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1. Introduction.

Since the work by Dodge and Romig appeared (1929), various sampl-
ing inspection plans have been elaborated by many authors. However,
many sampling inspection plans of them seem not to be satisfactory,
because, first, they are based on the assumption that the distribution
which the number of defectives in lot follows is unknown, and, second,
in them, the analysis of costs related to the activity of sampling inspec-
tions and its result is not completely considered.

F. J. Anscombe [1] pointed out the second point and treated con-
tinuous sampling inspection plans taking into account various costs.

In this paper, we shall discuss about the single sampling inspection
plans taking into account the a priori distribution of the number of
defectives in lot. First, we state the main differences between Dodge-
Romig’s sampling inspection plan (D.R.S.I.P.) and ours.

1) In D.R.S.I.P., the average fraction defective of lot is only one
available information about the manufa process. However, in
our inspection plan, we treat the prb i der the assumption that
the a priori distribution of the fre ( tives of lots is known.
This treatment is based on the possil lidity of construction
of the a priori distribution from the e

2) In D.R.S.LP., they take into
and inspection, which is assumed to be nal to the number of
items inspected. However, we, further, consider two loss functions that
represent losses incurred by the acceptance or rejection of the lot of a
given fraction defective.

38) In D.R.S.I.P., the optimal sampling inspection plan is decided
to be one which minimizes the average sampling number required for
the lot of the same fraction defective as the average one of the
manufacturing process. The minimization here is considered under the
restriction that the consumer’s risk or AOQL must not be larger than
the previously specified value. But, in our case, the optimal sampling
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inspection plan is determined as one which minimizes the sum of the
decision-risk and inspection cost, where the decision-risk is given taking
expectation of sum: of the above mentioned loss functions using the a
priori distribution.

Further analysis of various costs attached to sampling inspection will
be made in the near future by the present author. In this paper,
Bayes procedure is introduced into inspection scheme and examples are
treated where the a priori distribution is of Beta type.

2. Bayes procedure.

Our inspection procedure is as follows:

1. Take a random sample of size n from each lot.

2. Inspect all items involved in the sample.

3. Sentence the lot to be accepted if the number of defectives in

the sample is not larger than the specified number c.

4. Sentence the lot to be rejected if the number of defectives is

larger than c.
Therefore, our sampling inspection scheme is specified by (%, c) just like
the Dodge-Romig’s single sampling inspection plan. However, we want
to select an optimal sampl inspection scheme using the a priori dis-
tribution of fraction defe Jot, two loss functions and inspection
cost.

3 is N and the a priori distribution
7 p shows the fraction defective of
lot. Further, let us pes due to the acéeptance and rejec-
tion of the lot of f sctive p by L,p) and L,(p), respective-
ly, where L,(p) is monotone decreasing, L,(p) is monotone increasing and
L,(0)=L,1)=0.

Now, the probability of the acceptance of the lot of fraction defective
p by the sampling scheme (n, ¢) is

@.1) (AR

and the probability of the rejection is

@.2) 1-5(MP)2D)G)

Therefore, the expected loss of the inspection procedure (n, c) for the

Let us assume
function is denoted
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lot of fraction defective p is

@.3) rn, | p)= SLe(P)AAR) /(3
+L@1-3(P )N O

Further, the decision-risk attached to our inspection procedure (n, ¢) is
obtained by taking the expectation of r(n, ¢|p) with respect to F(p);
that is

@4 R, o=|rm, o pDiFE)

: : ()
[ LmaFr@+5 | {Ll(p)~L2<p)}—7v—)— dF ) .
n
Let the inspection cost for a sample of size n be S(n), where S(n)
is monotone increasing and hm S(n)=co. Thus, the total risk suffered
by the sampling inspection plan (n, ¢) is the sum of the decision-risk

and the inspection cost, if both are evaluated by means of a common
unit, that is

(2.5) T(n, ¢)=R(n, ¢)+S(n) .

Then, our problem is to obtain the (n, ¢) which minimizes the total risk.
This problem is very difficult to solve anufytlcally But, the following
lemma will be useful.

LEMMA. If for some n and 4,

26) [ o)~ Loy (PN NPV arw =0
holds, then
@) [ -y ()N JaFw =0

and the strict inequality of (2.6) results in the strict inequality of (2.7).
ProoF. Let p, be such a point that L,(p)=L.,p). Then (2.6) means
the following inequality,

(2.8) [ 2o - oy (NP N 2P )aFw)
| 2( wm-ney ()N e
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Since
(Np)(N—Np)=Np—i+1 ._m—i+l (Np )(N—_Np
1 n—1 5 N—Np—n+i\i—1/\n—i+1
and
_N?E___’_;_‘i_ s (1< Np)
N—Np—n+1

is monotone increasing function of p, we obtain

Np,—i+1 | n—i+1 ? _ Np\/ N—Np
®9 == N—Np.,—n+igo ORI G Pt

(" oLy ()N )erw

and
@10) [ me-Len(F)(N, 2P )ire

Np—i+l  n—i+1 S‘ _ Np\( N—Np
o] JREZLC) Len(NP) (AR )iFm -

From (2.9) and (2.10), we obtain
(2.11) [ -ne (Y)Y N)aFe)
2. @wo-Len () (2 )erm

which proves the lemma.

This lemma teaches us how to select the value of ¢ in order to
minimize R(n, ¢) for any fixed sample size. It assures the existence of
a integral valued function 4,(n) such that 0<7(n)<n and '

@12) [ 1zm-Lop ()N, F)aFm=0, for any i i<ifn)
and

(L@ — Lo ()N, P)ar@ >0, for any i im<isn.

Therefore, to minimize R(n, ¢) for a fixed =, it suffices to determine
the value of ¢ as 4((n). Thus, for a fixed sample size », the optimal
sampling inspection plan is specified as (n, i,(n)). Further, the optimal
sample size can be determined taking into account the inspection cost
S(n). That is, the optimal sample size », can be determined as the
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value of » which minimizes T'(n, i(n)). The existence of 7, is obvious,
because R(n, i,(n)) is monotone decreasing function of » and, on the
contrary, S(n) is monotone increasing and S(n)—o when n—w.

Now, let us consider the case where the lot size is large enough to
be able to replace the hypergeometric distribution by the binomial dis-
tribution and introduce a lemma which shows the method of selection
of ¢ for each fixed sample size n. In the binomial case, the decision-
risk function is ’

218) R, o= LodF@)+5 (}) Lo - LeYr - dFe) .
and the total risk is

T(n, c)=Ry(n, c)+S(n) .

Before we consider the minimization of T(n, c), we can obtain the value
of ¢ which minimizes R,(n, ¢) for each fixed n. To obtain such values
of ¢, the following lemma will be useful.

LEmMA. If
@1 [ {LO-LEWa-—pr-dFes0 for some i, (<isn),
then
(2.15) [ L) Lo p=(—pr-dFm)=0

and strict inequality of (2.14) results in the strict inequality of (2.15)
PROOF. Let p, be such a point that L,(p))=L.p,). From (2.14), we
obtain

[ Lo-Leyra—pr-aFe) 2| {Le)-LE}r0-pr-dFe)

or

(2.16) [ L) - L) 2p - p )

2|, L)L) Lo —pr- i)

But, 1_p_ is a monotone increasing when 0<p<1. If 0<p<p, then

L < P and if p,<p<1 then <P, Therefore,
1-p 1-p, 1- p 1-p
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2 L)~ L —py-dF ()

1
22| (L)L) 1-php - HdF ).
— Do 2
This means (2.9). The final statement of the lemma is easily verified.
By the above lemma, we can assure the existence of the function
1(n)* such that 0<14(n)<n and

2.17) L@ - Lo} a-pr-dF@=0  for any i; 0sisi(n)
and

[ L@ - L@ PA—p~F@)>0 for any ; im<isn.

From this fact and (2.6), we can conclude that, for fixed sample size n,
the value of ¢ which minimizes R,(n, ¢) is to be i,(n). In other words,
when the sample size is fixed to be n, then the optimal sampling inspec-
tion plan is (n, %,(n)).

The optimal size of sample is determined as the value of » which
minimizes T(n, i(n)). Obviously such a value exists, because R,(n, (1))
is monotone decreasing, S(n) is monotone increasing and S(n)—, when

n—oo.

3. Example

Let us assume that the a priori distribution of the fraction defective
is a Beta distribution, that is;

J— — 1 A=1{1 _ mp-1
(3.1) dF(p)=f(p)dp= Bov, #)p (1-py-dp. (20, £=0)
Further, we assume that
(3.2) L(p)=ap*
L(p)=BQ1—p) (u, v>0)

Then, by (2.6), we obtain

@3 Rin, =] 1-pr g 1—prdp

* The existence of iy(n) may be reduced to the monotone likelihood ratio property of
the binomial distribution, which studied by S. Karlin and H. Rubin [2].



ON SAMPLING INSPECTION PLANS 77

+g(?>gl{“p"‘/9(1“1°)"}p‘(l—p)"“lﬁp“(l—p)“-‘dp
=B Aoy

+§(ﬁ 5 (g){aj:pwm_l(l gy

"BS:”M_I(I_p)”+""+"—ldp}='3——€§?): v;—)ﬂ)

+B(x1+,u)g( ){aB(u+7,+x n—i+)—BB(+)\, v+n—i+p}

In this case, the function i,(n) is obtained by the above lemma, that is,
i(n) is the maximum integral value of i’s which satisfy the following
inequality,

3.4) aBu+i+N, n—i+p)—BBE+N, v+n—i+p)<0

Especially, when u=v=1, (3.4) can be reduced to the following simple
formula;

(3.5) a@@+r)—Bm—i+¢)=0
or
B(n+ E)—oz)»2 i
a+B
Therefore, in this case,
(3.6) io(n) = [B(L"'P)_m“]

where [ ] denotes the Gauss symbol. From (8.6), it is easily seen that
to(n+1)—1,(n)=0 or 1.

Now, we must obtain the optimal sample size which minimizes
T(n, t(n)). Such a sample size can be obtained as the minimum integral
value of n such that ‘

3.7 T(n+1, t(n+1))—T(n, i(n))=0
that is,

[ (n+1)

(3-8) §<n+1){aB(z+x+1 n+1—i+)—BB(i+N, n+l—itp+1)}

i(m)
- é(?){aB(i+x+1, n—=i+¢)—BBE+N, n—i+p+1)}
+8S(n+1)—S(n) 20,
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(3.8) can be modified as follows.
T(n+1, i(n+1))—T(n, i(n))

t(n) .
=(n+7\,+p)(11+7\,+#+1) ‘% [a{(n_@_,_p)(mi-l)

— (%)} a0 —g{—i+prn(* 1)

—rtp+)(}) =i+ ) [B+x, n—itpy
+Z+8(n+1)—S(n)=0

where,
(qjog,,tll)) {aB(i(n+1)+1+1, n+1—i(n+1)+p)
(3.9) Z—=1 —BB(i(n+1)+r, n+1—i(n+1)+p+1)}
-, i (1) =i(n) +1
0 , if 4(n+1)=1,(n)

Thus the optimal sample size %, can be obtained by means of numerical
computation.

4. Conclusion.

In D.R.S.I.P., the sampling inspection plan adopted has no relation
with the state of the production process except its average fraction
defective. We think this fact shows an important weak-point of Dodge-
Remng’s plan. In this paper, we have shown another sampling scheme,
where we use more information about the production process, given in
the form of the a priori distribution. Therefore, in actual case, it is
important to estimate the a priori distribution as exactly as possible.
The role of the a prior distribution in sampling inspection plan was
emphasized by G. A. Barnard [3].
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