CUTTING OUT PROCEDURES FOR MATERIAL
WITH POISSON DEFECTS

By MASAAKI SIBUYA
(Received Dec. 5, 1960)

1. Introduction

With the development of automation in industry, more and more
products are produced rather continuously than lot by lot. In many
cases such semi-manufactured materials as wire and sheet extend
in one-dimension, and they are sent to the market after being cut into
parts of a definite length. If the cut out part contains more than ¢
(say) defects on it, it is rejected as a bad part, and if it has defects
less than or equal to ¢ it is accepted.

We assume that the distribution of defects on the material may be
regarded as the Poisson process with parameter )\, that is, the number
of defects on an interval of unit length, which is the length of parts
sent to the market, is distributed according to the Poisson distribution

e\ m!, m=0,1,2,---, (1)

and the distances between the adjacent defects are independently dis-
tributed with the probability density

Mexp (— Ax) , 0=x<. (2)

To cut out the parts the following four procedures can be considered:

Procedure 1. Simple cutting out.

Starting from the end point we cut out the intervals of unit
length, and inspecting defects we rejects the intervals with more than
¢ defects.

Procedure 2. Sequential cutting out.

From the end point we measure the interval of unit length and
count the number of defects, if it is less than or equal to ¢, we cut
out the interval, and otherwise we move the origin of measurement to
the position of the first defect and count again the number of defects on
the interval of unit length. In this way we continue to measure the
interval of unit length until it does not contain more than ¢ defects.

Let us denote the distance between the end point and the first
defect by X,, and the distance between the first and the second defects by
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X,, and so on. Then the procedure is to cut out the interval of unit
length from the end point, if

in > 1 ]
£=0

and generally to cut out the interval of unit length measured from the
k-th defect if
ZEZ;X,<1, §=0,1, -+, k—1,
and (3)
k+c
‘z;X‘>1.

Procedure 3. Cutting out the interval of length I (1<1<2).

We cut off intervals in the same way as in Procedure 1, but those
of length I. If the defects are situated near the end points, we cut
the end parts to get a unit interval containing not more than ¢ defects.

Procedure 4. Cutting out the interval of length I (2<1<3).

In the same way as in Procedure 38, we cut out, if possible, two
unit intervals to be accepted, and if it is not possible to get the two,
we try to obtain an interval.

Our problem is to investigate how far the rather troublesome Pro-
cedures 2-4 improve the yields, that is, the expected proportions of
accepted parts to original material, comparing with the simple Procedure
1, and how to determine the length ! in Procedures 8 and 4.

The above model and procedures are simplified ones, and there are
many difficulties in real and practical situations. a. Materials might
extend in two or three-dimension. b. In some cases parts are classifi-
ed into A class if the number of defects is between 0 and ¢, and into
B class if it is between ¢,+1 and c,, and are rejected if it is more
than ¢,. c. The parts not only of unit length, but also of half length
are sent to the market. Then, if it is impossible to cut out a unit
interval, one may obtain a part of half length.

2. Statistical analysis of the cutting out procedures

Procedure 1.
The yield is

M-

e\ m!, (4)

3
1l
o

and there is no difficulty.
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Procedure 2.
Put

j_ﬁ;:XFs“ i=0,1,2, ++-. (5)
MS’s are distributed according to the x* distribution with d.f. 2(c+1),
and are not independent of each other.
When the event

A:T>1>T,,,
occurs, where (6)

Ti=max S, ,
1sJsi

we obtain a part from the material of length
i—1
>SX,+1.
j=o

Then, in this case, the yield is
t— -1
[E{gX,HIA,}Pr{A,}] . (7)

The event A, is equivalent to the first passage of the moving average
over some value, and the yield is connected with the mean pass before
reaching the value.

Procedure 3.

We find for the distribution function of X,+-:--+X,_, under the
condition that m (=k) defects fall in the interval of length I

PriX,+..-+ X, ,<2| Y=m}

— ‘z:'l’;';' re—x(z—t) t:;k(lk;t) OFEElg At
0 —k)!

=m“"§:/ls"“(1-—s)"'“"ds. (8)

That is, (X;+-+-+X,_,)/l is distributed according to the beta distribu-
tion. The original simultaneous distribution of X, - -, X, is symmetric
with respect to X,, and % is arbitrary, therefore, (X,/I, X/l, +++, X,i_/1)
has the same probability law as the order statistics Ug..-2U, of a
sample of size m from the uniform distribution on (0, 1) (see [1]).

The probability p{ that we can cut out an acceptable unit interval
from the interval of length ! with m defects, is
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1, m=c,
P = (9)
Pr{ max (UJ_ Ul—c—l)glll} ’ m>c,

ct+isjsm+1

where U,=0, U,.,=1; and the yield of Procedure 3 is
oo —Al m
PIII=—1—Zp1(ﬂ)e—()\,L . (10)
I m=o m!

Procedure 4.

The distribution of X,, X,, --+ is the same as in the above case.
Denote by A, the event that we can cut out an acceptable unit interval
with the ‘left” end at the i-th defect:

{Uk+c+1_ Ukélll ’ k:0: 1, ..., 1—1 ’
U5+c+1—l,l>1/l ’

and by B, the event for an unit interval with the ‘‘right’’ end at the
J-th defect,

(11)

Uk_ Uk—c—lélll ’ k=m+1; m, ""j+1 ’
(12)

UJ— Uj—c—1 >1/1.

Then we can write the probability that two acceptable intervals may
be cut out, as

PP =Pr{A,n B,n{U,— U,>2/l} 13)
and the probability that only one interval may be cut out, as

" =Pr{4,n B,n{U,—-U,<2/l}} (14)
and finally the yield of Procedure 4, as

oo —Al m
Py=215: @pjp 4 pigm) D" (15)
l 2= m.

3. Case ¢c=0

In the case ¢=0, that is, when only the intervals without defect
are accepted, all the expressions become simple and are summarized in
this section.

Procedure 1.

Pi=e. , (16)

Procedure 2.
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As S;=X, (1=0, 1, ...) are independent,
Pr{Al}=pQ‘ ’
where a7
p=Pr{X;>1}=¢"*,

and
i—1 i—1
B(5.X,14,)= S E(X,|X,<1)

=%(1—e‘*—7\,e“) ; (18)

From these we obtain
Py=)(e*—1) . (19)

Procedure 8.

The length I of the interval is between 1 and 2, and only one of
m+1 differences, ‘‘elementary coverages’, V,=U,—U,_, may be larger
than 1/1.

As elementary coverages have the distribution function F(v)=
(1—v)™, we find

Pr{max V,g%-}:(m+1)(l;—1)m, m=0,1, -+, (20)

and

oo —_ m,—Al m
P,n=l§:(m+1)(l 1) e (\l)
m=0 l m!

=e"‘{7\.+1;—)"} : 1)

We choose the length ! according to the value of \:

e, A <1, I=1.
i‘;‘EPm:{H%e_a A1, 1=2-0 )
2 2 ’ .

We write here 1=2—0, because in Procedure 2 we cut out only an
interval even if I=2 and no defect occurs on the interval. Notice that,
if [=2—0, P;y;=1/2 when A=0.

Procedure 4.
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Let us denote again elementary by V,. As the length of the interval
is between 2 and 3, the events V;>2/l and V;, V,>2/l do not occur
simultaneously, and we have

p{%"=(m+1)Pr{V‘>—2—-}+( ™ e {y> 1, vi>th @29

l 2 l l
pif = (m+ 1) Pr {V.>%}— Pr{V.>—ll-, V,>-%—}] 24)
and putting into (15)
Pw=e‘“{)\.+1—T>"}+e""{)\.+ 1“12’“ } ) (25)

In Procedure 4 also the two extreme lengths is optimal:

I+h pap Lo nco6, 1=2,
Ak 1+2)

e+ 1t 35076, 1=8-0,
3 3
where 0.76 is the solution of equation e*=(1—\)/(2»—1), and the
meaning of {=3—0 is the same as that of {=2—0.
Five curves for /=1, 2—0, 2, 3—0 and for Procedure 2 are shown
in Fig. 1.

4. Case c=1

When ¢ is not zero, the expressions for yields are complicated
except for some quantities. We carried out the Monté-Carlo computation
for the case c=1 and 2. The results are summarized in Figures 2 and 3, in
which the broken lines show the results of the Monté-Carlo computation.

In the following we analyze only Procedure 3 for ¢c=1. Let us
denote the sum of two successive elementary coverage by

W‘=U‘+7_U‘ i=0, 1, 2, s, m-l-
As the length I of the interval satisfies 1<1<2, the events W,=1/land
W,=1/l are disjoint if j—i>1, and

Pr{ max W,gl/l}=mPr{W,gl/l}

0stsm—1

—(m—1)Pr{W.21/l, W,..=1/i}, mz2. (27)
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Fig. 1. The yield P for ¢=0

1.0

St ettt S T S

1=2-0
0.5

Optimum Procedure 3

Fig. 2. The yield P for ¢=1

Fig. 3. The yield P for ¢=2
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As the simultaneous distribution of (W,, W,,,) is the same for all
t=0,1, -+, m—2, we consider only that of (W,, W, for m=3.
Integrating the probability density function of (U,, U,, U,),

Sy Uay Ug) =M (1 —us)™°, 0=<u,<u,<u,<1, (28)

with respect to u, over the range max (W,, W,)<u,<min (1, w,+w,), we
find for the p.d.f. of (W,, W))

Awo, w;)=m®[{min (1—w,, 1 —w,)}**—{max (0, 1 —w,—w,)}*?], (29)
and from this

{Pr{Wiglﬂr Winz1/l}=2(1-1/), 1<i<2. (30)
Pr{W,z1/l}=(1-1/)**{1+(m—1)[l} ,

These formulas are also valid for m=2.
Substituting in (27)

Pr{max W, =21/l}=1-1/l)»{(m+2)(m—1)[{l—(m—2)} , (31)
and from (10) the yield becomes
Pu=1/)[{MN(I—-1)+M2-1)+2le*—eN] . (32)
Maximizing the yield with respects !

sup P — e~ *ne?, if A<1.618, for I=1,
ST oI+ 2)er—e], if A>2.593, for =2,

1<i<2

(33)

where 1.618 is the approximate value of (V5 + 1)/2 and 2.593 is the
solution of the equation

(14+2)0)er=2+20—22 . (34)

In the range 1.618<)<2.593, the maximum value of Py is attained
when [ is the root of the equation

(A+M)e~N=(2+20—N) . (35)

The improvement by suitable choice of I, however, is not significant
as is seen in Table 1. For the case !=2 in Procedure 4, the yield is
easily obtained from that for {=2—0 in Procedure 3.
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TABLE 1. Optimum Procedures 3.
A 1* max Pp= Pu(l*) Pu(l=1) Pn(l=2-0)
1.8 1.14 0.4675 0.4628 0.4194
2.0 1.30 0.4222 0.4060 0.3968
2.2 1.45 0.3833 0.3546 0.3728
2.4 1.65 0.3504 0.3084 0.3479

5. Conclusion

159

As might have been expected, when the yield of simple Procedure
1 is fairly good, the improvements by the other procedures are not
considerable. Other procedures should be adopted, however, when the

ordinary yield is poor as is seen in the production of optical glass.

In Procedures 3 and 4, we should take the length I so as to be
extreme, that is, when the defects are rare we take [ as 1 (Procedure
3) or 2 (Procedure 4), and when they are many we take ! as 2 (Pro-
cedure 3) or 3 (Procedure 4).
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