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1. Introduction

Let {X,}, (r=1,2,-..) be a sequence of mutually independent
random variables with the mean, variance and finite third order absolute
moment such as

(1°1) E(Xr)=0 ’ V(X,-)=0',2; ’ E(,Xrls)=ﬁg ’ (7':1, 29 °° ') ’

and let o?,,,:ﬁ‘, a2, /9?,,)=:V_‘, B:, and P,,=Bm/0 =), then it is well known
re=1 re=l

that, under the Liapunov’s conditions

(1.2) lim 0-(”)=w s lim p(,,)=0 ’

the standardized sum X(,,)=—1- i] X, converges in law to the standard
Ony 7=1

normal distribution N(0,1), as n—o. If all the X,’s are distributed
identically, then (1.1) becomes

1.1y EX,)=0, V(X)=0¢, E(X. )=, (r=1,2,..:).

Therefore the conditions (1.2) are automatically fulfilled since o2, =no*

and 0.,= 61__—@-, and the sum X,,,= 1 3 X, converges in law to

¥Yn o Vno it

N(0,1). The case of (1.1) with different ¢,’s or 8,’s is called the case

of unequal components and that of (1.1) the case of equal components.
Denote by fi.(t) and F|,(x) the characteristic function (cf.) and the

cumulative distribution function (cdf.) of X,,, respectively, while those

for the normal N(0, 1) by g(¢) and G(x).
The problem of evaluation of the approximation error

(1.3) D,,= _f?zgm | Feny(2)—G(2) |

is called the Liapunov problem, and many works has been done for it,
for example, A. Liapunov [1], [2], H. Cramér [3], C. G. Esseen [4],

and A. C. Berry [5]. A. C. Berry obtained the following numerical
evaluation
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(1.4) - D(”)é 1.88d(") ’ d(")=max Bi

’
1srsn G, 07

However, as was pointed out by P. L. Hsu [6], Berry’s computation is
invalidated by an error, and a corrected result

(1.5) Diny<2.031d,,,

has been given by K. Takano [7]. In the case of equal components,

this becomes

1.6 Dw=2.031%_ =£.

( ) (n)= ﬁ p s

Fourier analytical method used by these authors seems to be the only

one for attacking this problem, though it has an unremovable defect.

Perhaps the result (1.5) is the best one obtainable by this method.
Now, as for the difference of cf.’s, |fu.(t)—g(t)|, the following

evaluation formula

A1  FO-s0lSepwltrern(~L),  (t1sL),

C20m)

is usually used, where ¢, and ¢, are the constants independent of »n and
of other parameters. A numerical example was given by B. V. Gnedenko-
A. N. Kolmogoroff [8] (p. 202), for equal components case

A8 fwb-a0|sgfltren (=), (11s%E),

which seems to be the most accurate one hitherto published.

In the present paper, the author gives the general formula for
evaluating the difference | f,,(t)—g(t)| with numerical examples, one of
which is an improvement of (1.8) above. Evaluation problem of D,,, is
also reexamined using Berry’s inequality, and it will be shown that
Berry-Takano’s result is improved in some special cases when the values
of 0., are considerably large.

2. Evaluation of | fu,(t)—g(t)]

The following two lemmas offer a general method of evaluation in
each of the two cases, unequal components.

LEMMA 2.1 (Unequal component case)
Under the conditions (1.1) and (1.2) it holds that
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@) fw®-s0]ScotwltPexe {~(3-D)e}, (t1s ).

B(n)

(n)

E b(n)
5 lo?ﬂ)
le)=max (Blr 182’ * lgn)'

ProoF. The cf. of X,, is given by

for any p>max (2, ), where ¢ is a constant, and b,,=

(2.2) Fn®)=11 E {exp (it X,/ow)} .
where each factor of the right hand side is of the form
(2.3) E {exp (itX,[0)} =1+,(1) ,
with

1 o} 1 B} % *
2.4 ()= —— ’t’ Lrgxt, gF1<1.
(2.4 ¢.(t) N + 8 o |67

Let k& be an unspecified positive constant. Then, for the interval of ¢

1
[t S——,
kB0

it holds, since ¢,<8, (r=1,2, -+, n), that

(2.5)

(2'6) |¢r(t)] écl(k) ’ (’r=1; 2: ctty n) ’
where

_ 1
@.7) e(k)=> k’ e

Therefore, if the condition ¢(k)<1 is satisfied (and this is true if £=1),
the following expansion will be obtained by (2.3),

@28)  log E{exp (itX,/o)} =¢,(t)=%e,¢¢(t) .16 ]=<cfk),

with

2.9 o = = g huy * 00, .
2.9) c()l_l(k) r=1,2, -+, n)
From (2.2) and (2.8) it follows that

(2.10) log fut)=—2t+h()

where
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2.11) h(t)=—(15- Sorfrerl Sog) .

Tin) 2

From (2.4) and (2.5) we obtain

(2.12) sza®(LYitr, (=12, m),
O(n) .
where
1 1 1
2.13 =— 4=+ =
(2.13) 0=t 36w

hence, it follows from (2.11) that

(2.14) |h(8) | = c(k)0im [,
where

1,1
(2.15) c(k)—€+Ecz(k)ca(lc) .

Now, from (2.10) we have, since g(t)=e-*"?,

(2.16) Fe(t)=g(t)e™®
from which it follows that, for the interval (2.5),
(2.17) | fm(@®)—9@) | =g@) | h(E) | €™ .

Let p (>2) be a positive number. Then for the interval of ¢

pc(k)p(ﬂ)

it follows from (2.14) and (2.17) that

(2.18)

(2.19) [ f () —g(t) | = (k)00 | E[° exp ’/( - (%‘%)VZ ’

It must be noted that the interval (2.18) ought to be included by
that in (2.5), that is, the following inequality

1 < 1
pe(k)0%y — kB 0w

(2.20)

’

or equivalently

k 0} .
2.20)' L _<plw | ;
( o) =" b

must hold. The left hand side of the above inequality (2.20) is a
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monotone increasing function of k& (=1), and ¢(1)=5/6. Hence, if we
take a value of p such as

(2.21) p>max (2, % -b&—) ,

2
Oin)

then the equation in k&

k ot
2.22 ——=ple)
( ) C(k) b( n)

has one and only one solution k,=k(p). Putting c=c(k,), we obtain,
from (2.18) and (2.19), the result (2.1) and the proof of the lemma is
completed.

The following lemma is a special case of the above, and the proof
will be omitted.

LEmMMA 2.2 (Equal component case)
Under the condition (1.1) it holds that

1 1 1 v
2.23 o) —g(t) | <e—L1_p|t ] {—<_—_>}t2, (t §_>,
(2.28) | fm(t)—9(D)] cvnpllexp 2 o 2] T
for any p>2, where ¢ is a constant. -
In order to determine the value of ¢ for given p in the equal compo-

nents case, we must solve the following equation instead of (2.22),

k

2.24 v —po?
(2.24) o Do
where c(k) is the same as that in (2.15), i.e.,
(2.25) o(l)= 12+ -1
T2k*—36k—12

The values of c¢(k) and k/c(k) are tabulated in Table (2.1) below, with
step 0.02 for 1.12<£=<3.00 and with step 0.10 for 3.00=<%=<6.00.
In general, since p=1, it is sufficient to use the equation

k

(2.26) o

P,

instead of (2.24) in the case of equal components, therefore putting
- p=4, we obtain

_ _1_ 31 413,224 1/7_
@27) | f(t)—9(t)| 086010 p*|t{e% <'”§1.44040p3)’
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TABLE (2.1)

k c(k) kle(k)

.12 0.55592  2.01464
.14 0.53093 2.14713
.16  0.50902 2.27888
.18 0.48963  2.40993
.20 0.47237 2.54034

.22 0.45690 2.67016
.24 0.44257 2.80178
26 0.43037 2.92767
0.41878  3.05645
0.40825 3.18428

0.39858  3.31169
0.38968 3.43871
0.38144  3.56537
0.37381  3.69169
0.36671 3.81768

28

30

32

34

36

38

40

42 0.36009 3.94338
.44 0.35391 4.06879
.46 0.34812 4.19394
48
50
52
54
56
58
60
62
64
66

c(k) kic(k)

0.26464 7.63293
0.26307 7.75436
0.26156  7.87573
0.26009  7.99705
0.25867 8.11832

0.25729  8.23953
0.25595  8.36070
0.25466 8.48183
0.25340  8.60291
0.25217  8.72395

0.25099  8.84495
0.24983  8.96591
0.24871  9.08683
0.24761  9.20772
0.24655 9.32858

0.24551  9.44940
0.24450 9.57019
0.24352  9.69095
0.24256  9.81168
0.24163  9.93239

0.24072 10.05306
0.23983 10.17372
. 10.29434
0.23811 10.41495
0.23729 10.53553

0.23648 10.65608
0.23569 10.77662
0.23492 10.89714
0.23416 11.01763
0.23343 11.13811

0.23271 11.25857
0.23200 11.37901
0.23131 11.49944
0.23049 11.62710
0.22997 11.74024

0.22933 11.86061
0.22869 11.98089
0.22807 12.10132
0.22746 12.22166
0.22686 12.34198

0.22628 12.46229
0.22570 12.58258
0.22514 12.70287
0.22459 12.82314
0.22405 12.94340

c(k) kle(k)

0.22352 13.06365
0.22299 13.18389
0.22248 13.30412
0.22198 13.42434
0.22149 1354455

0.21915 14.14547
0.21700 14.74620
0.21502 15.34676
0.21320 15.94719
0.21151 16.54749

0.20994 17.14769
0.20847 17.74781
0.20710 18.34785
0.20582 18.93862
0.20462 19.54774

0.20349 20.14762
0.20243 20.74745
0.20143 21.34725
0.20048 21.94702
0.19955 22.55054

0.19873 23.14649
0.19792 23.74620
0.19715 24.34589
0.19654 24.93025
0.19573 25.54524

0.19506 26.14490
0.19443 26.74455
0.19382 27.34420
0.19324 27.94384
0.19268 28.54349

0.19215 29.14312
0.19164 29.74276
0.19115 30.34240
0.19067 30.94204
0.19022 31.54168

0.16666 o

0.34268 4.31884
0.33757 4.44351

0.33257 4.56795
0.32820 4.69219
0.32390 4.81623
0.31983  4.94008
0.31597 5.06375

0.31230 5.18726
0.30881 5.31062
0.30549 5.43382
.68 0.30232 5.55688
.70 0.29930 5.67981

.72 0.29641 5.80261
.74 0.29365 5.92529
.76 0.29101 6.04785
.78 0.28847 6.17031
.80 0.28604 6.29266

.82 0.28371 6.41491
0.28147  6.53707
0.27931 6.65914
0.27723 6.78112
0.27524  6.90303

0.27331  7.02485
0.27145 7.14660
0.26966 7.26824
0.26772  7.39570
0.26626 7.51145

QUGN NANGTOT LR R R R R AWK WHWWw WD
2R3z gauiks 38833 BakE 3883 gakks ey | ™

D R e e e e e e e e e e e e e e e e bt e e e e
SXREBV BJIIN 3IZ2T BLFLY BEERE BYRRE LRYRN VR0 5[ T
[=]
‘%

SBEES SBRX
DN PONRN BNNDND PEPDNN PNNDN BPNRD NRDNR NRBDD PN

which is an improvement of the result (1.8) by B. V. Gnedenko and
A. N. Kolmogoroff. Giving the different values to p, further examples
will be shown. If p=3, it holds that

3,-t2/8 1/—
2.28) | fm(t)—g(t)|=0. 430331/—9 [tPe=, (It'§1,2911;4p3) ’

if p=5,

~3t%1 V'n
2.29 () —9(t)|=0.31984—— % |t |Pe~2"110 | tl=—" " ),
(2.29) | fim(®)—9(t)] 1/ ——=0"|t|% (I | 1.59920‘03)
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and so on.
If p* is known a priori to be greater or equal to m (>1), then we
can use the equation

(2.30) —;T)=mp ’

and the following examples are obtained. Let p=4. then if m=1.5,

1 3,-t3/4 1/n
. w(t(—g(t)| <0.29366—— "
2381) | fmlt(—g(t)|< =Pltle (1 I<117464p>

if m=3,

3¢ —~t%/4 vVin
(2.32) | fam(t)—9()[=0. 22370 P”Itl ", (Itl—oglgop)

and so forth.

Finally it will be remarked that, if the value of 0%,/b., is known,
then it is possible to obtain the numerical evaluations by the same
procedures as above, in the case of unequal components too.

3. Error estimation

Let H(x) be a function non-negative, integrable and symmetric with
respect to £=0, and let

3.1) h(t)=517;§l H(@)evdz , w=S:H(m)dw .

Referring to the second section of A. C. Berry [5], we can easily find
that the inequality

3.2) ‘/g D(":,)<3S:):m H(z)dx—2w)< S:, [ h()] [ f(n)(t)t“ g(t) ’dt ,

holds, where D},=V" 7r/_2D(,,,. If we choose T', H(x) and h(t) such as

(3.3) T= H(x)= 2(1—cos T'x) ,
pcp(n) x?
h(t)={T—t , (=T,
0, (t>T),

then (8.2) becomes

TD‘n "
(3.4) '.1*1);*:.)(35o (’L‘f'ﬁdw—z)g\/%:@—t)

f(n)(t)—g(t) ‘dt ,
t



128 S. IKEDA

which is called the Berry’s inequality.
Let

(3.5) A,(u):uis(%_é_.@%Jrg%_..._@jf;&zj)!)_z}, (j: even)

and, culculating the right-hand member of (3.4) using Lemma 2.1 and

let

3.6 Bp=F_1_/ »
(3.6) =5 —15/2

Then, for w=TD{,, it follows from (3.4) that
(3.7 A (w)=<B(p) .

The values of A,(u) for j=6 are listed in the Table (3.1), and the values
of B(p) are listed in the Table (3.2).

Now, we state the procedure of estimating the error D, of normal
approximation. Let %, be the minimum value of u satisfying the condition

(3.8) B(p)=A,(u) .
TABLE (3.1)

% As(u) % As(w) % Ag(u)
2.65 0.41795 2.86 0.90833 3.07 1.41162
2.66 0.44085 2.87 0.93208 3.08 1.43574
2.67 0.46396 2.88 0.95587 3.09 1.45987
2.68 0.48682 2.89 0-97968 3.10 1.48399
2.69 0.50987 2.90 1.00410 3.11 1.50813
2.70 0.53298 2.91 1.02737 3.12 1.53226
2.71 0.55613 2.92 1.05176 3.13 1.55640
2.72 °  0.57933 2.93 1.07516 3.14 1.58053
2.73 0.60257 2.94 1.09909 3.15 1.60468
2.74 0.62586 2.95 1.12304
2.75 0.64919 2.96 1.14752 3.20 1.72534
2.76 0.67284 2.97 1.17099 3.25 1.84586
2.77 0.69602 2.98 1.19500 3.30 1.96612
2.78 0.71943 2.99 1.21902 3.35 2.08603
2.79 0.74298 3.00 1.24305 3.40 2.20547
2.80 0.76645 3.01 1.26608 3.50 2.44253
2.81 0.79001 3.02 1.29116 3.60 2.67657
2.82 0.81361 3.03 1.31523 3.70 2.94016
2.83 0.83724 3.04 1.33932 3.80 3.13284
2.84 0.86091 3.05 1.36341 3.90 3.35392
2.85 0.88460 3.06 1.38751 4.00 3.56961
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TABLE (3.2)

P B(p) ) B(p) P B(p)
2.8 3.67336 3.8 1.26795 4.8 0.73451
2.9 3.13296 3.9 1.18446 4.9 0.70407
3.0 2.72069 4.0 1.11072 5.0 0.69341
3.1 2.39724 4.1 1.04516
3.2 2.13758 4.2 0.98653 5.5 0.56259
3.3 1.92513 4.3 0.93381 6.0 0.48095
3.4 1.74850 4.4 0.88619 6.5 0.41952
3.5 1.59962 4.5 0.84297 7.0 0.37171
3.6 1.47262 4.6 0.80359 7.5 0.33350
3.7 1.36316 4.7 0.76757 8.0 0.30229

Then it holds that

(3.9) TD!, =u, ,

from which we obtain

(3.10) Dews ‘/ 2 U, -

Since the values of u, and ¢ are determined if the value of p is given,
for the optimum evaluation we must choose the value of p such that
the value of pu,c becomes as small as possible. The following examples
are for the case of equal components.

First, since p=1, we have, putting p=4,
(3.11) Dy <3.39036—2_

V'

which is an undesirable result compared with that of (1.6) by Berry-
Takano. But, if the value of p is large, our method will offer the
estimation more accurate than that in (1.6), as will be seen in the fol-
lowing examples.

If 0*=4, then letting p=3.5, we obtain

(3.12) D, <1. 93580-—% ,

if p*=5, letting p=3.3,

(3.13) Depy=1. 840767—

and, if 0°>6, letting p=3.3,
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3
(3.14) D(n)§1.778031/L_ﬁ ,
and so on.

The author expresses his thanks to Prof. Junjiro Ogawa for his
original suggestion to the problem. Thanks are also due to Mr. Masashi
Okamoto for his valuable advices.
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