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1. Introductory remarks and basic ideas.

The deterministic continuous-time model of epidemic was studied by
Mckendrick and Kermack (1927). A new impetus has been given to the
study of epidemic since 1940. Bartlett (1949) and Bailey (1950, 1955)
have introduced the idea of stochastic process to their deterministic
model and developed a partial differential equation for the probability
generating function of two variables, viz., the numbers of susceptibles
and infectives.

They take the assumption that infection ahd removal from circula-
tion occur as random events in continuous time, and a newly infected
indiuidual is infectious to other suseeptibles until the infective is removed
by ‘death, recovery or isoclation. So various results have been developed
by Bailey (1950, 1953, 1955) both for this general case and the simpler
one involving no removal.

The social group in the epidemic model must be based on the assump-
tion of homogeneous mixing. The most epidemiological phenomena must
depend only on the homogeneous contact between hosts and infecting
organisms. As the actual problem, we have some doubts about this
assumption, but we ecannot help doing so theoretically because the
reliable information on the nature, density and the mode of transmission
of infective agent is fairly meagre. This kind of information must
be more precisely studied by medical experimentation. If this problem
is solved, we shall be able to give a more exact epidemic model.

In any case, it seems reasonable that epidemics actually occur in
several relatively small social groups in which the assumption of
homogeneous mixing is satisfied. Bailey (1956) concentrated his atten-
tion to the small scale epidemics in family groups after one of the
members contracted the disease from outside, and analysed the data
of Hope Simpson. As the -chances of cross-infection within ‘the family
are usually fairly high, it will perhaps be practical to study these

261



262 S. SAKINO AND C. HAYASHI

intra-familial epidemics. From his data on the measles, we can see
that the cases of cross-infection within the family are not so many
and, rather, of rare occurrences in that area. But such phenomena
may originate in the incomplete report of measles.

In the present paper, we shall construct some epidemic models in
the community where the assumption of homogeneous mixing is
satisfied.

We treat only the diseases that are infectious in the sense of
being communicable at the appropriate stage of the development in an
infected individual by adequate contact with a susceptible. As soon as
infecting organisms enter into the body by the adequate contact, the
infecting organisms undergo certain biological developments within the
body during the latent period, but any kind of infectious material is
is not exhaled. The receipt of infection by adquate contact is a rather
broad concept used to introduce the probability element. And at some
time in the individual’s history of infection, recognizable symptoms may
appear. With acute infections these symptoms are the signals for
isolating the case from the community until patient recovers and is, at
least temporarily, immune from further infection.

We, also, assume the chance of contact to be the same for any pair
of one infective and one susceptible. But we cannot state that the
chance of attack is the same for all contact members because all ostensib-
ly contact members are not necessarily all infective. That is, if the
infective organisms enter into the body, the antigen and antibody
will be constructed within the body. And if the quantity of the
antibody constructed within the body is less than a fixed level, the
body will be infected and some symptoms will appear. Inversely if
the antibody is more, the body will not be infected by the infectious
disease. Then, temporary immunity is conferred by attack of the infectious
bacillus or virus, though its immunity is not generally permanent.
And the body will not be infected for at least a certain length of period
owing to the temporary immunity. We are supposing that this will be
the characteristic of many infectious diseases. Surely, a very few
persons will be infected for a period of the epidemic. For example,
when we consider the epidemic period of such infectious diseases that

encephalitis, infantile paralysis and etc., a very few may be infected.
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Now, for simplicity, we shall assume the latent period to be reduced
to zero in comparison with the infectious period when we construct our
model. On this idea, we shall consti‘uct the stochastic epidemic model
in Section 2, and illustrate numérically this model by Monte Carlo Method
in Section 3. | -

The second idea in Section 4 is that we introduce the conditional
probability which a infective infected at the time 7 will recover in the
time interval (¢, {+4t). Our model in Section 2 contains some disad-
vantage that every infective recovers independently of the infected
time. ' '

In Section 5, we shall revise s_o’me classical treatments of epidemic
from some practical stand points.

2. Stochastic treatment (I).

Let us assume that the epidemic is started by the introduction of
a infectious individuals into a population of n susceptibles. We take
the community, the size of which is n+a individuals at ¢=0. Suppose
that, at the time ¢, there are r susceptibles, s infectious cases in
circulation and ¢ individuals who are isolated, dead or recovered.

r 8

.. (bwedt
susceptibles | —————» | infectives }

W™

Barsdt l§

\‘l removals ]

Fig. 1. Diagram is showing the relation between infections hr.obability and
removal probability in the time interval (¢, ¢+ 4 t) when there are r susceptibles
and 8 infectives at the time t.

Birsdt is the conditional probability that a susceptibe which accepted

infectious baccilus from one infetive is not infected, but falls in the

removal group (immune group) in the infinitesimal time interval

(t,t+4t) when there are r susceptibles and s infectives at the time ¢.
- Thus we have

r+st+q=n+a (1)
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where

0 r =n,

0= s =n+ta,

0<s+s=n+a, (2)
0 q =n+a.

Now suppose that, on the assumption of the homogeneous mixing of
the susceptibles and infectious cases in circulation, the conditional
probability of one new infection taking place in the infinitesimal time
interval (¢, t+4t) is given by B, rsdt+o(t). That is,

Pr{r—1,8+1 at the time t+4t/given r, s at the time ¢}
=,811”8/1t+0(4t) ’ ( 3 )

where B, shows constant infection rate and the symbol o(4t) stands
for a quantity which tends zero faster than 4¢t. Similarly, suppose that
that, the conditional probabilty of one new removal (one immune case)
from the group of r susceptibles taking place in the infinitesimal time
interval (¢, t+41) is given by 8, rsdt +to(4t). As stated in Section 1, when
a susceptible is very healthy, he would not be infected if the infectious
organisms entered into his body. Then, he has, rather, temporary immune.
That is, B,rsdt expresses the conditional probability by which one
susceptible falls in the removal group directly from susceptible group in
the time interval (t,t+4t). Next, Suppose the conditional probabitity
of one infected person being removed from circulation in the time
interval (¢, t+4t) is given by B,s4t-+o(4t).
That is,
Pr{r—1, s at the time t{4t/given r,s at the time ¢}
=R,srdt+o(4t), (4)

where 3, shows contant removal rate from susceptibles, and

Pr{r,s—1 at the time t+4t/given r, s at the time ¢
=B84t +o(4t),

where B, constant removal rate from infectious cases.

Furthermore, let P,(t) be the probability that at the time ¢ there
are r susceptibles still uninfected and s infectious cases in circulation.
Putting 4t—0, the well-known procedure gives the following differential-
difference equation from (3), (4), (5),
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‘%—;}9 =BT +1)E—1)Py 114t +Bor+1)8Py y ()
- (131?'3 +8:78+B8:8) Py i(t) +B4(8 + 1) Py, 41(1) (6)
"!—PL(t) = "'(stn"‘ﬁfn +Ba)aPua(t) ’

dt

where the injtial condition is P,,(0)=1. Using the probability generating
function 7=n(u, v, t)=3, u” v* P,,(t), it is now easy to show that the
whole process can be characterized by the partial differential equation
for m:

or _ - _ o't _ @_
E—(Bﬂ) Buv — Byuv +’3*’~’)—_3 oo +B1—v) » (7)

with the boundary condition
(u, v, O)=u"v® . (8)

If r,s are the independent random variables and the mean of susceptibles
is given by¥,=e~"® at the time ¢, the number of infections at the time
t becomes the branching process. And the number of infectives s at
the time ¢ can be calculated easily. But it is, generally, difficult to
to derive, rigorously, the solution of the partial differential equation
(7) of hyperbolic type corresponding to the boundary condition (8). By
the way, we shall illustrate numerically thig model by the Monte Carlo
Method.

3. Numerical illustration.

Let the time interval 4¢ in (8), (4), (6), be equal to a infinitesmal
unit time. Then, we shall be able to derive the next relations from
(3)9 (é)s (5) : ‘

Mm=Pr{r—1, s+1 at the time ¢+1/giving », s at the time ¢}

=ps, (9)
N,=Pr{r—1, s at the time ¢+1/giving r, s at the time ¢}

=p,rs 10)
M=Pr{r , s—1 at the time t+1/giving r, 8 at the time ¢}

—Bs 1)

7\'4=1_()\'1+7\':+7\'a)
=Pr{r, s at the time t+1/giving r, s at the time t} (12)
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where r susceptlbles and 8 mfectlves in carculation are at the time ¢.
When we construct four domams (, xl], (x,+x,], Ay M2+ 0],
(M42;+2rg, 1) and we take a non-negative random number X, from a
uniform distribution on (0,1), we can decide 7, 8 by finding a domain
which X, is belonging to ;

r—1 susceptibles and s+1 infectiv‘e“sa at the time t+1
if X\ :

r—1 susceptibles and s infectives at the time ¢+1
if MSX<MHN

r susceptibles and §—1 infectives at the time t+1
i MFMSX <N
or

r susceptibles and s infectives at the time ¢+41
if MA+M+MX, .

For example, if X, belongings to the domain (0, \], we can derive N
at the time ¢+1.

That is,
M=PBy(r—1)s+1) (9)
M=B{r—1Xs+1) (107)
Ns=B4(s+1) - (1)
A =1 "(7\'1+7\'z+7\'s) (12')

where r—1 susceptibles and s+1 infectives in circulation are at the
time t+1. Furthermose, we take a random number X,,, and repeat
the above procedure. And this procedure stops if 8=0. By the method
mentioned above, we calculated the 10 epidemic curves of r,8 as the
initial values n=400 susceptibles, a=20 infectives and the infection
rates.3,=10"°%, removal rates B,=5x10"% B,=2x10-% By this method,
we gave the mean epidemic curves #,, §, of r susceptibles and s 1nfect1ves
at the time ¢ as Fig. 2 and Fig. 3. The mean susceptlble curve T,
decrersps monotonousl}y,' but the mean infective curve 3, rises fast up
to the maximum point 3 and descends slowly from its point. '
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Fig. 2. 7, shows the 'mean number of susceptibles at the time 2.
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Eig. 3. §; shows the mean number of infectives at the time t.
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Fig. 4. V, expresses the variance gf = at the time ¢.
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Fig. 5. Vj, expresses the variance of 8 at the time ¢.
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Fig. 6. CV,s expresses the covariance of #, 8 at the time ¢.

Let us denote the variance of r by V,, the variance of s by V, and
the covariance of 7,8 by CV,, at the time t. Then, the graphs of
V,, V, CV,, are shown in Fig. 4, 5, 6.

This result (r,8) was a numerical illustration of the differential
equation (6) by Monte Carlo Method, but we must compare its solution
with epidemiological data whether this model fits or not. But theoreti-
cal defect of this model is that the conditional probability of recovering
is only proportional to the number of infectives at that time and does
not depend on the individuals infected time. And, therefore, we shall
introduce the recovering time distribution G(z, t) in Section 4 so as to
remove this defect.
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4. Stochastion treatment (II)

We can understand that the probability of a new recovering does
not depend on the number of infectives, but must depend only on the
individual’s infected time from epidemiological phenomenon. So, we
must consider the recovering time distribution g(z, t) from the infected
time 7. The conditional probability B,s4t means that every infective
has an equal chance of recovering independent of the individual’s
infected time.

Bartlett or Bailey, also, do the same restricted assumption as we
do. In reality, the probability of recovering of one infective in the
time interval (¢,t+4t) depends only on the infeted time, so that the
model (6) is so restricted. If we can improve this point, the epidemic
model will be very useful so as to analyse the epidemic expansion.

Let g(t, t)4t be the conditional probability that one infective which
was infected at the time 7 recovers in the interval (¢,t+4t). And,
therefore, the propabtlity that one infective which was infected at the
time 7 will recover before the time ¢ is given by: '

G(r, t)=§' o(z, wdu (13)
where T<t.

As shown in Section 2, the conditional probability of one new infection
(or one new removal from the group of susceptibles) taking place in the
time interval (¢, t44t) is given by B,rsdt (or B,rsdt) when there are r
susceptibles and s infectives at the time ¢.

Let us assume that

[ Bdpiradate, e =KOs K< (14)

where r, is the number of susceptibles and s, the number of infectives
at the time 7. And E, expresses the expectation of r,, s, at the time
T so as to gain 7, s, at the time ¢t. Then, we can give (15) as the
approximation of the probability W(t)dt of one new recovering taking
place in the time interval (¢, t+4¢).

That is, it is:

weyat={[ Eiraote, tyac{exe] —[ Bugirsroe, vz 4t as)

t
[]
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This idea is the essential point in this section :

If we can replace the conditional probability (5) by the equation (15)
and derive the corresponding differential equation to (6), (7), this prob-
‘lem is vey simle. But it is not easy. We shall publish the epidemic
model basing on the equation (15) in future. Surely the model in
section 2 contains the contradiction that the probability of recovering of
a infective depends only on the number of infectives and does not
"depend on the infected time. We understand that this idea predominates
the treatment of epidemiology up the present. But such idea must
be improved according to the idea of (15).

5. Classical approach.

By the idea of Section 4, we shall revise a classical treatment
from our stand point.

Model (A)

Let G(zr,t) be the probability that one infective infected at the
time 7 will recover before time t. Then, we can give the probability
G\(z, t)=1—G(z, t) that one infective infected at the time 7 will not
recover before the time ¢t. That is, G(r,t) shows the probability of
duration of disease to the time ¢ from the infected moment .

Also, let h(t)4t denote the number of infectives infected in the
‘infinitesimal time interval (¢,¢+4t), and let F(t) be the number of
infectives at the time ¢ which the initial number of infectives equals to
F(0)=a. Then, we get the equation ;

Ft)= he)6,(r, Odr+aG.0, B+, (16)

'The first expression of the right term of (16) is the number of infectives
which were infected in the time interval (0, £) and are, yet, infectious
at the time t. The second expression is the number of infectives which
-are, yet, infections at the time £ among the initial infectives a. The
third expression ¢, is the independent random variable which E(e,)=0,
E(e))=o0} at the time ¢ and E(e,)=E(})=0 at the time £=0.

And, therefore, we can calculate the number of infectives F(t) at the
time ¢ if the function k(t) is known.
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For this pupose, if the number of infectives h(t)4t occurred in the
-time (¢,t+4t) is the proportional to the product of the numbers of
infectives and susceptibles- at the time ¢, we shall be be able to give
the non-linear integral equaﬁon:

h(t)='7{ S:h(T)GI(‘L', t)dr+aGy(0, t)+e,}( n —S:h(u)du> an

where n is the number of susceptibles at the initial time ¢=0, and
v is the proportional coefficient. .
If, in Section 2, constant infection rate 3, corresponds to B,(t), we

have the relation B,(t)=v / (n—S:h(u)du) between B,(t) and 7.
Now, Putting

B(t, 7, he)=r{(n — | r)du)h(@G,c, —a6.0, O M) —eh@ | ,
(18)
S)=rnaG (0, t)+vemn ‘ - (19)
-we can give the non-linear integral equation of Volterra’s type from
1a7:
h(t):S:R(t,‘r, MENT+A1E) " (20)

where 7n,a are finite from assumption. If we assume h(t)4t, F(t) in
the equation (16) to be the expected numbers, that is, we make the deter-
ministic model of (16), the equations (18), (19) are rewritten as next;

R, h(r)):v{(n'—S:h(u)du)h(z')Gl(z', H)—aG,0, ()},  (18)
Jt)=7rnaG 0, t). 19)
S(t) satisfies the Lipshitz condition in the finite interval 0<¢<7%. And then
it is, easily, shown that R(t, 7, k(7)) satisfies the L1psh1tz condition in the
‘domain D(O<t$7), osr<t, Os h<h,) as h(t) is bounded in the finite
interval 0<t<n. : . v
That is, .
|R(t, 7, bi)—R(t, T, ko)l <V|y(7) —ho(7)] - InG (7, t)—aG,(0, t)]
+710u(®) R~ | B+ 7@ )bl
< Kih(t)—hy(D)|+ Kt oigg [P (w)—ho(u)|
< (Ko K7) 5up [hu(w)— hu(u)
=(K+ Kb (u*)—ho(u*)|
= Khy(u*)—hy(u*)| ' (21)
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in the domain D, and 80 R (¢, 7, k(7)) satisfies the Lipshitz condition on
). So, we can derive the numerical solution by the successive appro-
ximation. That is, when we make

hy(t)=£(t)
() =hy(t) + S:R(t, 7, hy(z))dr
22)

halt)=ha(®)+ | R(t, 7, a2,
the relation
Lim h,(t)=M(?) ' (23)

exists uniformly on ¢, and h(t) is the unique solution of the deterministic
non-linear integral equation of (20).

Using this solution A(t), we can calculate the number of infective
F(t) at the time ¢ from (16).

Bodel (B).

Let G(r,t) be the probability that one infective infected at the
time 7 will recover before the time t as model (A). And, therefore,
Gz, t)=1—G(r, t) expresses the probability that one infective infected
at the time ¢t. Furthermore, let 8(z, t)4t denote the number of infectives
which was infected in the time interval (¢,t+4t) from one infective
infected at the time 7. The defnition of h(t)4t are the same as stated
in model (A).

Assume that, at the initial time ¢=0, a infeetives entered into the
homogeneous social group which had no infective.

When ¢,, &, express the random variables which have E(e,)=E(e;)=0.

F(t):S:h(t)Gl(r, t)dr+aG(0, 1)+, , (24)
we)y={ he)Gite, 8(z, )T +aG(0, (0, 1)+ (25)

the last expression being completely determined if the structure of
8(z, t) is known. :
For example, suppose that

G(, t)—_-l_}(;_)S:(u—r)'-le-w-t*du (26)
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where )\, s are parameters. :

It is assumed here, for simplicity, that s=2, &(r, t)=c(constant).
8(z, t)=c means that the fixed number ¢ of susceptibles are infected
independently of the timeé ¢ from one infective.

If we assume F\(t) to be the expected number of infectives at the
time ¢, A(t)4t to be the expected number of occurrénces of infectives
in the time interval (,t+4t), we get ¢, €,=0 in (28), (29).

This is admissible as a first approximation.

Then, as )

G,(‘L", t) =Mt —1)e- 2= f g=Mt=ry 27
the linear integral equation (25) can be rewritten in the form

h(t)e"':(kt+a)§2h(r)e"’dr— cLS:h(z')re’"dr tacr+1).  (28)

When we differentiate the above equation (28) twice with respect to time
t, we can derive the next homogeneous differential equation of Euler’s

type:

@ d,;(xt) +(@— c)dh(t)-!-()\.’ 2eM)h(£)=0 . (29)
And the characteristic equation of (29) is
A =r+@2x—cjr+A\~2cx)=0. (30)

As %, ¢>0, the characteristic equation (80) has mutually different
real roots. When we express their roots by —A, —B, we can give the
general sohition of (29)

h(t)=Ce-4+C,e? (31)
where C,, C, are constants.

Therefore, we obtain

F(t)= S:(C‘Q-Ar_'_ Coe™® ) {ME—T)e" -7 g~} dr
+a(hte-2t4e-M) . (32
And
F(t) =()\,t + 1)e-At§:(Cle—(A-x)r+ Cge"“"”')dr

, _m‘*‘s:(c,e-“"*”—rC.e“'“*"')rdr+a(u+1)e"‘

_f € _ Cx C. _ Cx aCt C)Lt
_{A—x @Ay B—x By * T gt

+{ ‘(AC-',_XR)’_ (ACE 3 } a4t +{:.B :Xx)’ (BC’)‘) } B (33)

X‘

Bt M}
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Furthermore, (33) can be rewritten in the next form -
' © F)=(C+Cit)e M4 Cie~ 4+ C o™ (34)

Where C/+C,+C,=a from a relation F(O):a.

If we estimate the parameters C! (i=1, 2), C(i=1,2,8,4), \, A, B
from data, we can calculate the number of infections patients at the
time ¢, h(t) and G(z, t)..

6. Summing-up of our Reslult.\.

The practical usefulness of the model stated in Section 2, 4, 5,
depends, to a considerable extent, on ndh-staitistical consideration (for
example, the nature of infectious bacillus or virus, social environment
and etc.). If we do not settle from a medical point of view, we cannot
construct a real epidemic model. Whether we can apply our epidemic
model to the epidemic expansion or not, we must consider sufficiently
the social enviroment. However, we fancy, from the phenomenistic
consideration of Section 4 that our method will be capable of estimating
the epidemic structure with much more validity ‘if such stochastic
model is constructed.

As described in Section 2, the essential problem in our model is
that we considered removal rzav.te‘/fs"3 from a group of susceptibles to a
group of immune cases. There may, surely, be some doubt Whether
all ostensibly attacked members are really infective. Judging from
epidemiological phenomenon, B, is not zero generally. Bartlett and Bailey
take the same assumption that every susceptible has an equal chance
of infection. But as mentioned in the Section 1, 2, the probability of
infection is not necessarily equally probable for every suscepj;ible. We
considered that the probability of receiving the infectious virus or
bacillus was equally probable for every susceptible, but the I;robability
of infection was not equally probable,

The essential point in Section 4 is that the conditional probability
of recovering is not B,s4t, but is igiven by (15). B84t means that
every infective has an ‘equal probability of recovering in -the time
interval (¢, t+4t). It is thoretically erroneous that the probability of
recovering does not depend on the infected time.

In the classical approach of Section 5, we introduced the time distri-
bution of recovering and derived the non-linear integral equation (A)
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of Volterra’s type and linear integral equation (B). In the following
paper, we shall verify the validity of our stochastic models by the
data of influenza obtained in a community.
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