the
expected value of that statistic, or more precisely, the hypothetical
class H coincides with or is contained in K(7,d). In such a case, the
‘‘specifying’’ statistic can be taken as a test statistic, as will be seen
in the following section.

Very few of the non-parametric problems of testing hypotheses
would possess the most powerful tests, and it seems, to the author, that
the methods which have been introduced in order to derive the most
powerful tests in the literatures so far are diverse and divided. In the
present paper, we shall try to give a unified method, applying the
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result in Section 3, to some of these problems.

7. Non-parametric hypotheses which are specified by the characteristic
variables

In the present section, we shall be concerned with a certain type
of non-parametric problems of testing hypotheses, for which the class
of hypotheses is specified by some characteristic variables associated with
a partition of the sample space which suitably corresponds to the testing
problem under investigation.

Let (R, m) be a o-finite measure space which is the n-product of a
component space (R,, m,), that is, (R, m)=(R,, my) X (Ry, M) X * + + X (R,, My),
where (R,, m,) is a certain o-finite measure space. As were defined in
Section 2 (the corollaries 2.1 and 2.2), Q,, Q, and @, respectively denote
the classes of the generalized probability density functions of all prob-

ability distributions, with the forms f(z)= f[ fi(z) and f(z)= f[l Sl(x;) of
i=1 i=

a vector of random variables Z=(X,, X,, ++-, X,) where X, is a random
variable defined on the ™ component space (R, m,) with a generalized
probability density function fi(x;) in general. In other words, the class
Q, stands for the case in which the » component variables are mutually
independent, and @, stands for the case in which they are independently
and identically distributed, while for the class @, such restrictions
are not imposed. Clearly it holds that Q,0Q,>Q,.

Let {W, W,, -+, W,} be an (m)-partition of the space R, i.e.,
W, W,, -+, W, are the measurable and mutually disjoint (m) subsets

of R such that R= Z"‘, W.. Let Ty(2), Tz), -+, T,(2) be the defining

functions of W,, W,, ---, W,, respectively. Then the statistics 7(Z),
T«(Z), +++, T,(Z) are called the characteristic variables associated with
the partition {W,, W,, ---, W,} of the sample space E. Put T(Z)=
(T(Z), T(Z), +++, T,(Z)). Furthermore, let ¢ and 4’ be two probability
s-vectors such that the components are all positive, and +6'. For a
probability density function g(z) belonging to the class @, suppose that
E|T(Z)]=¢'. Clearly the necessary assumptions of regularity and
existence of M(t)=FE [e"'?], as a function of 7=(7, 7, -+, 7,), are
fulfilled in our present case.

Under these situations, consider the distance problem (K(T,9): g).
Then, as an extension of the result given by S. Kullback [6, Chap. 3,
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Example 2.3], we can prove the following
LEMMA 7.1. (i) The equation (6.3) has always a solution t°=
(73, 73, +++, 7% such that
(7.1) 2=logov;, (1=1,2,+-+,8)
where p is an arbitrary positive constant and v,=6,/0,,i=1,2, -+, s.
(i) If 7 =7,<-:+ <., then it holds that

(7.2) IS ri<.. <79

Proor. Since M(z)= i 0: exp (7;), changing the variables from 7,’s
=1

to y,=0’exp (z;)’s, we can obtain from (6.3) a system of equations

(7.3) ‘:ll_i=9i ’ (i=17 2, "',3) ’
kzﬂyk

which has infinitely many solutions such that y,=pé;, (i=1,2, -:-,s)
where p is any positive constant. From this, the two statements of
the lemma follow.

It will easily be seen that the nearest distribution becomes inde-
pendent of p, i.e.,

(7.4) £4&)=0(2) exp {3} tog 7) Ti(2)}jconst.,

by virtue of the relation i‘, T{(z)=1(m) on R. Therefore, we can,
=1

without any loss of generality, take the constant to be unity, and

(7'5) Tg: IOg Vi (7:=17 2, - ) 8) .

Now, an (m)-partition of the sample space R, {W,, W,, ---, W.}, is
said, for short, to be ‘‘n-decomposable’’, if there exists a (m,)-partition
{Vi, Vi «««, Vi} of the " component space (R,, m,) for each i, (i=
1,2, --+,n), such that the members W,’s are all direct products of
members of the partitions of n component spaces, that is,

(7.6) Wi=Vix Vix. . x Vin,

n
and consequently s= ][] s..
i=1

An example of n-decomposable (m)-partition may be given as follows:
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let {V3, Vi} be an (m,)-partition of the 4 component space R, for each
1. Then the 2" subsets of R which are direct products Vi x VEix e« x Vin,
(k;=0,1; 1=1,2,+--,m), form an mn-decomposable partition of R,
{W,, W, +++, W,} where s+1=2". If, moreover, for a probability density
function f(z) belonging to the class Q,, P,(Vi)=p,, (¢=1,2, +++, n), then
we have

1.7 PW)=P,(Vhx Vix -+ x Vin)= [ p(1—p)* ,
i=1

k;=0,1;7=1,2,---,m. Thus we have an n-decomposable partition
{W,, W,, W, ---, W,} of R with a system of probabilities {6,, 6., 9,, + - -, 9.},

where 8;= [T p(1—p,)™.
=1

In general, if there exist a partition {W,, W,, ..., W,} of the sample
space R and a certain given probability s-vector (4,, 0,, ---, 6,), then they
determine the class of generalized probability density functions such as
H={f: E,|T{(Z)]=6,,5=1,2, «--, s}, where T,(Z)’s are the characteristic
variables associated with W,’s respectively. We shall call the above
partition with a system of probabilities a probability scheme. If a
partition {W,, W,, .-+, W,} is m-decomposable and a probability s-vector
@, 6, +++,0,) associated with the partition is n-decomposable, i.e., 0;,=
Dix,* Pax,” * * Pur,, COrresponding to the expression W;=Viix Vizx ... x Vs,

34
k,=1,2,-4,8; ©=1,2,+--,m; 7=1,2,.--,8, where kz,p,.,,‘=1, 1=
i=1

1,2, .++-,n, then the probability scheme is called an n-decomposable
probability scheme. Given a problem of testing hypotheses, a probability
scheme can be constructed for it, and our procedure of deriving a most
powerful test will be performed, as will be seen later.

We shall show, as examples, an ‘‘equi-probability scheme’ and a
‘“‘binomial probability scheme’’ for convenience of the later use. A
probability scheme {W,, W,, ..., W,} with a probability s-vector
6., 0, +++,86,) such that §,=0,=-..=60,(=1/s) will be called an ‘‘equi-
probability scheme’’. On the other hand, in an n-decomposable probability
scheme {W;, W,, W,, - - -, W,} with probability (s+1)-vector (6,,6,,6,, «+, 6,),
if each member of the partition is of the form W;=Viax Vix ... x Vin
where k;=0,1; :=1,2, ---,n, and if the corresponding probability is of
the form
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E ke n- £ b
0,=p= (1—p) ~ ,

then it is called a ‘‘binomial probability scheme’’. In this case s+1=2",
and the members of the partition may be divided into m+1 groups,
Sy Sy vy E, Where & contains () W,’s with the probability
p'(l—p)*~*, that is, for example,

S={W,=Vix Vix...xVi},
%={W’1=ViXVgX"'XV2, I’Vg=V‘1)><V§X'~-XV?,,-”, Wn=
(7.8) Vix Vix«-exVi},

with sum of probabilities (’;)p‘(l——p)"“ in &, for i=0,1, «--, n.

There would be other schemes, but in the present paper, we do not
enter into further details. In connection with a binomial scheme, it
will be convenient, for the later use, to show the following

LEMMA 7.2. Let 6,=p'(1—p)" " and 0.=pi(1—p)* %, 1=0,1,2, «++, n.
If p>p,, then the ratio v,=86,/6; increases monotonically with increasing 1.

ProOF. The proof of this lemma follows immediately from the
inequality

(7.9) log 7;—log 7,_,=log *L=P)~ ¢ |
p(1—p)
for each 7 (=1,2, .-+, n).
Now, consider the problem of testing hypotheses (H,, g),. For the
case when the hypothetical class H, is included in Q,, in general, we
have the following theorem.

THEOREM 7.1. In a testing problem (H,, g)., if a class H, of
hypotheses can be specified by a wvector of characteristic variables,
T(Z)=(T(Z), T(Z), -+, T(Z)), associated with a probability scheme
{W, W,, -+, W,} with a probability s-vector 6=(6,, 8, ---, 0,), (that is,
the class H, is specified by a probability scheme), i.e.,

(7.10) H,={f(2) ; E,[|T(Z)]=6},
then the test
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1, if 37 Te)<e,
=1

(7.12) PE=10, if S T)=c,

0, otherwise,

where T'=(t}, 73, -+, 73) is a solution given by (7.5) of the equation(6.3)
with 6'=E,[T(Z)], is a most powerful test for the testing problem
(Hy, 9)a.  Moreover, it becomes uniformly most powerful for the testing
problem (H,, A;). where

(7.12) A={9.(2); E,|T(Z)]=0"}.

Proor. From Theorem 6.1 and Lemma 7.1, it follows that the
nearest distribution of the distance problem (H,:g) exists and belongs
to the class H, with the form

(7.13) fu(2)=9(2) exp [" T(2)}/ M(z") .

The class H, is just the same as K(T, g) given by (6.2), and the size of
the test (7.10) now depends only on 6, that is, the test is similar for
the hypothetical class H,, therefore we have the first statement of the
theorem.

It can be seen that, from Lemma 7.1, the solution 7° is independent
of a special alternative in the class A, defined in the theorem, that is,
7, depends upon @' only, therefore, the second statement of the theorem
follows from Corollary 3.1. Thus, the proof of our theorem is complete.

If, in a testing problem (H,, g),, the class H, of hypotheses specifies
a class of generalized probability density functions belonging to Q,, and
the alternative g also belongs to @,, then we have the following

THEOREM 7.2. In a testing problem (H,,g)., if the class H, is
specified by a wvector of characteristic variables T(Z)=(T«(Z), T{Z),
o+, T(Z)) associated with a certain n-decomposable probability scheme
{Wy, Wy <o+, W,} with o probability s-vector 6=(6,,0,, «++,0,), in such
a manner that

(7.14) H={7&)= {1 7:0); BAT@)1=0},

then the test given by (71.11) in the preceding theorem is a most powerful
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test for the problem (H,, g),, provided that the alternative g belongs to
Q.. The second statement of the preceding theorem also remains true
in the present case, if we take the class A, defined by

(7.15) 4={0.0= [ o.(0; EJT(Z)I=0},
instead of A, in that theorem.

Proor. Taking account of the proof of the preceding theorem, it
will be sufficient to show that the nearest distribution of the distance
problem (H, : g) belongs to the class H,.

For this, let us examine the nearest distribution given by (7.13).

Since g(z) is a member of the class Q,, let g(z)= fIl gi(®,).

By the assumption that the (m)-partition {W,, W, ---, W.} is n-
decomposable, there exists an (m,)-partition {V%, V?..., Vi} of the '
component space R,, on which the 7" component variable X; of a random
vector Z is distributed according to a probability distribution with density
function f;(x;) (under f belonging to H,) or g¢,x;) (under g), for each
(=1,2, +++,m). Let T%(x,) be the defining function of V%, and let
ptk‘=EJ‘[T§‘(Xi)] and p:k‘zEy‘[T?‘(Xi)]’ ki=1,2,...,5; 1=1,2,---,m.
Then, from the n-decomposability of the probability scheme described
in the theorem, which specifies the class H,, it follows that, if W,=
Vitx Virx ««« x Vin then 0;=py,* Dus,* * * * * Dus,, and E [ T(Z)]=0}=pls, Dix,
ceeee Dl

It will easily be seen that

noM gk, o M ki
(7.16) T()=log(I1 IT 5“*/II 11 #%™)
i=1 kg=0 i=1kg=1

8¢

=2 3, Ti®:) log (Pux,[Pis,) »
=1 kg=1

from which it follows that the nearest distribution (7.13) becomes

3

@1 f@=11 (9:) exp {3 TH(w)log v} )jconst .,

kz=
where 7., =D, /Di,, Which is a generalized probability density function
belonging to the class @,. From this our theorem follows.

Analogously we can show the following theorem for the testing
problem (H,, g), in the case where both H, and g are included in the
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class Q..

THEOREM 7.3. Let T(Z)=(TW(Z), T(Z), ++-+-, TAZ)) be a wvector of
characteristic variables associated with an m-decomposable probability
scheme {W,, W,, ---, W} with probability s-vector 6=(0,,0,, -+-,86,),
which is composed of the same partition {V,, V,, ---, V,} (say) of Ro
for every component. Assume that a class H, of probability demsity
functions and g are contained in the class Q..

If the class H, is specified by the statistic T(Z) in such a manner
that

(7.18) H={f@= 11 f@); BIT@)=0},

then the problem of testing hypotheses (H,, 9), possesses a most powerful
test with the same form as that given by (7.11). The second assertion
in Theorem T.1 holds true, if we take the class

(7.19) 4:={0@)= o) BT@)=0],

instead of A, in that theorem, where ¢'=E [T(Z)].

ProoF. From the assumption we can put g(z)= f[ g(x;). For f in
=1

H, and for g, put p,=FE,[T(X)] and p/=FE,[T(X)], 1=1,2, -+, s,, Where
T.x)’s are the defining functions of V/s respectively.

Parallel to the proof of the preceding theorem, we can obtain the
result that the nearest distribution (7.13) of the distance problem
(K(T, 0):g) is given by

n

(7.20) £&)= 1 (96 exp {3 Tu(a) log gz"})/const. ,
which is a member of the class Q,.

Now, the assertions of our present theorem will be confirmed in a
manner analogous to the proof of Theorem 7.1.

To realize the test given by (7.11) which is a most powerful test
for the testing problem (H,, g9). , (H, 9). or (H,, g), corresponding to each
case in the above three theorems, we must determine the constants ¢
and a such that the test satisfies the required size condition. The pro-
cedure of the determination will be shown in the following
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LEMMA 7.8. Throughout the three theorems stated above, if the
members of the (m)-partition of the probability scheme are arranged in
such a way that v,<v,<.«+<7v, where v;=0,/0}, j=1,2, -+, s, then the
test (7.11) becomes equivalent to

k,
1, if z‘, T(2)=1,
p

@y if Tpa(2)=1,
0, otherwise,

(7.21) Pu(z)=

where k, and a, are the constants given by

k
k.,=max{k Hp 0,-<a} )
(7.22) =

ko
ao-_—‘(a— J; 6,')/01,04_1 .

ProoF. By the assumption of this lemma, and Lemma 7.1, it
holds that the size of the test @, given by (7.11) becomes

(7.28) EApdZ)]= 30i+00ss

where the constant k represents the number of 7)’s which are smaller
than ¢.' Then, the size condition implies that k=Fk, and a=a, given by
(7.22), and the proof of our lemma is complete.

It will easily be noticed that, if all the 6,’s are identical with each
other, then
(7.24) ke=[sa], a,=sa—[sa],

where the bracket [ ] designates the Gauss symbol. This is the case
of an equi-probability scheme.

k,
It is also remarked that the function 5_0', Ti(z) in the expression

i=1

ky
(7.21) is the defining function of the subset of R, W0 = zoj, W;. In
=
general, we define W® = Ek_‘, W;, k=1,2, ««-,s.
j=1

When we consider the problem of testing hypotheses (H, g),, where
the class of hypotheses, H, is a proper subset of H, H, or H, in the
above theorems, the following two cases may occur: a) the class H
contains the nearest distribution of the distance problem (H,: g), (H, : g)
or (H,:g), and b) H does not contain the nearest distribution. In the
first case a), the test given by (7.21) is most powerful for the testing
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problem (H, g),, but in the second case b), it is not necessarily true.
For such a case, a sufficient condition that the test (7.21) becomes most

powerful for the testing problem (H, g),, will be given by the following
lemma.

LEMMA 7.4. Under each situation of the above three theorems, if
there exist a gemeralized probability density function Mz) in the class
H'® qnd a positive constant d such that

(7.25) {U(Z)Zdh(z) on Wikt

9()<dh(z) on R— Wty

then the test given by (7.21) is most powerful for the testing problem
(H, 9)a-

The proof of this lemma follows from Theorem 1 given by E. L.
Lehmann and C. Stein [4, p. 497]. In fact, since W®*V is a rejection
region of the test (7.21) for the testing problem (H, g)., the existence of
such a density function h(z) and a constant d in the present lemma implies
that the test @, in (7.21) has a form of probability ratio test for the
testing problem (H"®,g),, and hence it is most powerful for the
testing problem (H, g),.

8. Applications to the sign-test and others

First, we shall examine a single sample location parameter problem
treated by D. A. S. Fraser [8, 10]. This problem possesses a most
powerful test, so called ‘‘sign-test’’ or more precisely ‘‘binomial-test’’,
derived by means of a least favorable distribution. As was suggested
by D. A. S. Fraser [8, Chap. 5, Sec. 2] or by E. L. Lehmann [2, Chap.
3, Sec. 8, Example 8], in the usual procedure hietherto introduced to
derive the sign-test as an optimum one, the concept of the ‘‘generalized
sufficient statistic’’ is considered, and in that procedure the explicit form
of the closest distribution is required.

On the contrary, in our method developed in the preceding section,
the procedure becomes very simple. In that, of course, the explicit form
of the closest distribution is not needed.

Example 8.1. Let X,, X,, ---, X, be identically and independently
distributed according to a probability distribution of the continuous type
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on the real line, with density function f(x). Let £,(f) be the p-quantile
of this distribution and consider the testing problem (H, A),, where,
for the given constants p(0<p<1) and &,

{H: &)=,
A: E(f)>E .

Here, of course, the classes H and A should be regarded as the classes of
the probability density functions of the random vector Z=(X,, X;, ---, X,)
defined on the n-dimensional euclidean space R with the usual Euclid-
Lebesgue measure m over it, which satisfy the conditions given by (8.1)
for every marginal distribution, therefore, they are both subclasses of Q,.

As usual, in the first step, we shall examine the testing problem
(H,, 9), such that

8.2) H,:£,(f)=&,

and the alternative g is a certain fixed member of the class A, for
which we shall assume that £,(g)=£,(>&,).

Denote the interval (—, &] by V3 for the i+ axis, 1=1,2, -+, n.
Then, P,(Vi)=p under the hypotheses and P,(V})=p,(<p) under the
alternative, for each component. Let V? be the complementary set of V7,
for 1=1,2, ---, n. As was considered in the preceding section, we can com-
pose an n-decomposable binomial probability scheme, {W,, W,, W,, ---, W,}
with a probability (s+1)-vector 6=(6,,6,, 6,, ---, 8,), where we assume
that the members of the partition, W;’s, are arranged in such a manner
as (7.8). Thus, if W, belongs to the group &; then the corresponding
0; is equal to p'(1—p)*~*, 5=0,1,2, --+,8;7=0,1,2, -+ -, n.

The class of hypotheses, H,, is specified by a vector of characteristic
variables, T(Z)=(T\(Z), T(Z), T«(Z), -+, T,(Z)) associated with the
above partition. In fact, we have

8.3) H={f; EJJT(Z)]=6}NQ, .
It follows from the lemmas 7.1, 7.2, 7.3 and Theorem 7.8 that the test

(8.1)

ko
1, if 2, Ti»)=1,
(8.4) PD= g, if T, .)=1,

0, otherwise,

-is most powerful for the testing problem (H,, g),. From the construction
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of the binomial probability scheme used above, it can easily be seen
that the test (8.4) is equivalent to

1, if 3 T(@)>c,

(8.5) Po(2)= a, if g T(z)=c,

0, otherwise,

where T(x) is the defining function of the interval (&, «) on the real line.

The test (8.4) or (8.5) satisfies the size condition for the testing problem
(H, 9),, hence it becomes most powerful for (H, g),. It is also concluded
from Corollary 8.1 that the test given above is uniformly most powerful
for the original testing problem (H, 4), given by (8.1).

Scrutinizing this example, it can easily be noticed that the problem
of testing hypotheses (H, 4), such that, for a certain fixed sequence
Vi, Vo -+, V, of the subsets of respective component spaces (V; is a
fixed subset of the 7™ component space),

H={f@&)= 11 fi@); P (V)=n},

(8.6) -
a={9()= I 0:); P (V)=pl},

where p and p, are fixed constants which are positive and less than
unity, will be solvable by an optimum test, which will be derived by
the similar procedure as the above example.

Example 8.2. As an example of the construction of a multinomial
probability scheme, let us consider the testing problem (H, A), such that,
ander the situation of the preceding example,

H: Ep(f)=§o and vp(f)=7}01
A: Ep'(f)=§o and 779’(f)=770’

where &,(f)=inf {§; P,((— o, £])=p} is the p-quantile as before, while
we define 7,(f)=sup {; P,([», «))=p, and, & and 7, are the fixed
constants such that &<7,. Here, of course, we shall assume that p
and p’ are also fixed and 0<p'<p<1/2.

Each component space R, (the real line) is partitioned into three
subsets, V,=(—, &), V,=(,, ) and V,=(&, 7,). We can construct an
n-decomposable multinomial probability scheme, {W,, W,, ---, W,} with

(8.7
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probabilities {¢, 6,, - -+, ,} such that, if W; is composed of u V,’s, v V,’s
and (n-u-v) V,’s, then 0;=p*(1—2p)***p*=p*+°(1—2p)*~*°, j=1,2, ---, 8.
In this case s=3".

It will easily be noticed that this scheme is essentially equivalent
to a binomial probability scheme, hence, analogously to the preceding
example, it can be seen that a uniformly most powerful test for our
testing problem (8.7) is given by

(1, if T(z)<e,
(8.8) P(z)=1a, if T(z)=c,
0, otherwise,

where the statistic T(Z) is defined by T(Z)= 3 Ty(X)+ > Tu(X) for

the defining functions T(x) and Ty(x) of the sets V; and V, respectively.

For the testing problems of this type, for which the tail probabilities,
specified by hypotheses or by the alternative, are not equal, the deter-
mination of an optimum rejection regions is not easy, because the order
relation of ;s (ratios Pz(W;)/P.(W;)’s of a probability scheme to be
used) is not clear.

Example 8.3. We shall be concerned, in the present example, with
a problem of testing hypotheses of invariance under all permutations
of the components of sample point.

Let R be an mn-dimensional euclidean space with element z=
(x,, %5y +++,,) and let m be the Euclid-Lebesgue measure on it. Let,
further, Z=(X,, X,, -+, X,) be a random variable of dimensions 7, being
distributed according to an n-dimensional probability distribution absolutely
continuous with respect to the measure m, with density function f(z).
Hence, we can assume, without any loss of generality, that the sample
points are all such that x,#x;(2+5) forall ¢,7=1,2, --+,n. For each sample
point z=(x,, s *++, ,), let 2'=(x;, ®;, +++, 2;), 1=1,2, -+, N(N=n!),
be the sample points obtained by the N permutations of the components
Xy, Xy, +o0, 2, Of 2.

Consider the testing problem of the hypotheses

8.9 H,: f(2)=f(z)="+--=f(2"), for all z,

against a simple alternative g,, basing upon a single observation on the
random vector Z=(X,, X,, --+, X,). Later, some additional assumptions
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will be imposed on the alternative g,.
Rearranging z’s in such a way that

(8.10) (2 =g (Z)= - - 2 g(27) ,

for each sample point 2, we define the following N mutually disjoint
subsets of the sample space R.

(8.11) W.={#;ze R}, (=1,2,.--,N).

We assume that these subsets are all measurable. Then they constitute
an (m)-partition of the sample space B. Let T;(2) be the defining function
of W, i=1,2,..-, N. Then, putting E,[TAZ)]|=0 and E,[T(Z)]=6,,
©=1,2, ---, N, we have

(8.12) 0=1/N, 6,=26,20,=---=0y,

where we assume that 6,>0. As will be noted later, this assumption
is not necessarily needed. It is also assumed that 6,’s are not all equal.

Thus, we have an equi-probability scheme {W, W,, ---, Wy}. In
the first place, we shall consider the problem of testing hypotheses
(H, A), where

H={f(2); EI[T:(Z)]=0 ’ 7::11 2! *t N} ’

(813) A={g(z); _EV(][T‘(Z)]zgt y '),:1, 2, oo, N} .

Clearly, HicH and g, < A.

From Lemma 7.1, Theorem 7.1 and Lemma 7.3, it will be seen that,
for any member g(z) in the class A, the testing problem (H, g), possesses
a most powerful test such as

[Ne]
1, if 3 Ti(»)=1,
=1
(8.14) Po(@)= @y, if Tiway+:(®)=1,
0, otherwise.

By Corollary 3.1 it is concluded that the test (8.14) becomes uniformly
most powerful for the testing problem (H, A),.

Obviously the class H, defined by (8.9) is a proper subset of the
class H given by (8.13), hence, in general, the nearest distribution for
the distance problem (H:g,) does not necessarily belong to the class H,.
But, if we consider a function such as

(8.15) ho(2) =g,(z17*1+), for all z,
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then this is non-negative and integrable(m) over R, hence, multiplying
a suitable constant ), we have a probability density function A(z)=M\h(z).
Clearly h(z) belongs to the class H, and satisfies the condition of Lemma
7.4, from which it follows that the test @, given by (8.14) is most
powerful for the original problem (H,, g,)..

It is noted that the condition that 6,>0 can be removed. Suppose
that 6,>0 and 0,,,=0,,,=+:-=0,=0 in (8.12). Examining our method
precisely, we can see that a most powerful test for the testing problem
(H, 9.). is given by the one defined by (8.14). Therefore, if s=[Na]+1,
then, as was seen above, optimulity of the test is guaranteed by Lemma
7.4, and if s<[Na]+1, then the power of this test is unity, hence it
becomes most powerful for the testing problem (H,, g,),.

Testing of an invariance hypotheses has been treated by E. L. Lehmann
and C. Stein [11] under more general situations, and the problem con-
sidered in the present example is a special case of theirs. It will be
noticed that our method is applicable to the testing problems of invariance
hypotheses under fairly general situations. Lehmann and Stein have
derived the most powerful test given by (8.14), basing upon investigation
of a test of ‘‘structure S(a)’’, and our method of derivation considered
in the present example may be regarded as an actual procedure of
realizing their idea.

Example 8.4. (D. A. S. Fraser [8, Chap. 5, Sec. 2, Example 2.1])

We shall consider the following two-sample problem. Let X, X,,
-+, X, be independently and identically distributed according to a
common distribution on the real line with a probability density func-
tion fi(x) with respect to the Euclid-Lebesgue measure. Similarly,
let X, .1, Xoo0 e, X, +n, be independently and identically distributed
according to a common distribution on the real line with density function
Sfizx). Assume that X;’s and X, ,;’s are mutually independent.

Consider the testing problem (H,, g,), such that

{Hn: fil@)=ryx) (=f°(x), unknown),
% filx)=gi(x) and f(x)=gi() ,
where ¢%(x) and gi(x) are certain given density functions.

Let n,+mn,=n and let R be the n-dimensional euclidean whole space.
Let fi(2) and g,(2) be the probability density functions of the joint
distributions of X}, X, --+, X, , X, ., X, 2 ***, X, under the hypotheses

(8.16)
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and the alternative, respectively, that is, f.,(z)=f[ fx) and gy (z)=
i=1

g HEA ;H; 92(®n,+3)-

As was seen in the preceding example, we can construct an equi-
probability scheme with the same definition as that given by (8.10) and
(8.11), i.e., a partition {W,, W,, ---, Wy}, where N=n!, with equal
probabilities {1/N, 1/N, --+,1/N}. Let T,(Z) be the characteristic variable
associated with W, k=1,2,---, N.

In the first place, we shall consider the following problem of testing
hypotheses,

H={f(2); E,[T«(Z))=1N, k=1,2,:--, N},

8.
®10 A={9(); E[T2)]=6., k=1,2,---,N}NQ,,

where 6,=E,[T.(Z)], k=1,2,.--, N, which are so arranged that
0,=20,=---=0y. It follows from Theorem 7.2 and Lemma 7.3 that the
test given by

[Na]
1L, if 3 Tue)=1,
=1
(8.18) P@D=1g, if Tyan(@)=1,
0, otherwise,

is a most powerful test for the testing problem (H, g)., where g(z) is
any member of the class A. From Corollary 3.1, it is also concluded
that the test becomes uniformly most powerful for the problem (H, A),.

In this case, however, the nearest distribution for the distance
problem (H : g,) is not necessarily contained in the class H,. (From (8.17)
it is clear that H,C H and g,€ A.) Hence, in general, the test (8.18) is
not a most powerful test for the testing problem (H,, g,), with which
we are concerned.

In particular, if we take a special alternative g, which will be defined
below in (8.19), then, as was stated by D. A. S. Fraser [8], the test
given by (8.18) becomes most powerful and similar for the testing
problem (H,, g,),, by virtue of the sufficiency and the bounded com-
pleteness of the order statistic for the class H,.

We shall state the procedure of realization of the above test, taking
a special alternative such as ’
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0 i 1 —_— 1_ — 2
) gl(w)—VZM exp[ 20,(00 #)],
(8.19
oy — L 1. 2
g*‘“’"m exp[ 2a=*(ac ”+8)]’

where ¢(>0), # and &(>0) are certain given constants. The equi-
probability scheme{ W,, W, - - -, Wy} was constructed in a following manner,

(8.20)  W.={2% 9,(2")20,(2") = -+ 2g)(2") =+ - 2g,(2"), 2z R} ,

k=1,2, ---, N, where 2z*’s are the points obtained by the N permutations
of the components of z.

Let z*=(a,,, %, **+, ®;,) for each z=(x,, x,, ++-,,), k=1,2, -+, N.
Then

@.21)  geH)= ( 1/% 0)~

cexp{—L o[ Fat-2u Sonptnu—sy+l % o).
Thus, corresponding to the partition {W,, W,, ..., Wy}, we have

(8.22) 2T, = 21, Ly = ooeee = Z_;, Ty, -

Therefore, if an actual sample point zi(wl, ey Ty, Xy +1, 000, x,) s
obtained, then we must calculate the first s (=[Na]+1) members of the

n
above inequality, together with >} ;, and if the inequality
1=1

(8.23) Sz g 2, »

i=1
holds, then we reject the hypotheses H, with probability one or a,
according as the strict inequality or the equality holds.

It is interesting to examine the properties of our method, i.e., for
example, whether the tests derived by the unified procedure, developed
in the last three sections, for the problems of testing non-parametric
hypotheses are the best ones obtainable.

The author expresses his hearty thanks to Prof. Junjiro Ogawa for
his scrutiny of the present paper and his kind encouragement.
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