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Summary

A theorem is obtained which enables us to get the arrangement
which gives the minimum of the maximum diagonal element in all the
possible rearrangements of a matrix of which elements are arranged in
the decreasing order of magnitude in each row.

Some implications of the theorem with the rational economic be-
havior of consumers and with the preparation for the Seidel’s process
of successive approximation are discussed.

1. A min-max theorem

We consider an nxn matrix A of which (7, j) elements a,, satisfy
the inequalities

Ay =gy 1,7=1,2, -, m .

We shall denote by B one of n! nxn matrices which are obtained by all
the possible rearrangements of the rows of the original A and by by,
the (¢,j) element of B. Now we represent by R(B) the maximum of
the diagonal elements of B, i.e., we define

R(B)Em‘ax b .

Then our problem is how to obtain the B which gives the minimum
value of R(B) in the n! B’s. The solution of this problem is quite
simple and we have the following

THEOREM. The B with minimum R(B) is obtained by the following
procedure.

a. the first row of the B is determined as the row of which first
element is the smallest in the first column of A,

b. when the jth row of the B is determined the (j+1)st row of
the B 1is determined as the row of which (j+1)st element is the smallest
in the (j+1)st column of the remaining rows of A,

c. if in the (j+1)st stage (7=0,1,2,:--,n—1), there are more
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than one rows left of which (j+1)st elements are equal, we leave the
(§+1)st row undetermined and proceed to the determination of the
(j+2nd row in the same way as is for the determination of the
(F+1)st row,

d. we proceed further wuntil there is left only one of the rows
which are the candidates for the (j+1)st row, and we adopt this last
one row as the (j+1)st row of the B. In this case, if there are left
more than one candidates for the nth row, any one of them may be
taken as the nth row of the B and the determination of the remaining
rows proceeds likewise.

Proor: We shall denote by C the B which is obtained by the above
stated procedure and by ¢, its (i, j) element. We suppose

Ckk=m‘ax Cyy =R(C) .

Take an arbitrary B matrix. If the kth row of C forms the (k—j)th
row (7=0) of B, then we obviously have R(B)=max b,,=b,_; .-y =Cy -1 =
¢y =R(C). '

If the kth row of C forms the (k+j)th row (7=1,2,:.--,n—k) of
B, then there is at least one (k+v)th row (v=1,2,:-:,n—k) of C
which forms a (k—g)th row (#=0,1,2,:.+,k—1) of B. For such v
and ¢ we have

Ot b =Chtv. - ZCrtv.5 ZCr. »

and we get
R(B)=max b;=b,_. ,—n=Cr,=R(C) .

This completes the proof.

Note: If we restrict our attension to the case where the elements
are mutually different in each column of A, then in the present pro-
cedure of determination of C we do not need any information of the
values in the (k+7)th columns (j=1) to make the kth decision. This
is a salient feature of this decision procedure.

By replacing the signs =, max, and min by =<, min, and max, re-
spectively, we can get the dual of the above stated theorem. Applying
this dual theorem to the matrix which is obtained by inversely ordering
the columns of the original A, we can easily find a rearrangement of
rows of A which gives the maximum of minimum b, in the B’s.
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2. Applications of the theorem

In this section we shall show two examples of the application of the
theorem. The first is concerned with the rational economic behavior of
consumers, and the second with the preparations for the numerical
solution of a linear simultaneous equation by using Seidel’s successive
approximation procedure.

1. Suppose that there are m commodities which are almost of the
same utility to a consumer, and that the prices of these commodities
are gradually going down year by year. Then what is the rational be-
havior of a consumer who intends to buy these » commodities within »
successive years, one in each year? In economic life of an ordinary
citizen it will be fairly natural to imagine that the consumer tries to
keep minimum the maximum expense of the year. If he wants to behave
himself according to this minimax rule, our present theorem assures
that he has only to purchase in each year the commodity which is the
cheapest of those yet to be purchased. Of course, some condition like
the one stated in the note to the theorem must be satisfied to make
decision in each year, and the restriction of the time unit of one year
is not essential. Recently S. Nisihira obtained a survey result which
shows a very high scalability of the possession of electric household
equipments®. The result shows that the consumers usually purchase the
electric equipments in order of their prices, for example, in order of the
electric iron, radio receiver, electric washer, TV set, electric refrigerator.

Many explanations will be possible for such scalabilities, and we
imagine that our present minimax rule may be adapted for explaining
some of such phenomena.

2. We shall here consider the numerical solution of a simultaneous
linear equation of the form

(I—-D)z=b ,

where I denotes the n xn identity matrix and D an nxn matrix with
elements d,, (¢,5=1, 2, .-+, n), satisfying the conditions

JZ”‘,|¢i;_1l<1 (i=1!2""’n)

and b and « are m-dimensional column vectors of given constants and

*)  This was orally communicated by Mr. Nisihira to the authors.
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unknowns, respectively. Then the Seidel’s process of successive approx-
imation is defined by

i—1 7
T =by+ ;2—:1' Ao+ jZi' dzf (1=1,2,--+,m)

where «;¥ denotes the ith component of the kth approximation z*
to x and b, denotes the ith component of b. Set

& =it —a,

where z, is the 4th component of the solution vector z.
We have for this ¢/ the following relation

-1 n
eF = S d, etV S d, e .
= =i

Therefore, if we define

I l|=max &,

we have
i—1 n
e |= f_f_‘;ldul-lle"‘+“ll+§ [y -1l .
If || e®* [|=|e*V |, we have
[[e®||< :Z_:Iduh e®H ||+ ji!d»; <[] ey
and
>l dyl
[[e®* || <max | =t ——|[[e® ]| .
‘ f\1= S dy]
J=1
When we define (D) by
>l dyl
r(Dy=max | ——=——],
’ 1— j§=:1| !du I

this 7(D) may be used as an index of the speed of convergence of the
present Seidel’s approximation procedure, and arrangement of rows of
D which gives the minimum of 7(D) will be appropriate for this
approximation procedure [1. p. 131]. For this purpose we apply the
procedure of our theorem to the matrix A with elements a,, defined by
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k=J

-
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Ay =

The desired rearrangement is easily performed. To determine the kth
row we have only to know the values of those a,’s which are in the
rows still left in D, and usually values of (n+2)(n—1)/2 out of »* of
a,’s are necessary to get the arrangement. Of course, more precise
analysis of the rate of convergence of Seidel’s process is desirable, but
by using the present theorem we can get the minimum of r(D) with
the corresponding rearrangement of D, and we can use it as an index
of the speed of convergence of the Seidel’s process in practical com-
putations.
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