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§ 0. Introduction and summary.

In this paper we define a type of transformation of probability dis-
tribution and analyze the limiting behavior of the result of successive
applications of the transformation to some initial probability distribution.
By using the results of this analysis we can get a fairly general insight
into the so-called optimum-gradient method in numerical analysis. We
can prove the conjecture which was stated by Forsythe and Motzkin [7]
and was used as the logical basis of an acceleration procedure for the
optimum gradient method [4][5][6]. It was stated by Forsythe [4] that
this conjecture seems to be hard to prove as the related transformation
is rather complicated. But our present proof is rather simple. Further,
we can see the relation between the condition-number of the related
matrix and the convergence rate of the optimum gradient method. By
using the relation which according to [5] is first proved by Kantrovich
[8], we can say that when the matrix is ill-conditioned the convergence
rate tends near to its worst possible value. Using the same data as
those treated by Forsythes in paper [5], we give some numerical ex-
amples. ,

There are many important problems, not necessarily of linear type,
where the gradient method is applicable [2], [8]. Even in these non-
linear case we can expect that when the approximation proceeds the
problem will be reduced essentially to the linear one. One of such ex-
amples was discussed in the former paper [1] of the present author.
Thus, though the results of this paper are concerned with the solution
of the simultaneous linear equation Ax = b, these results will be gene-
rally useful for the analysis of limiting behavior of the approximate
solutions in the optimum gradient method.

§ 1. A successive transformation of probability distribution.
In this section we shall treat probability distributions over a set of
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mutually different real numbers \,, A;, +-+, A,. First we shall give the
definition of our transformation 7. For a probability distribution P=
{(P),; v=1,2, ..., n} where (P),’s represent the probabilities attached
to \,’s respectively the image TP={(TP),;v=1,2,---,n} of P by T is
given by

(TP)‘/ (P)v()\‘ X(P))a U=1, 2, ces,m
Z (P)uru—MP)Y

Where MP)= ﬁx“(P)“ and T has as its domain the set of P’s with
Z (P)u(rs —)»(P))2 > 0. Here we shall give some preliminary lemmas.
We shall hereafter use the notation f(\)(P) for Z JFONP),.

LEMMA 1. We have

NTP)=X(P _I_()\' 7\(P))S(P)
IP)=MP) —MP)(P)

PROOF.

Z MO —MP)P),

MTP)= E M(TP),=
( = (\—MP))(P)

3 W= XPYP)LAMP) 5 0n —MPY(P),
O—MP)(P)

— O—MPY(P)

4 \(P).
(—NMP)(P)

LEMMA 2. We have
A—MTP)(TP)z(A—MP)(P)

where = holds only when there are only two v’'s with (P),>0.

Note; We are considering only P’s with (X—X)WP)>O, and the
case where there is only one v with (P), > 0 is out of our consideration.
The lemma states that by transformation T the variance of the distri-
bution increases except for the special type of distributions stated in the
lemma. Thus for P in the domain of T, TP is again in the domain of
T.
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PROOF.

By using the result of lemma 1 we have |
- - o T - A—MP)(P
M —MTP) =\, —MP)+ (MP)— MTP)} =\, — MP) —ET___XE__P% .
Thus we get
A=MTP)(TP)—(\—\MP))(P)
£ W= TPYOL AP, ~ (A XPI(P))’
- O —MP)(P)

_ {0=MPYPY} {O = MPY(P)} — {A = MP)(P)}*— {A—MP)P)}* .
{—MP)(P)}*
For the sake of simplicity we shall use here the abbreviated notation
M,(P) in place of (\—\(P))*(P). Then we have

{—MPY(PRHO=MPY(P)} — {A—MP)(P)} — {(A—MP)(P)}?
1 0 My(P)
=0 M(P) M(P)
M(P) M(P) M/(P)

If we represent by A the random variable which follows the probability
distribution P i.e. prob {X=)\,}=(P), v=1,2, ---, n, the above stated
determinant is the determinant of the product moment matrix of the
random variables A — E()\))’=1, A — E(\) and (A — E(7\))*. The product
moment matrix is positive semi-definite and thus the value of the above
determinant is non-negative. The value of the determinant is equal to
zero if and only if there is non trivial linear relation between 1, A—E()\)
and (A\—E()\)):. Suppose that there exist constants a,, a;, a, not all equal
to zero satisfying the relation al+a,(A—EQ)\))+a,(A—E(\))=0 with
probability 1. Such a relation can hold only when there are not more
than two values of v for which prob {A=X\,} =(P),>0. Taking into ac-
count the fact that we have excluded the case where ) is identically equal
to a fixed constant, we get the proof of the final statement of the lemma.

Using the results of these lemmas we want to analyze the limiting
behavior of P®=T*P® ag k tends to infinity where T*P©® denotes the
result of k successive applications of the transformation 7' to P® and
the initial probability distribution P® is supposed to satisfy the condi-
tion M,(P®)>0.




4 HIROTUGU AKAIKE

It is obvious that any infinite subsequence of the éequencé {P®;
k=1, 2, ---} contains its own convergent subsequence. For a convergent
subsequence {P©®y; j=1,2, ...} of original {P®} we shall represent by
P its limiting distribution.

Now as (A—\ x(P(“ﬂ))z(P("f))— Z(x —MP@)(P©) and x(P@u)) =
5_‘_, M (P©9), it can be seen that

ljim MP @) =N(PL) »
lim (A —MPE)(P2)=(\—MPE)NPEL)) -
Further by taking into account the result of lemma 2 we can see that
(A —MP)©»))(P?) tends monotone-increasingly to (\—MP)Y(PS) and
also that

A —XMP)(PL) =lim( —MP®)(P®)= (A —MTP)(TPS)
holds. o | ,

Now as M,(P®)>0, we have M,(P.>)>0, and we have seen that
the equality M,(TPS”)=M,(PS$”) holds. Thus from the result of lemma
2 we can see that there are just two numbers v(«, 1) and yv(«, 2) for which
(PSS )y >0, (P5)yia >0 and (P5)yca+(PS™)ycw.y=1hold. Thus it has
been proved that the limit points of the sequence {P®} are contained in
the set of points or distributions of the type analogous to the P¢ which
we have obtained above.

Now we shall. further prove that the sequence {P®} is itself os-
cillatorily convergent in the sense which will be described bellow.

Taking into account of the monotone-increasing property of -the
sequence M,(P™) we have seen that any P> has one and the same
variance M(P{>)= 11m M(P®). Now the distribution P{* is characterized
by the quantities v(a 1), va, 2), (PS)vanyy (PSV)va. and by the relation

MAP)=(P&)(ay(PS)vtany Mooy — My = hm M(P®).

Thus the set [[.. of all P{’s are composed “of at most finitely many
distributions. We shall denote the element of [[. by P, i=1,2, ---,
N. P, is characterized by the quantities (P, >0 (Pi)yn>0.

Now we can see that if there is some P, with (P,),;.;;# (P:)yc.»» then
the distribution P} with (P}),q.»=(P.)yu..» and Phan=L:)vqu» is also
contained in J].. This is proved by taking into account of the fact that
if P¢P — P(j— o) then TP“»— TP,(j— ) and the fact that TP,= P}.

It is obvious that if (P,),y=(P:),u=1/2 we have TP,=P,. Here-
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after, we shall sometimes use the notation P(v(i, 1), v(%, 2)) to represent
the P, to clarify the character of the distribution. We shall here observe
the domain of 7T in its natural relative topology generated by the ordi-
nary topology of n-dimensional Euclidean space. Now as is easily seen
T is continuous in its domain, and for any neighborhood U {P(v(<, 1),
v(i, 2))} of P(v(4, 1), v(¢, 2)) there exists a proper neighborhood V{P(v(z, 2),
v(i, 1)} of P(v(t,2),v(3, 1)) with the property that for any P in
V{P(v(, 2), v(3, 1))} its transform TP is contained in U{P(v(¢, 1), v(¢, 2))}.
Here we take the neighborboods U{P(v(3, 1), v(3, 2))} of P,’s so as to be
mutually disjoint. We define the neighborhood W{P,} of P, as the in-
tersection of U{P,} and V{P,} where V is defined as above. Now there
exists a number M such that P® with k greater than M are all con-
tained in EN_‘, W{P,}, otherwise there must be some limit point outside
He.e. i=1

We shall represent by {P¢s,j=1,2,-.-} the subsequence of {P™®;
k=M+1, M+2, .-} contamed in W{P;}. Then it is seen that {P®);
k=M+1, M+2, .-} = Z{P“ﬁ j=1,2,---} holds as the relation be-
tween the sets of pomts in the sequences Now from the definition of
M and P¢ we can see that TP¢y € ;-:1 W{P,} holds for any ¢ and j
and further by the definition of W and V we can see that {TP¢y;
{j=1,2, +++} c U{TP}=U{P(u(3, 2), v(3, 1))} . As the U{P,}’s are taken
to be mutually disjoint, so TP¢» ¢ W{P,} for P, different from TP,.
Thus we have {TP“’; j=1,2, ---} ¢ W{TP,}. From this last relation
we can also see that {T*P¢»; j=1,2,..--} C W{P,}, consequently, that
T pap e W{TP} and T**P¢» ¢ W{P;} hold for r=0,1,2,--- and
that if P¢» is identical to some P of the original sequence {P®*},
then P*+» ¢ W{P}U W{TP,;} holds for s=0,1,2,---. From these re-
lations it follows that [].. is composed of at most two points P and
P* gatisfying the relation P*=TP>, When TP’=P®, ]].. is
composed of only one point P>=P(y(co, 1), u(c, 2)) with (P),(u =
(P“)y(w.p=1/2. Thus we have proved the following ;

THEOREM 1: For any P® with (\—MPD))(P®)>0 the sequences
of distributions {T*P®; r=1,2, ---} and {T""P®;r=0,1,2, - .-} are
convergent to some limiting distributions P and P*¢, respectively.
These distributions are characterized by (P),(w.y>0 and (P),(w» >0
satisfying the relation (P™)ywry + (P hyen =1 and (P* )y =
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(P)ywnyy (P*)y y=(Pymry. We have TP=P* and P*
18 identical to P if and only if (P“)ywn=(P)y(wn=1/2 holds.
Note; We can see that )\,’s with (P®),=0 should have been en-
tirely discarded at the very out-set of our whole discussion, and we
shall hereafter assume that (P®),>0 for i=1,2, ---, n.
We shall here discuss some of the effects of the initial distribution
P® to the limiting distributions P¢> and P*¢,

THEOREM 2: If <A<\, (1=2,38, ---,n—1), then we have
{¥(e0, 1), ¥(o0, 2)} ={1, n}

that is, the limiting distributions have their total probability attached
to both extremal points.

ProoF; It is obvious that N, <M(P)< X, holds when (P),>0 and
(P),>0 hold. Thus from the definition of 7' it is seen that (P®*), >0
and (P),>0 hold when (P®*-),>0 and (P%*""),>0 hold. From this
fact, under the condition of the theorem, we have (P®),>0 and (P®),>0
for k=0,1,2, ---. Suppose y(o,2)<n holds. Then we have A\, ..H<
MP ), MP* ™)< Ay <\, and we can find a K and A, ) such that,
Moy <A MP®) <A< Ay wpy holds for all k=K. Now taking into ac-
count of the relation

(PEDY (P D)y o0 3y , B B
= {(P@)(P®)ycan} TL AOn=MPE D)Mo,y = MPE*D))}

2 (PP ONcen} T2 Oucmn =2

we can see that (P®), cannot tend to 0, this contradicts to the definition
of P>, The case where it is supposed that 1< y(oo, 1) holds is treated
in the same manner.

TREOREM 3: Under the condition of theorem 2 if there is a X,
(1#1, n) for which MP™®)%\, for all k=0,1,2, --- then the following
inequality holds

R (-2 el 22

PROOF; We have
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(P(lc +z))‘/(P(k +2))1
= {(P®)J(P®),} {—MP @) (0 —MPE+0))}
[{Ou—=MP @) —MP*D))}

For any 8>0 there is a K(¢) such that for k> K(¢) we have

(= MPDYP = MPED)} = MPD)P = MP D))}
> {0 = MP )P —MP*))} (= MP )P — MP*))) —e .
From this relation we have |
= NP )Y (= MP* )= MP )= MP )P <1

and

(=22 o= 2252
(oo (o 2 2 - 22
By using the relation M(P*)=x,+\,—MP) we have

(22 o -2 (22

(g P g2

or
(OG22
(o)~
From this last inequality we can get the desired result.

§ 2. Application to the optimum gradient method

In this section we shall discuss the application of the results of the
former section to the so-called optimum gradient method. Let A be an
n-by-n matrix, not singular, and let x, b denote the n-rowed column
vectors. The optimum gradient method for the solution of simultaneous
linear equation Ax="b with respect to the metric || ||, is defined as fol-
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lows*>; Take a positive definite symmetric matrix P. Then the gradient
of the error function || Az—b|2=(Az—b, P(Az—b)) at z is given by
2(A’P(Az—b)). Given the k-th approximate solution x,=x-+¢, where x
represents the desired solution the optimum gradient method proceeds by
finding the (k-+1)-th approximate solution @,.,=x,—7,&; where

Mjn || A(y—7Ex)—b || =||A(2,— 7)) —bl[2
Ve =(Ae,, AL2)p/||ALkl2

é‘:F% gradient at x, = A'PAs, .

We shall represent by (0<)\,=<\,<---<)\, the eigenvalues of A’'PA
and by &, &, ---, £, the corresponding eigenvectors which are supposed
to be orthonormal. We exclude the trivial case where \,=\,=-<-=\,.
Then we have the following.

THEOREM 4; In the optimum gradient method with respect to the
metric || ||»
i) & (=x,—x) tends to be approximated by a linear combination
of two fixed eigenvectors of A’'PA with the eigenvalues equal to
Max (A, ; (&, £)#0) and Min (\;; (&, £)#0), respectively, and
ii) ¢, alternates asymptotically in two fixed directions.

PrROOF: Here we prove the theorem for the case where A\, <\, <<+«
<\, and (&, £)#0, (&, £€,)#0 hold. Modifications necessary for the proofs
~ of other cases are obvious and are omitted here.

‘ Suppose that the error ¢, of the k-th approximate solution is repre-
sented as ¢, = lz"‘,lag*m;lg‘. Then ¢,., is given by the following;

ge= >, AFONE, =6, — Vil =6 — T A'PAg,

{1
= 2 A A=Y N E =T 2 P (MM
where ;= || At [1/(Ae,, Azr= 3, @PPr 3, @P>0.

If we consider the set of values ((a{*)!/ i (ai®)?, (a§®)] ﬁ, (afP) o0,
i=1 -]l

(aPy/ ;V_‘{ (a;®)?) as a probability distribution P®> over (A, A,, * -, \,,), then

*) Here we use the notations || || and (x, ¥)p to represent the quantities (x, Pr) and
(z, Py), respectively, where (z, ) denotes the ordinary inner product of vectors z and .
A’ denotes the transposition of A. '
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(l’.+1) —_— ((a(k+1))2/ 2 (a(k-l-l))z a(k+l))2/ Z (a(kn))z cen, (a(tn))z)/ Z (a(k+1))2) IS
represented as P("“)—— TP™, transformatxon T being deﬁned 1n §1. Thus
the results of the former section are applicable to the present sequence
of P®’s and we have for some non-zero ¢

lim P(”')z( :

h—o0

1
,0, +++,0, =P
+c 1+ )

. 2 1
lim Per+v(_%_ 0, ...,0, = P*
lim P (s Tre)=P

and the limit points of the sequence of direction-cosines

agzh) a;zh) a(n2h.)
’ y L) y
(,‘/i (a§2h))2 ]/i (agzn))z “/i (a§2h))2)
i=1 =1 =1

are limited to the set of points of the type

(+ g 0o )

Now consider the transformation 7' defined over the set of points
{8y, 8,y ==+, 8,); D 81=1, 81<1(4=1, 2, - -+, n)} by the following ;
1=1
T(Sly 8:9 ** 87»)

(80N 0N L A0
(/g&a—MV Y 3 80— /g&d—Mr>

where A= 3. 8\,. Then we have
i=1

a(k-H) a(tz .. a('ﬂ"'l)
(1/2‘| (a(k+l))2 ,‘/Z (a(k+1))2 1/2 (a(k+l))3)

—7F ai® ag® o
(V;mw Y &y /2@%)

and relations such as

(o0 O i) (e O e )

F_del_o...0, ——=¢ NY=(_1l__ 0...,0——C5_).
( 1+¢ le|V 1+c*) VvV 1+¢é 1/1+c2>
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Obviously 7' is continuous in its domain and by applying the eintirely
similar arguments in the proof of theorem 1 of §1, which were used
to show the oscillatory convergence of P, we can get the conclusions
i) and ii) of the present theorem.

Note: It may be of some use to remark here the relations
(é‘m §k+l)=0’

| eer i - A=MP®)(PP)
e llz MNP @)}

Thus taking into account the fact that v;'=)(P®) and lemma
2 of §1, we can see that the ratio |[Cu.ll?/|[7.cslli=(A—MP®)(P™®)
tends monotone-increasingly to the limit (A,—X\,)’¢*(1+¢*)2%

This theorem provides the theoretical foundations of the following
acceleration procedure which is a slightly modified version of the accele-

=(coefficient of variation of P®)*,

ration procedure proposed by Forsythe and Motzkin [5].

Acceleration procedure for the optimum gradient method :

In the optimum gradient wmethod when the direction of vector &,
is nearly the same as that of Ci-,, it 18 recommendable to insert the
step defined by the following ;

wlcﬂ:xk_‘?k(xk-z_xk)
where
Te=(Ag, A(xk-i'_xk))f’/”A(xk—z_xk)”2P .

The rationale for this procedure is as follows; The fact that the direc-
tion of ¢, is nearly the same of that of {,_, means that £_,==|/&x-all:/15kll7'Ce
where the sign == is used in place of the description ‘‘is approximately
equal to”’. Then we can see that

Lyog— Ly =Ep—y— E=(A'"PA) (Cr-2— 1)
=(1&e-2lldlICellr* —1)(A’PA)'E,
=(1Ce-allill Eellr* —1)e

holds and it is obvious that in this case x,_,—x, will be a good candi-
date for the correcting term of the x,=x+¢,. Now if we can suppose
that &,_,=B(\'E,+c)\,;'E,) then we have

*) It is supposed here that (P(®);>0 and (P),>0 hold.



ON A SUCCESSIVE TRANSFORMATION OF PROBABILITY DISTRIBUTION 11

Ex-2=B(E1+cEn)
Vi-2=(A&;_,, Agk-ﬁ)?/” AZE—!IPP#(]-""C’)/()Q'F c\y)
Ex-1= k-3~ Ve-u-2= B+ N0) (A — N ) N6 — 7N ER}
|| A&y s ||2=(Ex-2y Er-2) =B N +CNST)
| Atg—1 |5 = (k1) To-1) =B+ €Np) 20 — M) (N - 7205Y)
&= B — X M+ ERa) €7 NG) TH{MTIE NG E R}
=|[ A& |3l Agx-s|lF7€k -2 -

It is obvious that in this case the direction of ¢, is nearly the same as
that of ¢,.,. This fact and the result of theorem 1 which assures that
we can expect that ¢,_, takes the form just stated when % becomes
large, give the theoretical basis of the recommendation of the present
acceleration procedure.

The rate of convergence of the optimum gradient method :

By using the results of calculations in the former paragraph we can
see that when the distribution P™® corresponding to ¢, tends alternat-
ingly to the limiting distributions P™>=(1/(1+¢), 0, ---, 0, ¢*/(1+¢*)) and
P*®=(c*/(1+¢*,0, --- 0,1/(1+¢*)) i.e. ¢, tends to be approximated by
B 1€+ 6N E,} with some scalar 3, and ¢, the rate of convergence
| Agyry||2/l| Ag, ][> tends to the value (A,—X\){(M+A.)l+(c—c ) AN,} 1
Thus the rate of convergence of the optimum gradient method is even-
tually determined by the value of ¢* which is inherited from the initial
vector z, or P, The values (A,—\)*{(M+N\n)'+(c—c )N}t attains
its maximum value (A,—X\,)’(A;+X,)"? when ¢2=1 holds. Now (A,—X\)*/
M +2)*=(—1)%/(t+1)* where t=x,/), is a so-called condition-number
of the matrix of A'PA.

We shall here make a slight digression for investigation of the
meaning of the condition-number. Now define the function f(%,c)=
|A(&—ct)—b|%/|| A2 —Db|> of a vector #(#x) and a scaler ¢ where
%=A’PAé, ¢=%—ux (x is the solution of Ax=b). If &= ?1‘1;8,5,, we have

f&, ¢) = ;; B — en)/ ;; @ and thus Min Max f(3, ¢) = Min (Max

(A=), (L —=ena)))=(1 =20/ (M 20)) = A — M)/ (N +2y) fOr €=2[(A1+ M)
Obviously Min M?.x f(&,¢) = Max Min f(%,c) holds and Min f(%, ¢)=f(%, ¥)

where §=(A4¢, A?),/|| A¢|> is given by the optimum gradient method.
Thus we get f(&, V)=(\z—M)/(AMa+N). We have already seen that
@&, V)= —N) /(M +2)* holds for & with corresponding probability
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distribution P = 1/2,0,---,0,1/2) and we can see that the value
v — A + A)'=(t — 1))/(t + 1)* gives the least upper bound of the
convergence rate f(%, ¥) of the optimum gradient method. It is stated
in [5] that a proof of this fact was given by Kantrovitch [8] but as
the Kantrovitch’s paper was not available, we gave a proof to it for the
sake of completeness of the following discussion.

Here we use the result of theorem 3 of § 1 to see why the optimum
gradient method often converges with the convergence rate nearly equal
to its worst possible value (A,—X,)*(A,+7)? This fact was also noticed
by Forsythes [5]. For P>=(1/(1+¢?,0, --+, 0, ¢*/(1+¢?)) and P* =
(¢*/ + ¢*), 0,-++,0,1/(1 + ¢?)) we have MP) = (A, + ¢™,)/(1 + ¢*) and
MP*)=(c™, + \)/(1 + ¢®) and thus we have (MP)— (A, + \)/2)7 =
MP*)— (M +2)/2)' = (Mg — M) (L —?)?/4(1+¢?)*. Thus under the condition
which assumes that the point )\, is not discarded during the course of
approximation procedure, we have from the result of theorem 3 of §1

(22 (n = 2y ;};52; (= )? -

By putting ;=\, —(a+M)/2)/(Me—2)/2) We get from the above inequa-
lity the following

4{%}2({:——0“)2 .

Thus, for example, when there exists some )\; which satisfies the
condition of theorem 3 and with |5, {{1 we can expect that (¢c—c™)’ is
near or less than 4. Now the convergence rate at the point correspond-
ing to the P>=(1/(1+¢?, 0, «--, 0, ¢*/(1+¢?)) is given by (A, —\,)’ (A, +2,) 2
{1+ —c ™ POAT+ 00 +2)" -1 and by putting e=1—(Aa—\)/(Aa+)0)
this is represented as (A, — 1.’ (0 +N) {14 (c—c~ ) (2 +1+&(2—¢)"Y) 1} L
Thus we can see that the convergence rate tends to be greater than
Oun— M) A1) {14+ (e/2)(c—e™)} ! or a fortiori than (h,—A)(ha-+),)"
{14+2¢(1+82)(1—83)"'}-'. From this last relation we can see that when
we use the optimum gradient method for ill-conditioned (¢<< 1) matrix
A'PA, then the rate of convergence tends near to its worst possible
value, especially when there is some ), near the value (A,+2\,)/2 i.e.

18| << 1.
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As to one of the numerical examples described by Forsythes [5],
and which will be treated fully in the following paragraph of this sec-
tion, we have £€=0.01073 and

(= X0) (a+2) 7 {1+ 26(1+81) (1—81) 77}
== M) (Aa+2) "2 x 0.9789=0.9580 for 8;=0.001321
=N =N (Na )2 x0.7171=0.7018 for &;=0.896854 .

We can clearly see in this example the effect of the small value of ¢
making the convergence rate tend near to its worst possible value. Thus,
it seems that our present analysis gives fairly general theoretical ex-
planation to the fact that the optimum gradient method converges slowly
when the matrix is ill-conditioned.

Numerical example

Here we shall present some numerical results obtained by using the
same A and b as those treated by Forsythes [5] and by putting P=1
(identity matrix). These results are obtained by using a FACOM-128
relay computer of our institute. We have used the computation scheme
of optimum gradient method where the acceleration step is inserted
automatically when the condition (&y_s &i):i/(ll Cx-2ll:l| Exllr)>8 is satisfied
for some preassigned value of 3(1>8>0).

We have

(1/70.00268704 7
V001581310 ()
1/70.08234830
1/ 0.17590130
0  V/0.25046632

L 17 0.49823436 B
b=[0, o0, o0, 0, 0, 0,] and

(0.00268704 (=2x,) m

0.01581810 (=1) ()

apa=| 008234830 (=1,)
0.17590130 (=).)

0  0.25946632 (=»,)

i 0.49823436 (=),) |

We have used three values 0.99, 0.999 and 0.9999 as 8. In fig’s. 1, 2 and
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3 the sequence of v,’s are represented by e and ¢,’s (acceleration step)
are represented by x. These three figures correspond to the above
mentioned three values of 6. In fig. 4 part of the values of ¢.’s are
illustrated for the case §=0.9999. The numbers in the blacket in fig. 4
correspond to the k’s of fig. 3 and the symbols & signify the result of
acceleration procedure.

We can see in these examples a good agreement between the results
of our theoretical analysis made in this paper and the results of practi-
cal computations.
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