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1. Introduction

C. E. Shannon [1] and N. Wiener [2] independently introduced a
measure of information for probability distributions: H= ——CZp‘ log »,
in discrete case, and H= —cg p(x)log p(x)dx in continuous case, where
¢ > 0 is a scaling constant. Important properties of these measures are
listed, for example, in C. E. Shannon and W. Weaver [3]. Characteri-
zation problem of these measures has been treated by A. I. Khinchin
[4] in finite discrete case, and by H. Hatori [5] in continuous case. These
authors proved the uniqueness of the above expressions under some
resonable postulates.

Except for finite discrete case, the value of the information measure
defined as above is not necessarily definite, and the continuity property
will be complicated. In the present paper a sufficient condition for yielding
_ the convergence of information measures will be given in the first, and
the problem of characterization will be reexamined by postulating a suit-
able continuity assumption, in the second.

2. Continuity

Let (R, S, m) be a o-finite measure space, i.e., let R be any abstract
space, S a o-field of subsets of R, and m a o-finite measure on (R, é’).
Consider a random variable or a probability distribution, X, which is
defined in the space R and is absolutely continuous with respect to the
measure m. Let p(x) be a generalized probability density function (pdf.)
of X, and D(X)={z: p(x) > 0}. For any subsets A and B of the space
R, the relation A c B(m) means that the difference A — B is a set of
m-measure zero. If p'(x) is another generalized pdf. of X and D'(X)=
{x: p'(x) > 0}, then D(X) = D'(X)(m). For any set Ein S, V(E) denotes
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the class of all absolutely continuous (m) probability distributions such
that D(X) c E(m).
Define, for X in V(R),

2.1) H(X):Lp(x) log p(z) dm .

Let D(X)=FE, and E=E'+E" where
2.2) E={x: p(x)>1}, E"={x: 0<p(x)=1} .
The expression (2.1) may be regarded as H(X)=H'(X)+H"(X), where

(2.3) H'(X)= SE,p(x) log p(x) dm, H"(X)= SE,,p(x) log p(z) dm .

This definition of the Shannon-Wiener information measure is slightly
different from the original one in its sign, scaling constant and basic
measure space, but it will not matter much in the present study.

Let E be any set in S with positive m-measure. Consider a finite
or countably infinite partition Z={A4,} (1=1, 2, -..) of E such that

(2.4 E=>.A4(m), A, 4,=0(m), (i#]), 0<m(A)< ,
(i=1,2,---),

which is called a (finite or countably infinite) m-partition of E. If a

probability distribution X in V(E) has a pdf. such as

(2.5) p(x)=p,/v;(m) on A,, (i=1,2, ...), =0, otherwise,

where v,=m(4,), »,=0, (i=1,2, --+), and z,lpi:l’ then X is said to be
a simple probability distribution. Denote by V(E) the class of all simple
probability distributions defined in E. For X in V(R) with pdf. such as
(2.5), the definition (2.1) will become

(2.6) HX)=H'X)+H"(X),

where
H(X)=X'p, log% , H'(X)=3"p, log% ,
[ (3

are series with positive and negative terms respectively.
First, two lemmas are stated.

LEMMA 2.1
(1) Let £>0,2'=0, and z=a'/x. Then it holds that
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[zlogex—a'loge’ | < |1—z(|(xlogx | + o + o).
(ii) Let x=0 and 2'=0. Then, for any >0, there exists a 8>0

such that |x—a' | <8 implies

|xlogx—a'loga’ | < ex+1l+e).

Proor. Evidently (i) is valid when #’=0. Since

[zogz|g{ll—zl, (=1),
~l-zllz, (0<z<1),

it holds that v
|zlogz—z'loga’ | < |1—2z]||xlogx| +2' |logz|, (2>0),
ll—zllxlogxl+x'|logzlé{'l—z]'xlogxl-i-x',l—zl’ (z=1),
[1—z||zlogz| +z[1-2]|, (0<2<1),

Hence
|zlogx—a'log 2’ | < |1—z{(lxlog x| +2+2'), (z>0),

which completes the proof of (i).
From the mean value theorem it follows, for «’, =1, that

[zlogx—2a'loga’ | < |x—2'| - max (x, ') .

From this and the uniform continuity of the function xlog = on the
interval 0<2<2, it will be easily concluded that, for any &>0, there
exists a >0 (less than ¢), such that | x—=2'|<& implies

| log x—2' log #' | < max (¢ max (x, &), €), (%, x'=0) ,
which assures of the validity of (ii), since max (x, ')<zx-|e.
Hereafter throughout the paper, the expression ‘‘condition C(z)(m)”’,
as in Lemma 2.2 (a)(i) below, means that the condition C(x) is valid

for all  on the set interested except for a set of m-measure zero. The
following is the well-known Lebesgue’s convergence theorem.

LEMMA 2.2 (Lebesgue) Let f(x) and {fi(x)},(2=1,2,+-+) be real
valued functions defined in a o-finite measure space (R, S, m). Then
the sufficient conditions for the comvergence

[f@an—| r@am, -,

are given as follows:



134 S. IKEDA

(a) For the case when — oo<S S(@)dm <o, the condition s
R

(1) fux)—f(®)(i — )(m), in R, and
(ii) there exists a fumction K(x) such that | fi(x) | < K(x)(m) in R,

(i=1,2, -+), andg K(X)dm < .
R

(b) For the case Lf(w) dm=oo ,

(i) fu=x)— f(®)(t — o)(m), in R, and
(ii)" there exists a function K(x) such that f(x)=K(x)(m) in R,

(i=1,2, ), andg K@) dm >—o .
R

(¢) For the case Lf(x) dm =—o ,

(i) fux)—f@)(i— «)(m), in R, and
(ii)" there ewists a function K(x) such that fx)<K(x)(m) in R,

(=1,2, --+), and SRK(x) dm << .

The following theorem states the continuity of the information mea-
sure for the probability distributions in V(E) when m(E)< .

THEOREM 2.1 Let (R, S, m) be a o-finite measure space, and let the
probability distributions X, {X,}, (i=1, 2, +--) be defined in V(E), where
0<m(E)<o. Then the condition

(2.7 d(X, X))=ess-sup| p(x) — p2) | =0, (i— =)

tmplies that

(2.8) H(X,)— HX), (i—x).

PrOOF. Let X, be the uniform distribution on E with pdf. such as
pp(%) = 1/m(E)(m), on E,
=0, otherwise .

Then it will easily be verified that H(X)>H(X;). Hence the following
two cases may be considered:

(1°) —wo<HX)<x,
(2°) HX)=o .

First, the theorem will be proved in the case (1°). Put, for brevity,
S(@) = p(x) log p(x) and f(x)=pyx)log p(x), (:=1,2, +--). From (ii) of
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Lemma 2.1 and the condition (2.7) it follows that, for any ¢>0, there
exists a positive integer N such that ¢+=N implies

(2.9) | f(®)—fu(®) |<e(p(x)+1+€)(m), on E,
from which we obtain, for 1>=N,
(2.10) | fu@) | < | f(@) | +e(p(x)+14€)(m), on E,

where the right-hand member of the above expression has the properties
of K(x) in Lemma 2.2 (a) by virtue of (1°) and the finiteness of m(E).
The inequality (2.9) above implies that

(2.11) fi(@) = f@)(t — )(m), in E,

and the conditions (i) and (ii) of Lemma 2.2 (a) are satisfied. Since
H(X):S f(x) dm and H(X,):S fix) dm, we have (2.8), which completes
B

E
the proof in case (1°).
Next, we consider the case (2°). Since (2.9) is also true in this case
it holds, for i=N, that

(2.12) Sux)=f(x)—e(p(x)+1+4¢)(m), on E,

where the integral of the right-hand member over E is equal to co.
The pointwise convergence (2.11) is valid too, therefore, our theorem
follows from Lemma 2.2 (b) in case (2°). The proof of the theorem is
then completed.

If we remove the condition of finiteness of m(E), then an additional
condition to (2.7) will be required, which may easily be illustrated by
simple examples.

THEOREM 2.2 Let the measure space (R, S, m) be o-finite, X the
probability distribution in V(R) with D(X)=E, and {X;}, (i=1,2,---)
the sequence in V(E). If the conditions

(2.13) d(X, X‘)=esse-§up | p(@)—p(2) [ =0, (1> ),
and, for E, = D(X,) and ¢(x)=p(®)/p(x)(m) on E;, (i=1,2, --.),
(2.14) h(X, Xg)=esse-gupl 1—gq(z)| =0, (t— )

are satisfied, then
(2.15) H(X,)— HX), (i— «).
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ProoF. Since m(E') is not necessarily finite, the following four cases
may be considered:

1°) —o<HX)<w,
(2°) HX)=w ,
(3°) HX)=-o,
(4°) HX)=c—o .

As in the proof of the preceding theorem, f(x) and fi(x) denote
»(x) log p(x) and p,(x)log p,(x) respectively. In the first, we prove the
theorem in the case (1°). From (i) of Lemma 2.1 and the condition
(2.14) it follows that, for any >0, there exists a positive integer N
such that 1=N implies

(2.16) |1—q,| <e(m), on E,,

and

(2.17) Lf(@)—fuz) | = e(| f(®) | + p(x) + p(2))(m), on E,
hence it holds that, for =N,

(2.18) | f(@)—f=@) | <e(| f(=) |[+(2+€)p(x)) (m) , on E, .
It follows from (2.18) that, for =N,
(2.19) [fu@) | =(1+e) | f(2) | +e(2+€)p(x) (m) , on E .

Since (2.13) implies the pointwise convergence of fi(x) to f(x) as i —co,
for almost all (m) « on E, and the right-hand member of (2.19) is in-
tegrable over E, we obtain (2.15) by virtue of Lemma 2.2 (a).

To prove the theorem in the remaining cases, we define, for E’
and E" given in (2.2),
(2.20) Ei=E'NE, E'NE,, (i=1,2,-...),

and

e2) BX)=( f@dm, &)= f@dm, (=12,
[3 i

Then, since E,Cc E(m), (¢=1,2, --.), it is clear that

(2.22) E,=E+E/(m), HX)=H'(X)+H"(X), (1=1,2,---).

Our definition of H’ and H"(X) in (2.3) implies that H'(X)=0 and
H"(X)=<0. In the present theorem, case (2°) occurs when H'(X)=o
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and H"(X)> -, case (3°) when H'(X)< o and H"(X)=—c, and case
(4°) when H'(X)=c and H"(X)=—oco. In each of these cases, in order
to prove the theorem it will be sufficient to show that

(2.23) H'(X)— H'(X), H"X)—H"X), (i— ).
Now, consider the case (2°). Put

P@)y={P@ » O E) s pugy_ (p@), (on B,

(2.24) 0, (n R—E) 0, (on R—E"),
p{(x):{pi(x) , (on EY), pzr(x)___{pg(x) , (on E}),
0, (on R—E}), 0, (on R—EY}),

(i=1y 2; b ') .

Since m(E£’)<1, the functions p'(x) and {pi(z)}, (=1, 2, -..) satisfy the
conditions of Theorem 2.1 except the fact that they are not necessarily
the probability density functions. It will be noticed that the proof of
Theorem 2.1 in case (2°) does not require the property that the integrals
of pdf.’s of X and {X,} are all equal to unity. Hence the proof similar
to that in case (2°) of the preceding theorem will assure of the validity
of the first half of (2.23).

The truncation (2.24) will reserve all the properties of p(x) and {p,(z)},
(¢=1, 2, --.), indispensable in the proof of the present theorem for case
(1°), therefore, we shall be able to confirm the validity of the latter
half of (2.23) by the proof parallel to that in case (1°) of the present
theorem.

In the case (3°), the first half of (2.23) will be proved in the similar
way as the case (1°) of Theorem 2.1. In the following, we shall prove
the latter half of (2.23).

As in the proof in case (1°) of the present theorem, it is easy to
see that, for any ¢>0, there exists a positive integer N such that i1=N
implies '

(2.25) [ f@)—fu®) | =e(|f(®) | +(2+e)p(x))(m), on EY,
which leads to
(2.26) fi@)=(1—e)f(x)+e(2+€)p(x)(m), on EY,

because f(x)<0(m), on E!. Since f,(x)=0(m), on the set E"—FEY, it
follows from (2.26) that, for any ¢>0, there exists a positive integer N
such that ¢=N implies
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(2.27) fi(@)=max (0, (1—¢)f(x)+&(2+¢)p(x))(m), on E”.

If e<1, then the right-hand member of (2.27) is integrable over E".
Clearly fi(x) converges to f(x) for almost all (m) z in E” as i— oo.
Hence we obtain the latter half of (2.23) by virtue of Lemma 2.2 (c).

For the case (4°), the proofs of the first and second half of (2.23)
will be essentially included in those of the present theorem in the cases
(2°) and (8°) above, respectively.

Thus the proof of our theorem has been completed.

As an application of Theorem 2.2 above, we prove the following.

COROLLARY 2.1. Let (R, S, m) be a o-finite measure space, and let
X be in V(R). Then there exists a sequence {X,}, (i=1, 2, <) in V(R)
such that H(X,)— H(X) as © — co. :

PROOF. Let E=D(X), and E'+E"=F as in (2.2). By constructing
the product partition we can get a sequence {Z}, (1=1,2, .- -) of m-
partitions of E, which satisfies the following three conditions:

(i) Z,=Z+Z}, where Z; and ZV

are the m-partitions of E’ and E”, respectively, that is, if Z,={A,},
Zi={Ai}} and Z}')={Alj}, (=1, 2, --.), then {A,}={A}} U {4]},
(t=1,2,...), such that

(ii) ess-var p(x)=<1/2', (¢,5=1,2,.:+),

GAU

where ess-var p(x) = ess-sup p(z)—ess-inf p(x), and simultaneously
€4 ZIEA €A
(iii) ess-var log p(x)<1/2¢, @, J5=1,2, ...).
zeAU

For each of the m-partitions {Z;}, (¢=1,2, :--), we define the fol-
lowing simple pdf.

(2.28) p(@)={PADImA, on diy (=120,
0, otherwise ,
where P(A)=S P(x)dm, and let X; be the probability distribution with
p(x) as its pdf. Then X, is in V(E), or more precisely, D(X,)=E(m).
Now, it will be shown that the sequence {X,} (i=1, 2, -..) satisfies
the conditions (2.13) and (2.14) of the preceding theorem. Put

(2'29) u,_,=ess-inf lOg p(x) ’ U,,:ess-sup IOg p(w) ’ (7:! .7=17 2’ i ')-
::GAU zeA”
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Then it becomes

(2.30) ess-inf p(x)=eys, ess-sup p(x)=e"+s, #,5=1,2,..+)
4

::EAU z€ 15
or
(2'31) e"t}ép(&?)ée”lj (m) , on AU ’ (iy j=1’ 2; * ') .

Integrating (2.31), over A,,, dividing by m(A4,,), we obtain the following
inequality

(2.32) e P(A)m(Ay) e,  (3,7=1,2,--°).
From the condition (ii) above, (2.28), (2.81) and (2.32), it follows that
(2.33) | o(@)—px) | =1/2'(m), on E, (i=1,2,--+),

from which the condition (2.13) follows. On the other hand, by the
condition (iii), (2.81) and (2.82), we obtain

| 1=q.(®) | = | (p(x)—p®))/D(x) | (741 —€"s)[e"ss (m) ,
and

(e715—es)fers=eTs % —1 <" —1<1/21, on A,

(t,5=1,2, --),

hence it holds that
(2.34) |1—q(x) | <1/2-*(m), on E, (1=12,--:),

which implies (2.14).
Then, our result follows from Theorem 2.2

3. Characterization

For a o-finite measure space (R, S, m), let M(S) denote the range
of m-measure, i. e., M(S)={m(E): EcS}. Let W be the real line, and
W+* the non-negative half of W. Throughout the present section we
assume that the space (R, S, m) satisfies the condition

3.1) MS)=W+.

The product measure space of two o-finite measure spaces (R, S, m) and
(R’,S’,m’) will be denoted by (RxR’,SxS’, mxm'), where RxR'=
{(@,2'):xeR,x'eR'}, SxS'=B({Ax A" Ae S, A’'e S'}),i.e. Sx S’ is the
smallest o-field containing all the product sets, and mxm' is the
product measure on (Rx R’, Sx S’), for which m x m'(4 x A")=m(A)m'(4").
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The product measure space is o-finite if the component spaces are all o-
finite, and it will be noticed that, if all the component spaces satisfy
the condition (8.1), so does also the product space.

Let W*= W U {o, —0, 0o —}. Addition and substitution be-
tween the elements of W and the additional elements oo, —c0, o0 — 0,
will be defined as usual, for example, w+o = + o0, Wt(—o)= Foo,
W+ (0 —0)=00 —co, and commutative law will be permitted. Now, for
each of the spaces satisfying (3.1), we consider a function H(X) defined
in V(R) and ranges in W*. Of course, it depends upon the space (R,
S, m) for which it is considered, but we do not indicate it explicitly.

‘ We postulated some assumptions on the properties of H.

ASSUMPTIONS

(I) For the uniform distribution
(i) —oo<H(Xz)<ow, for any E(0<m(E)< ), and any (R, S, m).
(ii) For any X, in (R, S, m) and X, in (R’, S, m’), m(E)=m/(E")

implies H(X;)=H(Xg).
(iii) In (ii) above, m(E)>m'(E’) implies H(XE)<H(XE,).

(II) Let X be defined in V(R) and X’ in V(R'). If at least one of the
three members H(X, X'), H(X), and H,(X') is finite, then it holds
that

3.2) H(X, X')=H(X)+ Hx(X"),

where H(X, X) denotes the value of H for the joint probability distri-

bution (X, X’) in V(RxR’), and HAX'):LH(X’ | X)p(x)dm, for the

value H(X'|x) corresponding to the conditional probability distribution
of X' given X==z.

(III) Let X be in V(R) with D(X)=E. For a sequence X,, (1=1,2,:-:)
with D(X,)=E (m) for. all 7, define g,(x)= p,(:c)fp(x), :t=1,2,--+), on
E. Then, if the conditions : : '

(3.3) d(X, X,)=ess-sup| p(@)—p(2) | -0, (1— ),
(3.4) WX, X;)=ess-sup|1—q(@) | =0,  (i—<),
are satisfied simultaneously, it holds that

(3.5) H(X,)— H(X), (i— ).

When m(E)< w, the condition (3.4) is not required.
The definition of the [uniform distribution will be found in the
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beginning of the proof of Theorem 2.1 in the preceding section. As-
sumption (I) states that for the uniform distributions, the function H
does not depend on the distribution range itself, but does only on the
m-measure of it, hence we can write H(v) instead of H(X,) if m(E)=w.
H{(v) becomes a monotone decreasing function in ». Consider two mutual-
ly independent uniform distributions, X, and X;., in (R, S, m) and (R’,
S’, m’) respectively, with m(E)=m'(E')=1. Then the joint distribution
(Xz, Xp) becomes a uniform distribution on Ex E’ in the product space
(BRx R',Sx 8" mx m'), with mxm'(ExE’)=1. Hereby it is easy to
obtain

(3.6) H(v)=0, if v=1,
by virtue of (I) and (II).

Now, we shall prove the uniqueness of the expression (2.1) under
the assumptions (I) to (III). First, we state the following.

LEMMA 8.1 For the uniform distributions, it holds, under the as-
sumptions (I) and (II), that

3.7) H(v)=¢ log%,

where ¢ is a positive constant.

ProoF. Considering %k mutually independent uniform distributions
on E, we obtain from (II)

(3.8) H(v")=H(v) ,

where v=m(E). Solving this functional equation, we have, for v>1,
(3.9) H(v)=¢'log % ,

and for v<1,

(3.10) H@w)=c" log% :

where ¢’ and ¢” are the positive constants.

Let v'>1,v"<1 and ¢'v»”">1. Then, considering two mutually in-
dependent uniform distributions, we get by assumption (II)

(3.11) H(v'v")=H(v')+ H(") ,
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hence, from (3.9), (8.10) and (8.11) it follows that ¢’=¢”. From this and
(3.6) we obtain (3.7), which completes the proof of our lemma.

LEmMMA 3.2 Let Z=1{A}, (1=1,2, --.) be an m-partition of E in
(R, S, m), and X, a probability distribution with pdf. such as

(3.12) pz(x)={0p¢/'vt 9th:n 4.459 (1/=1, 2, .o .) ,
y O rwise ,

where p,=0, v,=m(4,), (t=1,2, ---), and S, p,=1. Then, under the as-
sumptions (I) and (1I), it holds that

(3.13) H(X;)=¢cSp, log% ,
ot ]

where ¢ 18 a positive constant.

PROOF. We consider a sequence Z*={A*}, (5=1,2, :--), of disjoint
subsets of R, with

(3.14) m(A7)=p,/v;, (I=1,2,---).

Denote by X,. the probability distribution such that, if X, falls in A,,
then X, is uniformly distributed on AF for all i=1,2, ---. The joint
distribution of X, and X,. will become

XYy 1, on A‘XA;“, (i=1,2,-.o)!
(3.15) P, )"{0 , otherwise

hence, it is uniformly distributed on the set F’=3'A4, x A¥ in the product
measure space (RxR,SxS,mxm), with mxm(F)=1. Therefore, it
follows from (8.6) that

(3.16) H(X,, X;)=0.
On the other hand, from (3.14) and Lemma 3..1 we obtain

H(X,,.[ac):—clog%, if zed,, (i=1,2,--%),

{

from which it follows that

(3.17) Hy (Xp)=—cS.p, log &
4

By assumption (II) we have
(3.18) H(X,, X,)=H(X,)+Hy (X0) ,
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which implies (3.13), by (3.16) and (3.17).
THEOREM 3.1 Let X be any probability distribution in V(R). Then,
under the assumptions (I), (II) and (III) it holds that
(3.19) H(X):cg () log p(x) dm
R

where ¢ 1s a positive constant.

PrOOF. As in the proof of Corollary 2.1, we define a sequence of
simple probability distributions {X,}, (¢=1, 2, ---), with pdf.’s such as,
for the m-partitions Z,={4,,}, (,5=1,2, --+), in that proof,

(3 20) P (x)z{pU/'U“, on A“, (j—_-l’ 2, .- .) ,
‘ i 0, otherwise,

where p,;=P(A,;) and v,,=m(4,,). Then, we know that

(3.21) dXx, X)—-0, mMX X)—0, (1 — ),

and

(3.22) S,y log 2it — j p@)log p@)dm , (i — o).
14 &

But, by Lemma 8.2 it holds that

(3.23) H(X)=cSp,log 2o, (=12 ...,

’l)”

and, by the assumption (III), the convergences in (8.21) imply that
(8.24) HX)— HX), (i1— o).
From (3.22), (3.23) and (3.24), it follows that

(3.25) H(X):cS () log p(z) dm

where ¢ is a positive constant, which proves the theorem.

In characterizing the information measure for finite discrete case,
A. I. Khinchin assumed the usual continuity property, which played an
important role in his characterization procedure. The finite discrete case
will correspond to the case of simple probability distributions, associated
with finite m-partitions of equal weights, i.e., the partitions Z={4,},
(t=1,2, ---,n), such that m(A)=m(4,)=-.-=(4,). Then, the assump-
tion (III) in the case where m(E)<, will be equivalent to the conti-
nuity assumption by A. I. Khinchin.
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In continuous case, our present assumptions differ from those by H.
Hatori, in the class to which the addition property (3.2) is assumed, and
in the presence of continuity assumption. That is, we assumed (3.2) only
for the class of all simple distributions, while he required the validity
of (3.2) on the class of all absolutely continuous distributions. Essential-
ly, under the assumption (I), the postulate III by H. Hatori [5] will be
equivalent to our assumptions (II) and (III).

The author expresses his thanks to Mr. Masashi Okamoto for his
valuable advices.
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