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1. Introduction.

In this paper, we want to give an estimator of the solution of
Dirichlet’s problem by Monte Carlo method (which is essentially the same
as in Muller’s paper [1]), and to evaluate the mean square error of the
estimator and the mean number of steps needed in the Monte Carlo
method. These mean values are closely connected to the mean sojourn
times of certain Brownian hitting motions. Therefore we shall proceed
with the evaluation by using them.

2. Definitions.

Let D be a bounded domain in the m-dimensional Euclidian space
R", whose boundary B is sufficiently smooth. Following Muller [1] we
define a spherical process as follows. Let K(z) be a maximum sphere
contained in D=D-+B with a fixed centre x (x e D) and of radlus o(x),
and k(x) its boundary.

"Definition of spherical process S(x)= {x,, x;, *-+, w,,} (x e D) -

1) z,=x .

2) If the sequence of random variables x,, - --, x, is already defined,
then we define z,,, as a random variable which is uniformly distributed

. 1

on k(x,) under the condition x,, ,, «--, ®,.

Let N=inf{n: p(x,)<8}. The process S(x, 8)= {%,, «-+, 2y} is called -
truncated spherical process, which is given by stopping S(x) after N-steps.
The fact that N is almost surely finite is easily proved, but we postpone
the proof up to section 4.

Now let f be a bounded continuous function on B and = be its
Dirichlet’s solution with respect to D, i.e.,

Au=0 in D,
u=f on B.
For the value of u(x)(x € D), we construct its estimator U(x) as follows:

1) We construct the process S(z, o)
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2) and set U(x)=f(xy)
where Z, is any point on k(xy)N B.

3. Evaluation of the mean square error of U(x).

In this section we take the following assumption A for wu.
A. u(x) satisfies Lipschitz’ condition uniformly in D;
|u@)—u(y) |<c|le—y]||  for all z,ye D,®
where || x—y || represents a Euclidian distance between = and .
Setting
M=sup | f(x) |=sup | u(z) |
TEB €D
L=sup|lz—y||
z,y€ED

we define the intermediate estimator U*(x) by
UX(x)=u(xy) .

LEMMA 1. E(U*@) |2y =+, 2, N=k)=u(x,)®
especially EX( U *(@))=u(x)

PRrooF. For the process S(x)={x,, ++-, ,, -~+} we have
E{u(®pse1) | @1y ==y Ta} =E{u(@0s,) | o} =u(x)

by the mean value theorem of the harmonic function w. Therefore, the
process {u(x,), «--, u(x,), ---} is a martingale with respeect to x;, ---,
Ly ooo.  As {u(x,), »++, u(xy)} is a stopped process constructed from
{u(®y), ==, u(x,), + ==}, {w(xy), <+ +,u(xy)} itself is a martingale with respect
to z,, -+, x,, (see Doob [2] chap. 7). Especially E(U*(x)|x,, «~-, 2, N=k)=
E(u(zy)|zr, N=k)=u(x:)

LEMMA 2. F=FE{U*(x)—u(x)}*<c’L?

PROOF. a*=E(u(ry) —u(x,))’

=E{E{(uw(zy)—u(x)Y(N>1)
+(u(@,) —u(@o)) Y(N>0) | 2y, x,}}*
(1) =E{(w(2y)—uw(z))1(N>1)} + E{(u(2,) —u (%)) x(N>0)}
by Lemma 1

1 For sufficiently smooth B and f{(z), this condition A is always satisfied. It is
desirable to give the simple evaluation of ¢ from B and f.

For example, if D is a 2-dimensional circle with radius L and centre origin and if the bound-
ary function f(6)=f(re®) is twice differentiable, then e=<<v/ -12; K. Ll where K=S(f 7(8))3dg.

2) E(X|Y) represents a conditional expectation of X under Y.
3) x(A) is a characteristic function of the event A.
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= :2_0 E{((@pe)—u(@))x(N>k)}  for N<oo as.’

= S E{Cp() N>R},
for Ly € k(wlc) I u(xk+1)_u(wk) |§C ” Te1— T Hch(xk) )

On the other hand, we can construct a Brownian motion %(f) starting
from %(0)=x=2x, and put

o,=inf{t: %(t) ¢ K(x,)} and % =2(0,)

N=inf{n: p(%,)<8}
Then, processes {XT;,+++, Ty, ", 1\7} and {x,, «++,%,, +-+, N} have the same
joint distribution.
Setting dz=inf{t: %(t) e B}, we have
B@D)Z 3 B0 0)

(2) ZE| 3, UNZ0)@i—02) | 8.}
= S BN >k)ap(@))

where a is a constant (a>0) such that

E{#(0) | 2(t)=x} =ap’
where o(p)=inf{s—t: s>t | Z(s)—x(t) ||>p} .

But DcK(z, L)={y: {|z—y|| <L}, therefore,
(3) E(G5)< E(3(L) | 2(0)=2)=alL’
From (1), (2) and (3), we get
a*<cll’.
THEOREM We have
(4) o(x)=E(U(x)—u(x))<c*8*+4Mcd+cL* .

When U(zx), «--, U,(x) are n-independent estimators of w(x), we have

(5) a,,(x)ﬁ:E(% ; U,’,(x)-u(x))’gcﬂsw%(zxMca+c2L2) X
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Proor. We shall prove only (5). ((4) is a special case of (5).)

0,.(00)’=%{E(Z( U(@)— Ui (@) + Z(Ui(x)— Ux(2))} -

Since | Un(x)— Uk () |[=] w(@y™)—u(@s) |=co(zi) = cd
| Uk(@)—uw) |<2M,  E(Ui(x)=u(®),

and {Ugx), U¥(x)} and {Uyz), U¥(x)} are independent (k+!l), we get
0,,(90)’g%[c’82n2+2McSn+62(m)n} :

which proves (5).
Example. Let D be a circle with redius L, and centre origin, and

F(@)=f(Le*y=c,L,sind. Thenc¢,=c L1=% and 0(0)2=%62L§g-513—c*L2 .

4. Evaluation of the mean number of steps, E(N).

In this section we assume that D is a convex domain (which may
be unbounded). On it we can construct a process S(z, ) and p=p(x)=
inf [[y—=||.

Let D* be an upper half domain,

D¥*={x: z=(x', ---,2™), x>0}
and set x*=(0,0,--+,0),

We construct a process S*(z*, §*). Then, by Muller [1] we have E(N)=<
E(N*). Therefore, to evaluate the upper bound of E(N), we can assume
that D=D* and x=x*=(p, 0, ---0). Now, we consider the Brownian
hitting process {¥(t)} starting from z whose generator is given by

(m‘)’(i—a—a—‘;) in D®. Then this process has the following properties ([3]).
i=1 0%

(p. 1) #(t) is a continuous (a.s.) strong Markov process in D.
(p. 2) Let G be a bounded domain in D and McD. Then

(| 1u@oMs s0)=2)= gutz, y)all—)zdyl, e, dy”

4 This process is given by the random change of time from the Brownian motion,
that is, '
(O =F*(S-1(t) v\ % __dv
. O=2¥S-1@®), Sw)= o
where &* is a Brownian process.
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where Yy(-) is an indicator function of set M, g,(x, ¥) is a Green’s func-
tion of domain D, and g,=inf{t: =(t)¢ G}.

(. 8) Ifgy,ee+,0,,%%,&,e+,&,++,Nare defined as in the proof of lemma

2 (in section 2), then {&,, +++, %, +++, N} and {&,, <+, %, +++, N} of
S(x) have the same distribution.

As D is assumed to be the upper half domain, we get

K@)={y: [ly—z|l<p(x)=2'} .
Let K(x) be an upper half of sphere K(z), i.e.,

K@)={y: y=@" -+ +,y"), y*>7", y € K(x)}
LEMMA 3.

(6) B([ 1 treep @OM 2,) 2 52

PROOF. For m =8, the left hand side of (6) is equal to
B([ tzp@®)it | 50) = 2,) (o=intt: 3(t)¢ K(a) -
By using the explicit form of Green’s function for the sphere in (p.2),
‘ (o=p(x))
_[ 1 meaf 1 1 d S dw 0= Y —at
gowm(m—Z)p pm? p’”"> P @ (o+pcosd) €08 0(x)

where w,, is the volume of the surface of unit m-sphere, dw is a volume
element, and Q is an upper half part of it. Then,

=[ 2 —p—prap | 90

0 W,(M—2) 2(14p cos 8)
AP 1 o vngp>_ 1
2 8 Som——Z(p p)dpz 16m
THEOREM E(N)< (1 +log !i(;“_))mm (o(x)>5) .

PrROOF. Let D, be a domain D,={y: y'>8}cD. Then, for >3,
K(x)c D,. Therefore,

& otz S B((7 1o >)
=5 B{B([ " v p GO @ > ) | 2,)

1 ~ 1
> 1S&))>— F
25 L E@>8)z-E®)

8) For m=2, the proof is the same, except the explicit form for Green’s function.



54 MINORU MOTOO

On the other hand, setting p=p(x), by using the explicit form of Green’s
function for upper half domain, we have

E{rxpi(zz(t))dt}=g‘;w1 di+p§ (l),—1+lo L

which proves the theorem.
Remark : Using the above auxiliary process, we can also show

E(N)> Cl<log %’”))m

for certain constant C, independent of 8, p(x) and m (o(x)>6), when D=
{y:y'>0}.
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