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1. Introduction and summary

We consider a collection of populations I7=(11,, ---, IT1,) defined over
the sample space X(2), where 2 is the o-algebra of subsets of X. We
suppose there is a class of probability measures defined over X(2) which
we designate by {P,°/d € 2}. Denote the distribution function of I, by
P, where 8, € Q.

Now let b;,=\ dP,%, 0,2 and AeU. b; is called the coverage of
the set A. We no%v make the following

DEFINITION 1.1. A collection of populations contains a best popu-
lation re the set of interest Ae QI if and only if there exists an
ordering of the b; such that

b >bp—nZbp-a =+ 2by .«

That is, the best population is one that gives largest coverage to the
set Ae .

Now it very often happens that a statistician is confronted with %
populations, 6;, i=1, <+, k, unknown, and it is desirable to know, or
find, or pick the ‘‘best’’ population (best in the sense of definition 1.1).
Because of the uncertainty involved, the statistician usually settles for
a procedure which will select a subset of /7 in such a way that the ‘‘best’’
population is included in the subset with probability at least as large as
a predetermined number, say P*. (This is the philosophy of [1] and [2]).
If such a procedure selects the best population, we call it a correct
selection (CS), and we wish the procedure to be such that the Pr(CS)= P*.

If in addition, the procedure used is independent of (4,, ---, 6,), the
unknown parameters involved, then we say that the procedure is parameter-
free.

We examine the problem of setting parameter-free procedures for
collections of normal distributions (section 2) and single exponential
distributions (section 3), where A is the interval (—, a) € R’ and ‘“‘a”
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is a constant that is known and specified beforehand.

2. Normal populations

Suppose we consider a collection of populations II=(II,, «--, II,)
where 11, is distributed by N(y;, 62). We assume that there is a best
population, that is, a population which has the largest value of

(2.1) S_ AN, az):S‘_“‘“"’dN(o,n.
Now we know that St dN(0,1) is a monotone increasing function of ¢.

Hence the problem of selecting the best population is the selection of
that population with

(2.2) the largest value of ‘—”%‘—‘
or
(2.8) the least value of B-;;ai .

This problem splits itself into various cases. To restate, we wish
to pick a subset of the k populations (based on independent samples of
size » independent observations from each population) in such a way
that the probability of a correct selection, Pr(CS)=P*. We now state
the procedures and give the accompanying analysis for the various cases.

- Case 2.1: p's unknown and variable; ¢;> known, o2=¢? i=1, «--, k.

Examining the criterion of bestness for normal populations, that is,
(2.3), we see that under condition of case 2.1, a population is best if
its mean is least. We assume that for (g, +--, ), then, that there
exists a best population, that is, there is a reordering of the g's into

(2.4) Pry<tm=--+ =y -

Let a sample of n observations be taken independently from each
population, and let X; denote the sample mean of the observations X;,
j=1, «««,n from II,, We adopt the following

Procedure. Retain population /I; in the subset if

(2.5) 8<%y +d,

where Z,, is the smallest of the k¥ sample means Z;, and d, is a constant
chosen to make the probability of a correct selection at least equal to a
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predetermined number, P*. We now state the following

THEOREM 2.1: Procedure (2.5) is parameter-free.
PrOOF: We must show that there exists a unique d, such that

(i) Pr(CS)=P* for procedure (2.5), and
(ii) d, is independent of (L, - -, t).
Now the Pr(CS)=Pr (X=X, +d,) where X is the sample mean

computed from the best population; that is, Pr(CS)
=P]’.‘ (Xu) g X_ dl)

[ 11 (1—G@E —dy, 0 NAGE; fr, %)

—o0 {=2

where

. n_(" Vn n (x— U\
G(t; 1, a)_g_ exp—-—(—) dx.
Hence we have that

Pr(CS)=(11//2._;'_’a)kSlr e | e S @y

T—ay T-a;

*€Xp _2—7;3 @ —pw) 4T, - -dTdT

= vV n "S“ S” ...S” ——_n_’ﬁ‘tz.
( 272.'0'> —e J3 —d;—upp) z exp 20’22" '

* —dy—K[a]

rexp — 2 (F— pha)'dty- - -dtyd5 .
We let ¥ — =%, and we then have that the
Pr(CS):(V”)kK S” S”

V' 2ro t1—dy+ AT~ k] t1—dy+ 1]~ H(a]

k
exD—z—";—, ; t dtye o dtydt, = Hy ((n— s ** *» Poa— P)-

An examination of H, shows it is a monotone decreasing function in
its arguments. Further, if we fix f¢;, and bearing in mind (2.4), we
note that H, is minimized for a choice of t; if we set t; so close to
Py that for all purposes ff;={f;. Similarly, H, is minimized over a
choice of py if we set 4=y =p, and finally, H, is minimized if

Ha=Pm =" =My -
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That is, the minimum value of H, is H,(0, ---,0). Now H,(0,---,0)
when regarded as a function of d,, is continuous and monotone increasing.
Hence if we let

(2.7) P*=Ha1(0’°"’0)

we may solve for d, and obtain a unique d, which satisfies (2.7), and
because H,(0,---, 0) is the minimum value of H, then for the ‘‘true
configuration’’ (2.4), we have

Pr (CS)= P*

where d, is determined from (2.7), and is thus independent of (¢,---,
Yuy). Hence, the theorem is proved.

Case 2.2: p's unknown and variable; ¢”s known and variable.
Let 8/=(y¢;—a)/o;, and denote the ordered 8, (under the assumption
that there is a best population in IT) by

8f1]<8f=] ésfsl Seee ésb,]

We seek to establish a procedure that will choose a subset of 17
which contains that population that has §;’=8[;. Let a sample of n
independent observations be taken independently from each population,
and let X; be the sample mean of the observations taken from II;. We let

Fo—
z."= 3 Ll
g;

and denote the ordered 2/ by
<2y <o <2, .
We adopt the following
Procedure. Retain population /7; in the subset if
(2.8) 2i<zy +d,
where d, is a constant chosen to make the Pr (CS)=P*. We now state

and prove the following

THEOREM 2.2: Procedure (2.8) 18 parameter-free.
ProOF: We have that the Pr (CS)=Pr (2'<z|;,+d,) where 2’ is com-
puted from the population with &8'=38};. Now the

Pr(CS)=Pr(vn 2’<v'n 2u+v'n d,)
=Pr (Z<Z(n +d:')
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where we let vV 2'=2, 1V n Z0h=24, and V' d,=d;/, and we will let
V'n 8=38,.

Hence the
Pr (CS)=Pr (zoy >2z—d,’)
=" a-6"e—d/; 8w 46V, 8)

—o i=2

where
e sy _1 1 2 e
GY(¢; 8)‘5_.. 1/?exp——z— (x—38) dx;
that is,
g = - LN = k 1 —-—l o — . 2
pre9=[" |, [ [1,1 e b
1 L (o 8p)de-dz, d
'ﬁ exp— E—(Z—‘ [1]) Zg® e 2 A2 A2
I ..\ 71 1,
o S-= S.—a;—sm St—d;—8[,] [I;I V' 2% exp 2 t‘]
. l/lz_nexp——;-(z—Sm)’dt,- <odt,dz .
Now set z—3&8,;=t,, that is, z=%,,+8y. Then the

eee

Pr (CS) =S

14
—o Stl—dz+8[l]—8[k]

‘ ) i 'i- ——1— ~2] D)
Stl—d;+8[1]—8[g] 1:1 1/2; exp 2 L dt’ dtkdtl

=H 'a;(sm—s[k], ooy O —8m) -
As in Theorem 2.1, it can be shown that the minimum value of Hj, is
H'(0,0,---,0) and that there exists a unique d; for which
P*=H'g(0,---+,0) .

Hence the theorem is proved, and we may use procedure (2.8) to pick
a subset containing the best population with confidence at least P*, and
where d,)=vn d..

Case 2.3: s unknown and variable, o> unknown, ¢’=d".

It is clear from the criterion (2.3) that here again we wish to retain
in our subset that population with the smallest . However, we do not
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know the common value ¢* of the ¢, and so we use as an estimate the
pooled sample variance S?, where

2.9 o (R—=1)8"+---+(n—1)s* _1 & 2
(2.9) 5 k(n—1) &
where
Sf:n_ll_ﬁ;l(x,.,.—)?,.)a j=1,-e,n and i=1,..-,k.
17

k(n—1)(S*/6®) is of course a JX*-variable with k(n—1)=v degrees of
freedom. For this case, we use the following
Procedure. Retain population 17, if

(2.10) B.<Fa+ds S

where, as usual Z,, is the smallest of the Z;, and d, is a constant chosen
to make the Pr(CS)=P*. We now state the following:

THEOREM 2.3: Procedure (2.10) is parameter-free.
PrOOF: We have that the Pr (CS)=Pr (Z<7%,, +d,S) where Z is the
sample mean computed from N(;, ¢°). Now the

Pr( CS) = Pr(ﬁ (1) g E - dSS)
=Pr(@ ) — =% — t;;—d,S)

= Pr(f‘” gﬂm > x _Sﬂn] _ ds)

(2.11)

= S::’ ‘;l_!‘_:[_’ (1— T(t'_da; 8[3‘])] dT(t'; 8=O)

Whére ¢'=(T—pm)/S and is a Student t/1 7 variable with y=k(n—1)
degrees of freedom,

8= T'n [0 — thal,
1= —ds; 8 =|__ £ 80,
]

and f(¢}, &;;) is the probability density function of the noncentral ¢// 7
variable, noncentrality parameter 8;;; with y=k(n—1) degrees of freedom,
and T(t', §=0) is the Student t/1/7 distribution with v degrees of freedom
given by
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[ VE e 1 dv
=V 10 A+

Since we have the ordering of the p’s, viz

<P =--* =t

note that this induces an ordering of the &’s, viz
(2.12) 0<8 =0+ =8 .

Now it is well known that 1—T(w, 8) is an increasing function of its
non-centrality parameter 8. To see this, let X denote an N(0,1) variable.
Then by definition of a non-central ¢/ n variable, we have that

1— T(w; 8)=Pr <ﬁXT+8= ) Pr(—jgg—é\ zx/Ww)

=Pr (XzﬁwS—S) .

As 8 increases, the region [(X,S)|X=1"n®S—3] expands, that is, more
and more of the probability measure over the half plane [(X,S)| — 0 < X< o0,
0<S< o] is included, and hence 1— T(w, 8) increases as & increases.
Now noting the definition of the 8;;, =2,+---, k and the condition (2.12),
we see that the quantity (2.11) attains its minimum if the §;;; are zero.
(The &;;; are never negative since f;;>ft,;). That is, the minimum
value of (2.11), is

S n(1 T(t'—dy; 5=0)) dT(t'; 5=0)

—o0 j=

where T(t; 8=0) is given above. Note that this is a continuous function
of d,;, and monotone increasing in d,, and hence by similar arguments
to the above theorems, this theorem is proved, and we can always use
procedure (2.10) to select a subset containing the best population under
Case 2.3, with confidence at least P*.

Case 2.4: s known, with p¢;=p, i=1,---, k; 6*’s unknown and variable.

We discuss the case £>a. Because we are interested in the population
with the least value of (#—a)/o;, Case 2.4, and the assumption g>a
implies that we are looking for that population with the largest of the
0;. Suppose the ordered ¢’s are

(2.13) OGSO =< -+ S0h<0l
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that is, there exists a best population in the sense of Definition 1.1.
Suppose again that independent samples of » independent observations,
X;; are taken, where i=1,---,k; j=1,---,n. Let

(2.14) ve=L S (X,— .
n =
Let v%,<+--<v%, be the ordered v¥s. We use the following
Procedure. Retain II; in the subset if
(2.15) vi=d .k,
where d, is a constant such that 0<d,<1, and is chosen so that the
Pr(CS)=P*. Again, we may state the following

THEOREM 2.4: Procedure (2.15) is parameter-free.

ProorF: We have that the Pr(CS)=Pr (v’=d,v%,) where v* is the
sample variance defined in (2.14) computed from the best population.
That is, the

2
Pr(CS)=Pr (v%,,) g%)

= S: [:i:[: C(%i; g Ei])] dC(v*; atu)

where

C(v? 0".])=§"2 1 nr? exp V3 (vr)nin-1 v .
* T ) T2y @a) T 20t

Hence we may see that the

Pr(CS)=S (@)t

w S(w?‘/dﬂ(a'gkllo‘%k_l]) S(w}i/dd(o‘fkllafu [ k nol?
ces e L A—
=i [(n)2)2°

0 Jo 0

«exp _ng]dwi- codwi_dwl

=K, (% ... 9}1«_1)
Ka‘(o'flm]’ ol
Now K,, is a monotone increasing function in its arguments, subject to
(2.13). It is obvious that the minimum value of K, is K,, (1,---,1)
and hence if we set K,(1,-:-,1)=P* we may find a unique d, which
makes

Pr(CS)= P*
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and the procedure (2.15) is parameter-free.

(It should be pointed out that if one analyzes the case (<a, best
population is that population with the least ¢?, and that one may verify
that the

Procedure. Retain 11, if

(2.15) - visd/vy ,

is parameter-free, where v%, is the smallest of the v¥’s defined in (2.14),
and d) is a constant chosen to make the Pr (CS)=P*. In fact it can
be shown that the

A7 [fl ' (@)nin-t

Pr(CS)= S: S"" =1 2" (n]2)

.
’
(a9 (chi)loTk] S (wioh] diote)

} d(l)z dw,ida)’ K’ '(G[l] gy ,gig)

<exp — L
ate Oiq

where under the assumption of the existence of a best population in
we have
01y<0p =+ =07,

and hence that the

Pr(CS=K';(1,---,1).
On setting the right hand member of the above inequality to P*, we
obtain a unique d,/ satisfying K’,(1,---,1)=P*, and hence (2.15) is
parameter-free).

Case 2.5: p’s known, variable; o’s unknown and variable.

Again, let us assume that we have a collection of normal populations
I1;, and that they are distributed by the N(g;, ¢?) distribution. Bearing
in mind the condition of Case 2.5, and that we seek to ﬁnd that populatlon
with least (¢;—a)/o;, it is readily seen that this case’ sphts into the
following three cases.

Case 2.5 (a) All y; known and less than a
(b) All ¢, known and greater than a
(c) All g; known, with g, <t <e++ < @,
and @<y 4n< -+ <fiy Where 1<k, <k.

The case (2.5a) will be readily seen to be symmetrlc and analogous to
case (2.5b). Further, if for a normal distribution, the population mean
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is such that g#>a, then the coverage of (—, a) is less than 4. That
is, for the case (2.5¢), we can disregard those populations I7; with a<y;,
and formulate a procedure for selecting the best population out of the
remaining k, populations (that have their means g#<a). Of course, this
will be the same solution for case (2.5a). Note that k,>1 for if k,=1,
then automatically we know the best population.

We now discuss, then, the problem of finding the best normal population
of a collection 1=(I,,---, I1,) of normal populations, where the means
are known, and p;,<a, t=1,-+,k, and where best population implies,
as we have seen, the population with the largest (¢ —g;)/g;. That is, we
wish to select a subset of I7 in such a way that the population with

the smallest a./(a—p;) is retained in our subset, with probability of this
correct selection at least P*.

Using the notation of the previous cases, let
v=L 3 (X,—p) i=1,-0,k
n =
be the unbiased estimate of ¢i. Let

.16 =%
(2.16) q; a—p,

and denote the ordered g¢;'s by

I <qn<-<*<quw
We now state the following
Procedure. Retain 17, if
(2.17) » g:=dyqq

where d, is a constant chosen to make the Pr(CS)=P*, and is such that
1<d;. We now prove the following

THEOREM 2.5: Produre (2.17) is parameter-free.
Proor: We have that the Pr (CS)=Pr (¢<d,;q,), where ¢ denotes

that ¢; which is computed from the population having smallest o;/a—g,,
that is, the best population.

Let §;,= % _ and denote the ranked 8's by

3

- (2.18) <8 =¥y=--- =8y, -
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Then we have that

Pr (09)=PF(anz )
= [ (1-m(Es o0a)) | adea; 00

n—1 2
where 1—M(q/ds; 8pi))= S __l__(g,_) e-ﬁ’”mdqt .
(11458 2(,.,2)_11-v( ) 8[;]
2

By using procedures similar to the above, we may verify that the

Pr(CS)=§:§°° A [ﬁ_”"@'L]dm, -dw, do,

@y /dg) (B[1/8LkD) S("ﬁ/":s)(s[l]/s[z]’ i=1 2(n/2)—111(
2

— 8[1] cee 8[1]
A L

An examination of U, shows it is a monotone decreasing function
of its arguments, subject to (2.18). It is easy to see that U, has
minimum value

Us(1,---,1)

that is, the minimum value occurs when

8[1]=8[2]= s 0 e =8[k] .
Note that U,(1,-+-,1) is a continuous and monotone increasing function
of d,. Hence there exists a unique d; which satisfies

Ua5(1’° ) 1)=P*
and for this unique d;,

Pr(CS)=zU,1,--+,1)=P*

that is, procedure (2.17) is parameter-free.

(It should be pointed out that for the case (2.5b), that under the
assumption of the existence of a best population, we wish to retain the
population with largest value of &,=0c/(t;—a). We let ¢)/=v/(t;—a)
and it can be verified that the

Procedure. Retain population I7; if

(2.19) s
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k
where ¢, =max ¢}, and d} is a constant, 0 < d; <1, such that the Pr (CS)= P*,
i=1

is parameter-free. In fact, the

o ((op/dp (81, 4/80, 1y (wr/40)] (8 1/ (3017
pr(cs)=§ S , S [
i

o Jo 0

-

e(-ugmw’;—l ]
1 2(”/2)'11—'(%/2)

I

-dw,-- * -da),,_ldwk
&t &
= :( Oy ,ﬂ) )
\ha' 8
It is easy to see that the minimum value of U, is U;(1,---,1) and
setting this equal to the desired P*, gives a unique d}, independent of
the 8; and hence (2.19) is parameter-free.

3. Exponential populations

We turn now to the situation where our collection /7 of % populations
is exponentially distributed, that is, the probability density function of
the ith population 17, is

1 exp— 1 (z—p) x=p;, 0,>0
(3.1) g; g;
0 ' otherwise

We again assume that the set of interest is A=(— o, a), where “‘a’’ is
a known constant. As in the normal cases discussed above, we assume
in the sequel that there always exist a best population in the sense of
Definition 1.1 in the collection. Again, as in the normal cases, the best
population is that with the largest value of (a—p)/o. We discuss the
following cases.

Case 3.1: p's known, =g, i=1,---,k; 0,s unknown and variable.

If the known value of ¢ is such that #<a, it is clear that the best
population is that with least ¢. If g>a, the exponential distribution
whose density is defined in (3.1), gives zero coverage to (— oo, a) and
hence there would not be a best population re this set of interest in the
collection /7 , contrary to assumption, and we thus disregard this problem.

We now assume, then, that ¢<a, and let k independent samples of
n independent observations be taken, and let Y,;=X,;—p¢. The Y;;
have density functions
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i e—vlv’ 1120, 0>0
(3.2) o
0 otherwise .
We adopt the following
Procedure. Retain 7, if
(3.3) ¥:<hi¥w

where 7;=n"" i‘, Y., Yo is the smallest of the %;, and f, is a constant
= .
chosen to make the Pr(CS)=P*.

THEOREM 3.1: Procedure (3.8) is parameter-free.
PROOF: It is straightforward to show that the

o (“oo oo k ”
Pr(CS)=S S e S [11 e t;-'“] dt,. « +dt, dt,
0 Jieylsendlotkd, ¢4/ 1) (ep1lopap Li 1P(n)
g, g,
=V1[om, v aﬂ]
[k] [2]

An examination of V, shows it is a monotone decreasing function of
its arguments, subject to

(3.4) O<Op=S+++ =0y .

Hence the Pr(CS)=V,(1,---,1). But V;, is a monotone increasing
function and continuous in f;, and thus there exists a uniqne f, such
that V,(1,--., 1)=P*, and which is clearly independent of the parameters
Or, that is, (3.3) is parameter-free and its use enables us to make a
correct selection with Pr(CS)P=P*.

Case 3.2: ’s unknown and variable, ¢;,=0, 1=1,-.., k and known.

We assume that there is a best population, that is, there is at least
one of the k I7; having /;<a.

Let t—xu,—mln 2;;, and let ¢,,+++,%, be the ordered ¢,’s. Note
that the best populatlon is the one with the least . Hence we adopt
the following

Procedure. Retain 17; if

(3.5) k L=ty +f
where f; is a constant chosen to make the Pr (CS)=P*,
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THEOREM 3.2: Procedure (3.5) is parameter-free.
Proor: It is straight forward to verify that the

o oo

Pr(CS)= - 2 e | da,. - -do, do,
| [ ]

0 Swl—y,wm-u[k] S%—f at#1]-ul2] Li=1 O
= Wi (o —toas =+ 5 Yea— M)

where pp,<pfn=<--+=p;. Hence the Pr(CS)= W,(0,---,0) and if we
set W,(0,---,0)=P*, there exists a unique f, satisfying this latter
equation, independent of the p’s, and hence parameter-free, with the
Pr(CS)zP*.

Case 8.3: (’s unknown, variable; ¢;,’s known and variable.

We again assume that there is a best population, that is, at least
one of the k I1; have p;<a. Let §;=(¢;—a)/o; and let the ordered &’s
be denoted by

(3.6) <O =8m=++- =8, .
Clearly we wish to select the population with its §=35,,. Now let

»
Xh)zj[?-iin X'.j ) i:l,...’k

let Z,=(Xi,—a)/o;. We adopt the following
Procedure. Retain 17, if

(3.7) Z; =2+

where Z,, is the smallest of the Z; and f; is a constant chosen to make
the Pr(CS)=P*. We now state the following

THEOREM 3.3: Procedure (3.7) is parameter-free.
Proor: Using the same analysis as in the previous cases, it is readily
verified that the

o (‘oo

Pr(CS)=S S r [f[ ne“’“”i] dw,. -+ -dw, dw,
0 Joy—s3+8n1-3k] @ —f3+8n1-dra L 1

=Lr3(3m"3[k], ey 8py—Sp)

where the &’s are subject to (3.6). The minimum value of L, is
L,(0,-+-,0) and if we set L,(0,---,0)=P*, there exists a unique f;
satisfying this latter equation and independent of the g; and o;; that is,
procedure (3.7) is parameter-free and is such that the Pr(CS)= P*.

Case 38,4: (’s known and variable, ¢’s unknown and variable,
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This case splits itself into the following cases;

Case 3.4(a) All z#, known and such that g,<a, i=1, -+, k.

Case 3.4(b) All g, known and such that g, >a, t=1, .-+, k.

Case 3.4(c) All g; known with g,;<---< trp<a and

a<#[k!+1]< s <ﬂ[1,], where 1<k1<k .

Case (3.4b) can obviously be disregarded since for the exponential
distribution as defined by (3.1), the coverage of (— =, a) is zero if y;>a.
Case (38.4c), then, is such that we can immediately disregard the k—Fk,
populations which are such that their g;>a, and use a procedure to find
the best population of the remaining k, populations which are such that
their ¢#;<a. Of course, this is case (8.4a) with k, replaced by k. Note
that k,>1, for if k,=1, we automatically know the best population. We

therefore formulate a procedure for case (3.4a), which can be used if
case (3.4c) obtains.

Let k independent samples of 7 independent observations be taken, and
let (X%, «-+, Xi,) denote the n ordered observations from population /7.

Define S,=(n—1)" 3, (X%,—X%). To restate, we wish to find that
population with the lar;;st value of (¢—g;)/o;, where the p; are known
and less than a, and thus we wish to find the population with the least
value of 8;=0;/(a—p;). We let
(3.8) d<ém=---=8y
denote the ordered 3;’s.

Let z,=s;/(a—¢;) and let 2, <23 <+++<2, denote the ordered z,’s.
We now formulate the following
Procedure. Retain 11, if

(3.9) zi=fizn
where f, is a constant chosen to make the Pr(CS)=P*.

THEOREM 3.4: Procedure (3.9) is parameter-free.
ProoF: Since the probability density function of z; is given by

(n—1)"

ST " expl-(r—1)z/d} dz

it is easy to see that the Pr(CS) is given by
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oo ©o oo k . ”_1
Pr (CS) - S S e S [ (n 1) w?—i e"("'_l)"’i]
0 Jwy /£ PU8[11/81kD) (/7 p@pyslep Li=i I'(m—1)

dw,++ «dw, dw,

o, (.., B
! 8[’:] ) 8[2]

where 8;;<8y=---=8y3. M, is a monotone decreasing function in its
arguments, and hence

PI‘(CS)ZMH(L Sty 1) .

If we set M,(1, .-+, 1)=P*, and because the function M@1,---,1) we
see that there exists a unique f, satisfying this last equation, and is
independent of the parameters §;, that is, the procedure (3.9) is parameter-
free and such that the Pr(CS)=P*.

Case 3.5: p’s unknown and variable; ¢; unknown, ¢;=o0.

Before analyzing this case, we discuss an analogue of the Student-¢
variable, to be denoted by the symbol U,, and called the central U-variable
‘with v degrees of freedom. We denote the exponential distribution by
E(y,, 0;), whose density function is given by expression (3.1).

Now let Y be a random variable which is distributed as a ¥(v)/v
variables, that is, Y has the density function

Vo
(8.10) I'(v)
0 otherwise.

yu—l e~ dy yZO

Further, let W be an E(0,1) variable, and suppose that W and Y are
independent. Define U,=W/Y, and it is easy to see that the distribution
of U has the density funection given by

du .
(38.11) [TW if U>0

0 otherwise.

We define U;=(W-+38)/Y, to be called the non-central U variable,
noncentrality parameter 8, with v degrees of freedom. Although we
do not derive its density, we note that its ‘‘ anti-cumulative,’’

(3.12) 1-H(C; 8)=Pr(U;=C)

is an increasing function of &, for this is the
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Pr(W>CY-9)

and as & increases, more and more of the probability measure over the
region {(W, Y)0< W, Y<eo} is included.

Now suppose we take k independent samples of n observations and
let (X%, <+, X%,) be the ordered observations from II,.

Let S;=(n—1)"* i‘, (Xi,—Xi,). Now it is known that if sampling

i=2

from E(y., 0;), that X%, and S; are independent (and sufficient for ;, ;).
Further n(X%,—,)/o; has the E(0,1) distribution and S; is a ¥(n—1)/n—1
variable.

For the case being considered, we have g,=¢, but ¢ is unknown.
We will therefore use the pooled estimate
3.13 S=(n—1)S1+...+(n_1)Sk=_1_ k s,
313) k(n—1) k ,gl
and it is easy to see that S is a o{v(k(rn—1))/k(rn—1)} variable.

Now, we wish to find the population with least (x,7%)/o, that is,
with least ;. We assume, of course, that there is at least one population

with #,‘<a. o
Let t;=nX?%,, and denote the ordered t's by
(3.14) Loy <ty <o+ <ty

We now adopt the following
Procedure. Retain 17, if
(3.15) t;<tw+fS

where f; is a constant chosen to make the Pr (CS)=P*. We now state
the following

THEOREM 3.5: Procedure (3.15) is parameter-free.
Proor: We have that the
Pr(CS)=Pr(t,,=t—fsS)
- oy =N t—=Nly
Pr (tn=tf £.)

S
=Pr(Uy>U—fy)
where t is that ¢; computed from the population having =g,
U is a central U variable with k(n—1) degrees of freedom, and
U, is a non-central U* variable with k(n—1) degrees of freedom,
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and non-centrality parameter

8= (ﬂm"#[ﬂ
=" P )

where i1, Hence the
oo k ~
Pr(cs)=| [ B U-1: 8] dc)
where G(U) is the distribution function of (8.11) with v put equal to
k(n—1), and 1—H(C; 8) is given by (8.12). Now we have that 1—H is
an increasing function in §, and the Pr(CS) depends on a product of
the (k—1) function, 1—H(U—f;; &), where

0<8y< e+ <d-

Therefore the Pr(CS) is minimized if §y=--+=38,;=0, and we have
that the

Pr(CS)= S" [ " 1—G( U—f.,))] dG(U)

SR 1 (T FERSTREE

The last expression is a monotone increasing and continuous function of
7. and if we set it equal to P*, there is a unique f; satisfying the
resulting equation, and which is independent of the parameters. That
is, (3.15) is parameter-free and such that the Pr(CS)=P*.
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