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§ 0. Introduction

We had an experimental study on the channels of communication in
several villages in the Téhoku district, Japan, a few years ago (see [1]
and [2]). The aim of the study was to observe through what types of
channels a certain information was communicated and what patterns of
channels were formed in a social group. Of course, the information
was supposed to be so simple that the deformation of its contents was
negligible in such communications.

In the present report, we shall study a stochastic model in which a
certain information I is communicated from an information source to
persons or from a person to another in a system consisting of a social
group = and an information source S. We are interested in the pattern
of communication formed in our stochastic model, and in estimating the
ratio of the two intensities of communications from S to a person and
from a person to another. For this purpose, we shall introduce some
random variables suitable for characterizing the pattern of communication,
and investigate the stochastic behavior of them. But the assumption of
homogeneity (both in time and in persons) of communication in the
social group plays an essential role in our theory, and our method does
not apply to inhomogeneous cases. We shall discuss in the near future
the stochastic model for more general groups without such an assumption.

§ 1. Formulation of the problem

Consider a social group 7 consisting of M persons and an information
source S which has a function to communicate constantly a certain
information I to persons in z#. Suppose that the information I starts
from S and is communicated from a person to another in course of
time. Following this process up to time ¢, we should obtain a tree-
shaped pattern as is illustrated in Fig. 1. By the pattern U(f) we
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mean the shape of such a tree, regardless of when or to whom the
information is communicated. Therefore, U(t) represents only the dia-
grammatic pattern of the tree produced up to time ¢t. We make some
stochastic assumptions on our model, and regard U(f) as a random

variable representing the state of = at time ¢.
Initial state of T at time O

Suppose that in the time
interval (¢, {+At) the transmission
of I from person A to person B
has probability MA, B; t)At+o(At),
while the transmission of I from
the information source S to person
A has probability p(A; t)At+o(At),
and that the probability of two
or more transmissions is o(At).

We shall consider in this
paper a stochastic model in which
MA, B;t) is a constant A and
M(A; t) is a constant p. Further,
assume that all possible communi-

cations in the group m are made
mutually independently, and that

. . a person having information I
the events which occur in the time ¢ pe g

o : g person not having |
—>: path of communication
Fig. 1.

interval (¢, t+At) are independent
of the past history of the system
up to time t.

Now, the random variable U(t) is so complicated that it might be
difficult to treat U(t) itself as a Markov process. We shall, therefore,
introduce some random variables to characterize U(t), say, N(t), K(t) and
L(t) which are defined as follows. Let N(¢) be the random variable
representing the number of persons who have received the information
Iup to time t; K(t) the number of persons who have received I
but have not yet communicated it to any of others up to time t; L(t)
the number of persons who have received I directly from the information
source S up to time t. These random variables can be determined
uniquely as functions of U(t). Their probability distributions will be
studied in the following sections.
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The list of notations often used throughout the paper is given

below :
Notations
b
M
I
S :
Ui):

N(t):

K():

L(t) :

social group under consideration.

size of m, that is, the number of the members of .

a certain information.

information source of I.

random variable representing the pattern of communication
in © up to time ¢.

random variable which represents the number of persons
having received I up to time t.

random variable which represents the number of persons
who have received I but not yet communicated it to any other
person up to time ¢.

random variable which represents the number of persons
who have received I directly from S up to time ¢.

A, (t): state of 7 at time ¢ such that N(t)=n.
A, (t): state of = at time ¢ such that N(¢)== and K(t)=k.
Ak (t) . state of 7 at time t such that N(t)=n and L(t)=l.
P, ()=Pr {N({t)=n}
P, (t)=Pr {N(t)=n and K(t)=k}
Pr,(t)=Pr {N(t)=n and L(t)=1}

Par=Pr {K(t)=Fk|N(@t)=n},

i.e., the conditional probability that K(t)=Fk, given N(t)=n.

ph=Pr {L@®)=1|N()=n},

i.e., the conditional probability that L(t)=I, given N(t)=n.

§ 2. Probability distribution of patterns

2.1. DISTRIBUTION OF N(t)
We say that = is in state A,(f) at time ¢, if the random variable
N(t) takes value n (0<n<M) at time ¢.

Then,

under the assumption of our stochastic model mentioned in

the preceding section, the probabilities that the transitions A, (t)—
A, (t+At) and A, ,(t)—A,(t-+At) will occur in a sufficiently small time
interval (¢, t+At) are, respectively, {1—(M—n)(nr+p) « At} +o0(At) and
(M—n+1){(n—1)A+p}At+0(At). Therefore, as is well known in the
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theory of birth process (see [3]), the probability P,(t) that N(t)=n satisfies
the equation

P (t+At)=(1—c,At)P,(t)+ o ALP,_(t)+0(AL) .
Taking limit for At—0, we get the following differential equations:
Pit)=—c Py()tCoiPri(t), (1=n=M) (2.1)
and
Pi(t)=—B,Py(t) , (2.2)

where a,=n(M—n)\, B,=(M—n)Y, c,=a,+pB,.
The solutions of these equations are easily obtained under the initial
conditions P(0)=1, P(n)=0 (1=n<M).
In fact, we have
Pt)=exp (—Bit), (2.3)

and if ¢;#¢, whenever 0<i<j<n, we have
Pn(t) =exp (_ cnt)gt exp (ch)cn-IPn—l(T)dT
0

A exp (—c¢idt)
— o4 0,.—1‘%, (€o—€) = *(C-1—€ )€ +1—C0)* + + (Car—C0) @4

The solutions for the case that some of ¢,’s are equal are easily obtained
by a slight modification.

2.2. JOINT DISTRIBUTION OF N(t) AND K(t).

Suppose we take two-dimensional random variable (N(¢), K(t)) as
a suitable representation of the pattern U(f) up to time ¢t. We
consider the state A, .(t) of the group 7 at time ¢, in which N(¢) and
K(t) take values » and k, respectively (0<k<n<M). Then, the proba-
bility that the transitions A, .(t)—A,(t+At), A, . (t)—A,(t+Al) and
Apg -1()— A, (t+4E) occur in a sufficiently small time interval (¢, t+At)
are, respectively, {1—(M—n)(nrn+p)At}+o(At), E(M—n+1)AAt+o(At),
and (M—n-+1){(n—Ek)\+ p} At+o(At).

Therefore, the probabilities P, (t)=Pr{N(t)== and K(t)=k} satisfy
the equation

Pt + A1) =(1—CaAL) Py () + -y, sALP,_; 1(?)
F(fa-14-1FBn-)ALPy 1 a(t)F0(AD) ,  1sk=nsM

and
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Py ((t+At)=(1—BAL)P, (t)+0(At) ,
where a,=M(M—n), By=MUM—n), ¢,=0ys+ By
d,,k=7\,k(M—n) ’ fn,k':)\'(n—'k)(M_n) .
From these equations, we get the following differential equations:
nik(t) = — Py () 4+ ey xPr-1,i(t)
+(fa-rk-1Pr-1)Pa-1-1(0) , 1sksn=M (2.5)
Pé,o(t)= _BoPo,o(t) . (2.6)
These differential equations, under the initial conditions P,(0)=1
and P, (0)=0 (1=<k<n=<M), satisfy the recursive formulae

P, (t)=exp (—yt)| exP (€47) {dn-ssPacss(?)
+(fa-1,6-1FBa-D)Pr-11-1(0)} AT , 1sk=n=M (2.7)
and
. P, (t)=exp (—Bit) (=PL?)) . (2.8)

Using these formulae, we can determine all P, .(t) successively. But
we are interested in the conditional probabilities of the random variable
K(t), given N(t)=mn:

Pr {K(t)=k|N(t)=n} =p,(t) -

These conditional probabilities have the remarkable property that
they are independent of time t and size M of the group =. Concerning
them, we have the following results.

[I1 Conditional probability
The conditional probability
Pne=Pr {K(t)=k|N(t)=n}
is independent of time ¢ and size M of the group , and satisfies
the following recursive formula :

pn.k::"n__']lh__k'g{kpn-l.k-l-(n_k+8)pn—1,k-1} ’ (2.9)

where 8=\, Pno=0 (1=n), D=0 (n<Kk).
[II] Conditional expectation

The conditional expectation E, (K)=E{K (t)|N (t)=mn} of the random
variable K(t), given N(t)=n, satisfies the following recursive formula:

E”(K)=£%—ﬁ%E,,_I(K)+1 . (2.10)
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Explicit form is given by

E(K _n n—1428
(K) T 115 for n>1 (2.11)
and ‘

E(K)=1.

[III] Conditional variance
The conditional variance V,(K) of K(t¢), given N(t)=n, satisfies the
following recursive formula
—34-6
(K)="—°T%y (K
ViE)=2=2 Y, (K)

(n+1)(n—2+8) {(n—1)(n—2)+2(n—2)5+ 28}
* 4(n—1+8)(n—2+4-6) ,  (2.12)

which is reduced to

_ nn—1){(n—1)(n—2)+4(n—2)5+68%
Vi(K)= 12(n—1+8)*(n—2+3) ) (2.13)

[IV] Especially, when 6=0 or p¢=0, namely if the information source
S stops its function as soon as it once communicates I to the first
person, we obtain the following results.

E,,(K):iz"- , (2.10)
V,.(K):% . (2.11')

These are regarded on the other side as the asymptotic values of
E(K) and V,(K) when m—oo. As these results are independent of
parameter A and g, they might be useful in testing the assumption of
homogeneity of communication in the group =.

[V] Normal approximation of the conditional distribution

For sufficiently large n, conditional distribution {p, .} of K(t), given
N(t)=n, can be asymptotically replaced by a normal distribution.

In fact, the conditional distribution of the standardized variable
(K—E(K)IVV(K), given N(t)=n, tends to the standard normal
distribution N (0, 1).

Proor oF [I]. We shall first prove, by mathematical induction,
that the conditional probabilities p,, are independent of ¢t. By equation
(2.8), 1, ,=P,t)/P(t)=1 holds, and p,, is independent of time ¢. Suppose
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the conditional probabilities p,-,, and p,_, .-, are independent of time
t. Then, substituting P,_; x(t)=Pn-1,.Pn-.(t) and P,y x-i(t)=Dn-1,5-1Pn-i(t)
into equation (2.7), we obtain

P, ()= {dn-1,xPn-1,6+ (Fn-1.6-1 +Bn-1)Pn-1,5-1}
- exp (—ec,t) S: exp (¢,T)P,_(7)d7 .

Comparing this result with equation (2.4), we can see that

D=3 Eg) = c ——{d,- -16Pn-1,6F (Fr-1,6-1FBr-1)Pu-1,6-1} -
-1

Therefore, p, . is independent of time ¢, and this result leads to the
following recursive formula :

pn,k—_l'_l—_'é‘{kpn—l et (M—Ek4+8)Pu-1,1-1} »

because Cp—y =01+ B =(M—n+1){(n—1)\+p}, |
dp-re=Me(M—n+1), and Sr-1x-1=Mn—k)(M—n+1).

Proor orF [II]. Multiplying both sides of equation (2.9) by &, and
then summing up them over k=1, 2, .-+, n, we obtain the equation (2.10).

By mathematical induction, equation (2.10) leads to equation (2.11).

Proor oF [III]. As in the case of proving [II], recursive formula
(2.12) of the conditional variance V,_,(K) is obtained. It leads to formula
(2.13) by mathematical induction.

- ProOF OF [V]. We shall first show that the p-th moment of
(K—E(K))\VV,(K) tends to that of the standard normal distribution
as n—oo for every fixed positive integer p.

First consider the case where 6=0. We have then E (K)=n/2,

V.(K)=n/12, and it is easily shown by induction that the distribution
{Pn:} is symmetric in the sense that p,,.=p,,.-.. Hence

E{(K—E,(K))]1=0 for p=2r+1, r=0,1,2, «-».
Using the formulae (2.9) and symmetric property of {p,.}, we can easily
obtain
(ar) — 2r \,an 2r 1 (6 +1)
o e

E=0 n
27‘

CE -3
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where
aP’=E,[(K—-E\(K))] .

It suffices to prove that
ag?=Vu(K)*-ay(1+0(1)) ,
where a,, is the 2p-th moment of the standard normal distribution :
0yp=1+8+5--- (2p—3)2p—1).

This is clearly true for p=1. Now assume that this is true for p<r—1.
Then, it follows from the foregoing formula that

agp=(1-2"Jagn+ (%} Jasr-+0( )
(12 -2 e
+0{(n )+ (n—1)""}
(2o (- B

L) E (2 Yo o (12
FO{w "t (m—1) oo e 422417

The first term vanishes for n>2r, and the summands in the second
term are

oW/ 7 for m=v'n ,
(%)”agr-n(l_l_o(.;_)) for m>v'n .

Thus we obtain

——"9—3—— 12r ») . (m/12)?
{(n+1)/12}" 4( )n,,(mgl m) ma,,_,(l—l-o(l))

+o(y)
=% 22'" x 12[53"da;]a,,-,+ o(1)
=3r(2r—1) x §17a,,_,+o(1)

=(2r— 1a,,-,+0(1)
=a,,+o(1) .
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Hence we have proved for every p

Validity of this fact for 630 can be seen by comparing the p-th
moments of the both cases §=0 and 80, or by a slight modification of
the foregoing proof.

Now the probability distribution F, of {K—E,(K)}/v/V,(K) has the
finite moment of every order, which converges to that of the standard
normal distribution. We can, therefore, conclude that the family of
distribution {F,} is completely compact (see [4], p. 185), and that the limit
distribution of any convergent subsequence has the same moments as
the standard normal distribution. We know, however, that such a distri-
bution must be identical with the normal distribution. Hence the family
{F,} itself must converge to the normal distribution, for, otherwise, by
compactness, {F,} must have another limit distribution having the same
moments as the normal distribution, which is impossible. Thus the
central limit convergence has been proved.

2.3. JOINT DISTRIBUTION OF N(f) AND L(t).

Now we shall investigate the number of persons who have received
the information I directly from the information source S. This number
may be considered to indicate the intensity of communication of S.
Let P;,(t) be the probability that N(t)== and L(t)=l, i.e., the probability
that exactly n persons have the information I at time ¢ and exactly !
of them have received it from S. Then, in the same way as in section
2.2, we obtain the following formulae.

Pr(+At)=(1—c, AP (), e, ilt) +Ba i Py i(B)AL +0(Al)
for 1<i<n,

Pt +A1)=(1—caAt) P o(t) + B P nea(t) AL+ 0(AL)

Pr(t+At)=0 for nx>1,

Pt +At)=(1—BAt)Pe(t)+o(At) ,

where a;, B,, ¢, are the same quantities as defined in section 2.2.
Letting At—0, we obtain the following system of differential equa-
tions.

P:;(t): _cnPn"fl(t)‘*’an—anf—l,l(t)+/8n-1Pn*—1,z-1(t) fOl‘ lélénéM ’
(2.14)
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o) = —BoPoi(t) - (2.15)

Here we have put P;(t)=0 for n<l for the sake of convenience.
Now integrating (2.15) under the initial condition P%(0)=1, we have

Prit)=exp (—Ai) - (2.16)

Integrating (2.14) under the initial conditions P;,(0)=0 (for I=1), we
obtain

t
Piit)=exp (—cut)| exp (€0) (@it 0+ BamiPis 1)} e
for 1<i<sn=sM. 2.17)

Using (2.16) and (2.17) we can obtain inductively the explicit forms of
*(t), but we do not give them it here, for it is not our aim and

we are interested in the conditional probability distribution of L(t), given
N(t)=n. It will be seen below that it depends on neither time ¢ nor
gize M of group «.

We shall now investigate properties of conditional probability
Pr{L(t)=1|N(t)=n}.
[I] Conditional probability

The conditional probability px ,=Pr{L(t)=l|N (t)=n} depends only
on n,l and g/, and contains neither time ¢ nor size M of the group.
It satisfies the following recursive formulae :

p:o=1 ,
Dro=0 for n=>1,
pra==L g v % pro, (2.18)

n—14+96 n—1+38

where §=p/\.
[II] Conditional expectation

The conditional expectation E}(L)=FE {L(t)‘N (t)=n}, given N(t)=n,
satisfies the following recursive formulae.

EXL)=0 (2.19)

D)= B (L) — S
Ex(L)=E;(L)+ po (2.20)

The explicit form is

Expy=24+2 4.4 2 for m=1.  (2.21)

6 1496 n—1+36
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[I1II] Conditional variance

The conditional variance V (L), given N(t)=n, is given by

VAD=ExD)- 5 (72 - (2.22)
t=0\1468

[IV] Normal approximation of the conditional distribution

When 7 is large, the conditional distribution {p},} of L(¢), given
N(t)=mn, is asymptotically replaced by the normal distribution with
mean E}(L) and variance V}(L).

In fact, the conditional distribution of the standardized variable
(L—EX(L)VVEL) tends to the standard normal distribution as n in-
creases indefinitely.

Proor oF [I]: We shall prove [I] by induction. First, notice that
P(t)=exp (—Bit),
which, together with the formula (2.16), shows that

Pi(t) _y

Py(?)

It is clear that p},=0 for n=1. Now take any integer » (=1) and
assume p,_,, to be time-free for I=1,2, .-, n—1. Then, by virtue of
(2.17), it follows that

* __
Do,o=

PE()=exp (— )| XD (04 {@u s Pis d0) + BpsPs ()}
=eXxp (—c,t) So XD (CaT) {1071, Pn-1(T) + Br-il -1,1-1Pny(T)} dT
=@+ B iorso)| XD {—a(t =) Poi)de .

The recursive formula for P,(¢) given in section 2.1 shows that the right-
hand side is equal to

(a,._lp;."_l,;+/9,,-1p,‘f_l,,_1) 1 P,(t) .
n-1
Hence we obtain
L3 =P:,l(t)=an—1 L3 Bn-l X
Dr.a _——P,,(t) —c”_l Pn-1,+ P Dn-1,1-1
— (n—=1)x * Yad *
__*—‘(n_l))\‘_l_#pn—l,z‘l‘(n_l))“_'_ﬂpn-l.z-l
_‘L—L‘p:—u‘l‘ 8 y LN

T n—148 n—1+8
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This shows that p}, (I=1,2, ---, n), are also time-free and satisfy (2.18).

ProoF OF [II]: Multiply both sides of (2.18) by ! and take the
summation over !=1,2, --.,n. Then, we can easily obtain (2.20) for
n=1. (2.19) is obvious. The proof of (2.21) can now be performed by
induction.

PROOF OF [III]: Multiply both sides of (2.18) by I* and take the
summation over !=1,2,...,n. Then, by an easy calculation and by
formula (2.21), we can obtain the recursive formula for V(L) and we
can prove (2.22) again by induction. Detailed calculations are omitted.

It is seen from the above results that the conditional standard
deviation 1/ V*(L) is less than the square-root of EXL). This fact is
useful for estimating the parameter & by means of the observed
values of N and L. We shall discuss this problem in the next section.

PROOF OF [IV]: Consider the infinite sequence of mutually inde-
pendent random variables X, X,, ---, X,, ---, where X, takes only two
values 1 and 0, with probabilities 8/(n—1+8) and (n—1)/(n—1+23), re-
spectively. Let S,=X,+X,+---+X, be the partial sum of X, X,, ---
X,, *++. Then clearly,

Pr{S,=1}=1,
Pr{S,=1} =Pr{S,_,=1} -Pr{X,=0} +Pr{S,_,=1—1}-Pr{X,=1}
n—1 é
=——= Pr{S,.,.=l}+——_Pr{S,.,=l-1} .
i pr R G A LSS

These formulae are entirely identical with the recursive formulae for
pr. given by (2.18). Hence we have Pr{S,=10}=py,, and it suffices to
show that the distribution of S, is asymptotically normal for large n.
Noticing that the variance V(S,)~8-logn for large » and that the
summands {X,} are uniformly bounded, we can apply the central limit

theorem in the bounded case (see [4] p. 277) to our problem, and the
assertion follows.

§ 3. Estimation of ¢/ and test of homogeneity.

3.1. ESTIMATION OF THE PARAMETER &= /\.

The explicit forms of the conditional expectations and variances,
given N(t)=n, which were obtained in the preceding section, make it
possible for us to estimate the intensity ratio =g\ based upon the
sample values of N and L.
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In section 1, we considered the pattern U(t) of communication up
to time ¢ to be a random variable with parameter ¢, and N(t), K(t)and
L(t) to be statistics determined by this random variable. It might seem
at first sight that the full knowledge of pattern U(t) has an advantage
over the knowledge of only N(t) and L(t) for estimation of 8. It, how-
ever, is not true, and we can show that the bi-variate statistic (N(t), L(t))
is sufficient for parameter (, ). In fact, we can prove the following
proposition.

The biwvariate statistic (N(t), L(t)) is a sufficient statistic for the
Samily of distributions Pr(U(¢) ; \, ) with the parameter (\, p).

ProOF : Since size M of the group is finite, the number of all
possible patterns is finite. In particular, let {u,, u, ---, u,} be the set
of all possible patterns such that the number

of informed persons is # and the number of a o
persons who have received information I directly as
from the information source S is I. Fig. 2

illustrates the tree of a pattern in the case a a7

n=10 and !=8. The knots of the tree are 39

indicated by a,, a,, -+, a,. Let s,s,, -+, s, be
all possible orderings of a, a,, ---, a,, in which
the information is carried over. Any s, is re- d10

presented by a permutation of a, a, ---, a,, Fig. 2.

which corresponds to a process of branching of the tree. Then, it fol-
lows immediately that

Pr{U(t)=u}

= Z S‘ exp (_cotl)')'odtlsz exp {_cl(tﬂ_tl)}(Yldtﬂ bl
s4J0 1

8,0, q

. S: exp {—Cup-i(ta—1n-1)} n-, €Xp {—c,(t—1,)} dt,

[ dtlexp fei—cot} exp {(es—ct -+ -exp flea—eat}],

.where v, is equal to 8, or a; according as the j-th knot (in the order of
being produced) is directly connected with S or not, and «, B,, ¢, are
those quantities defined in Section 2. Now, since the number of
knots which are directly connected with S is exactly !, we have for any
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s in's, «+-,"s,,
VY1 Vo1 =M(M—1): - «(M—n+1)\""tre(s) ,

where c(s) is determined only by s and is independent of X\, ¢, M and ¢.
Hence, putting

we obtain

Pr{Ut)=u} _ k(x.) 3.1
Pr{U®t)=u,} k(u,) G

for any pair of patterns u,, u, in {u,, u,, -+, u,}, and we finally obtain

Pr{Ut)=w|N(t)=n, Lt)=1} =—F®)

w

35 k()
The right-hand side is clearly independent of (A, ££). This assures us that

the conditional probability of the pattern u,, given N=n and L=I, is
independent of (, ¢£). This proves the sufficiency of statistic (N(t), L(t)).

Now we shall proceed to estimate the parameter & by means of the
observed values of N and L. '

If n is large®, upon applying normal approximation (section 2, 3, [IV])
of the conditional probability of L(t), given N(f)=n, we have, for any «
such that 0<a<1,

Pr {| L—EX(I)|<ev VRD) | Nt)=n} >1—a, (3.2)
where c¢=c(a) is determined by

* 1 o Tdp=1
—e 2 =l—a,
S -2 v

which is found from the table of standard normal distribution.
As the quantities E}(L) and V(L) are regarded as functions of the
integral-valued variable 7, we shall obtain random variables Ey.,(L(t))

D If = is not so large, normal appoximation can not be used, and we must content our-
selves with less sharp evaluation. As is seen from the proof of section 2.3 [IV], probability
distribution {ps,:}i=1,....» can be regarded as the distribution of the sum of 7 independent
random variables. Hence Bernstein’s inequality (see [5]) can be used, and we have

a2
Pr{|L- By} 21 - 2exp (5 ) -
We have only to determine 4 as a function of V(L) so that the right-hand side may be
equal to 1—a,
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and V3, (L(t)) by substituting the random variable N(¢) for n. It now
follows from (3.2) that

Pr {| L@)— E3 (L) | <ev' V5o (L(®) }
=3 Py(t) - Pr{| L—E(L) [<ev VL) IN(t)=n}

>(1—a) S Pt)=1—a.

This means that the probability that two-dimensional random variable
(N (t), L(t)) will satisfy

| L—EXL)|<evVEL) (8.3)

is greater than 1—a. Hence, solving (3.3) in 8, we should have an
inequality of the type

F(N, L)<8<g(N, L),
and obtain a confidence interval for § with confidence coefficient greater
than 1—a.

The foregoing method is easy to deal with owing to its time-free
property. We may perform the actual survey at any moment,” and
estimate § by means of the observed values of N and L, regardles
of how much time has passed since communication began.

As 8 is contained in E}(L) and V(L) in a rather complicated form,
it is not easy to solve (3.3) explicitly and to obtain confidence limits
for & for the observed values » and I. When 7 is not so large, we may
draw the graph of f.(8)=E;(L)+cy/ V(L) by calculating the numerical
values of E}(L) and V(L) as functions of 8, and may find back from
the graph the confidence limits for & for observed values n, I. This
method, however, is hardly possible for larger values of %, and we
must find another expedient method. Since E}(L) and V(L) are finite
sums of series, we can apply Euler’s summation formula to them and
rewrite them in more convenient forms. Thus we can obtain their
approximate expressions for sufficiently large n. In fact, it follows by
some calculations that

EXI)~1+8log P—118
(L)~1+3 log T+

(I)~og = ——3 5+t

1 See the remark at the end of this section.
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With the aid of these expressions the upper and lower confidence limits
for & are given as follows :

i) If the observed value ! of L(t) is far smaller than log n, n being
the observed value of N(t), the confidence limits are given by

o+ c j:6‘1/410g,~n,+c”
2logn 2log n

where 2=(l—1)/log n.
ii)y If the magnitude of ! is not so different from that of log =,
the confidence limits are given by

a::tc/ r .
logn

iii) If1 is far larger than log » and slightly less than n, the confidence
limits are given by

y_‘_f_icl/ziny‘—{—c’
2n 2n

where y=I/n.
iv) If l~m, the confidence limits are given by

2nz+c*+cy/ dnz+c*
42? ’

where z=n—1.

REMARK : In the above-mentioned method of estimation the time
for observation was arbitrary, but was fixed prior to the experiment.
We give here a remark on the extension of it to the case where the
time for observation is a random variable . Since N(t) is a Markov
process, we can consider a Markov time 7z with respect to this process,
in the wider sense that for any £>0 the event {r<t} belongs to the
minimal o-field containing both B,(f) and B, where B,(t) is the o-field
of events determined by {N(s),s<t} and B, is a o-field independent of
our basic process U(t). Then the conditional probability distribution of
L(z), given N(r)=mn, still depends only on %, and the above-mentioned
method of estimation apply. Examples of such a Markov time 7 are:
(1) minimum of ¢ such that N(t)=n, for some prescribed number =,
(2) random time determined quite independently of the process, (3) mixed
type ,of (1) and (2).

3.2. TEST OF HOMOGENUITY OF COMMUNICATION IN THE GROUP T,
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The results obtained in section 2.2 serves for testing hypothesis H
that the communication of information I in the group x is homogeneous
both in time and in persons.

Suppose that the information source S stops its function as soon as
it once communicates the information to the first person. Then, according
to section 2.2 [IV], if the hypothesis H, be true, the conditional expecta-
tion E,(K) and the conditional variance V,(K) are given by

E =1

#(K) 5
— n

V,,(K)-——12 .

They contain neither ¢ nor X, so, in the same way as in section 3.1,
we have only to observe N and K without considering the time when
the observation is performed.

For large m® we can use the normal approximation (cf. [V]in
section 2.2), and

Pr {|K(t)— EA(K) |> v V(K) [N(t)=n} <a ,

which is equivalent to

Pr{K’—nK+%n’—lc—;n>OlN(t)=n}§

1
P

Where ¢ is determined by @ in the same way as in section 3.1. It
follows that

Pr{K’—NK+—1§——f;—N>O}

- éop,.(t)-Pr{K=—nK+i-n’—T";—n>0|N(t)=n}

<a 3 P()=a.
Nw=0

Hence, if we determine the critical region w by the outside of the

1 If n is not so large, normal approximation is not valid. In this case, Meidell’s
inequality for unimodal distribution (see [6]) can be used and we have

Pr(|K()~ B >0 VaBI [NO =7} S 55

which is slightly sharper than ordinary Tchebycheff’s inequality.
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parabolla (see Fig. 3)

K
1 c? i
K*-NK+—N*—~—2_N>0, N
1 127 K-z
we have a test of the hypothesis
H, with significance level a.
REMARK : Similarly to the re-
mark in section 3.1, we can extend .y

the results to the case where the
time for observation is a Markov Fig® 3.
time. The method of testing hypothesis H, is quite identical with that

for a fixed time.

§4. Conclusion

The results obtained in the preceding sections, based on our stochastic
model mentioned above, can be used in the following manner.

1) We take a social group 7 and test the hypothesis that the com_
munication in 7 is homogenous in time and in persons, by the method
stated in section 3.2.

2) Suppose that the same information I is communicated from each
of various information sources S,’s to each of corresponding groups =,’s,
in which it is assummable that communication is homogeneous and cor-
responding intensities \,’s are all equal (to some )\). Then, observing
the values of N(f) and K(t) at time ¢, we can estimate the ratios
8;=p/\ of the intensities of communication. These ratios will make it
possible to compare the intensities of information sources S,’s, and
suggest the optimal of several media of communication of information I.

3) We are able to evaluate constructively the stochastic behavior
of pattern U(¢), based on the knowledge of the ratio & of intensities A, ¢z and
homogeneity of communication in the group . But it must be noted
that the intensities \, ¢ depend on the group m, information I and
source S, so we need to know them prior to our experiment.

In this paper we have considered the simplest stochastic model for
communication in a social group. The assumption of homogeneity has
been essential in our argument, but it does not seem to hold in every
actual problem. One of simple modifications is to assume that the social
group consists of several number of subgroups, in each of which homo-
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geneity is assumed. Unfortunately, however, even such a simple modi-
fication does not keep the time-free property of the conditional probabilities
and makes it impossible to treat the problems in such an easy way asis
mentioned above. This is the reason why we have restricted ourselves
to the simplest case. It seems that there remains much to be developed
in future.
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