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1. Introduction.

Uspensky [1, p. 102] gives an inequality relating to the partial sum
of binomial probabilities: Let X be a random variable following a
binomial distribution B(n, p), arising from n repetitions of an event with
probability p. Then it holds that

P(|X/n—p| Zc)<2¢""*

for any constant ¢>0 and any » with 0<p<1. Its proof, however, is too
tedious, although elementary. In the following we shall give a simpli-
fied proof for a somewhat strengthened result (Theorem 1). By the
same method we can also obtain some other inequalities which prove to
be useful in Matusita’s theory [2, 3] of test of fit, two-sample problem,
test of independence, etc.

2. Two lemmas

We shall state two lemmas the first of which is a corollary of a
theorem given by Chernoff (Theorem 1 in [4]).

LEMMA 1. Let X be a random variable following B(n,p) and = a
constant, 0<x<1, which may depend on mn or p. It holds then that

(i) P(X[nzx)<e ™™  if x=p, and
(i) P(X/nZx)<e "™ if 2Zp,
where

1—2

¢(x)=x log %+(1—w) log

and ¢g=1—0p.
LEMMA 2. The function ¢(x) defined in Lemma 1 satisfies the follow-
ing inequalities :
(a) ¢(x)=2(x—p) iof 0==z<1,
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(b) ¢@)=-E=PF if pses<i, pzl
2pq 2
®) e(z)z L2, if 0<z<p, p=i
2pq 2

(¢) ¢@=2Ve —V'py if p=wl,
(d) ¢@)z(Vp —Va ) if 0<z=<p,

where the equality sign holds in each case if and only if x=mp.
ProoF. First we have

¢(@)=log £ —log 1%,
(1) lp q
¢ (@)= x(l_w)zO,
consequently
(2) ¢(p)=¢'(p)=0 .
For the proof of (a), put ¢,(x)=2(z—p)’. Then
(3) ¢:(p)=¢i(P)=0
and
(4) pl(@)=4s¢"(@) if 0sz<l,

where the equality holds at a single point #=1/2. From (2), (3) and
(4) we obtain

p@)=<epx) if 0<x<1,
with the equality sign only for z=p.
Concerning (b) and (b’), putting go,(x):(%_;q&y, we can prove them
similarly.
Re (c). Put ¢ x)=2(vz —Vp ).
Re (d). The proof of this cése is most lengthy. We shall first

prove |
(5) e(p—V'p )=¢}2  if 0<c<VD .

If p<1/2, then (b’) implies
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and if p=1/2, then (a) implies
¢(p—V pe)22pizci2c*2 .
Then we have (5).

Now we consider two cases :
Case (i) where z satisfies

(6) (V2 -1pp=sz=<p.
Put ¢e=Vp —V'z . Then (6) is equivalent to 0<¢<(2—V 2)V p , which
implies
(7) z=(1"p —cf<p—V'2pc.
By (1) and (2) ¢(x) decreases monotonically in the interval 0=<z=<p.
Therefore (5) and (7) give

p(x)=¢(p—V 2p c)2¢*,

which is (d) for the case (i).
Case (ii) where x satisfies

(8) 0=<z<(V'2-1yp.

If we define the function ¢(x) as

(9) H@)=¢@)—-(V'p -V ),
then its first two derivatives are

’ _ & _ 1—2 _ _ z
(10) ¢(fv)—log—p; log . (1‘ 1/ - ) ,
() V@)= gy BV E VP (12} .

Since the formula in the braces of (11) increases monotonically for z=0
and its value at #=(1/2 —1)’p is easily seen to be non-positive, we
obtain for any value of x in the interval (8)

¢"(@)=0 .

Since we have from (9) and (10)
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$(0)=—log g—p=0 and ¢'(0)=co,
we have only to show
12) A2 -1Pp)20  if 0=p=<1

in order to prove ¢(x)=0 for any x in (8). Now, from (9) we have

M2 -1m)=11 -/ Z-1p] log 1=/ 2 D
+20/2 —1)flog (V' Z ~1)—1lp=((s) (sa) .

The function ¢(p) is defined in 0<p<1. Since £(0)=0, in order to prove
(12) or Z(p)=0 it suffices to verify

(13) (=0 for 0<p<1.
The derivative of £(p) can be expressed as
(14) =02 -1)y[2log ("2 —1)—8]—(V 2 —1)*log &(p)+&(p) ,

where

)= 1=/ 2=V

The function é(p) defined in 0<p<1 is clearly monotone-increasing and
therefore

(15) {p)zé0)=1  0=p=1,
which implies
(16) log §(p)=é(p)—1, O=p=l.
Finally (14), (15) and (16) together imply (13), for
C()z(V 2 —1y[2log (V' 2 —1)—8]— (V2 —1)[6(p)—1]+E(p)
=2(V'2 —1)[2log (V' 2 —1)—8]+1>0 .

It will readily be seen that the equality condition in (d) is z=p. This
completes the proof of Lemma 2.

3. Theorems

Let X be a binomial variate with B (n,p), 0<p<1, and c a non-negative
constant depending possibly on » or p. From Lemmas 1 and 2 in the
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preceding section we have readily the following theorems.

THEOREM 1
(i) P(—Z——pzc)@"”" ,
(ii) K2 —ps—c)<e™.
THEOREM 2
(i) P(—:— —pzc)< exp (—7”;;) for p;%,
(ii) P(%—pg—-c)< exp (——2"—;"(1) Sfor pg-;—.
THEOREM 3
P(}/% —V'p gc)<e""°’ .
THEOREM 4

| P(}/% —V?é—c)<e'”°’ .

We note that the equality signs for ¢=0 which are to be present
in these formulas in applying Lemmas 1 and 2 are absent there. This
is justified by the direct consideration of properties of the binomial dis-
tribution, where we restrict p in the open interval 0<p<1.

4. Application to Matusita’s multionomial distance.

Let F be a multinomial distribution with k& classes and a set of
probabilities (p,, ---, p:), >0, X, p=1, and let S, be an empirical dis-
tribution with relative frequencies (n,/n, - --, n,/n), (3. n,=n). Matusita
[2], [8] defined the distance between S, and F' by the formula
an IS, —Fir=3(y%-v.) .

- n

which we shall refer to as Matusita’s multinomial distance. He and M.
Motoo [56] proved that

BP+k—1
(n7)’

for any positive constant 7. Now we obtain from Theorems 3 and 4

(18) P(ISa—FlPrz7)=
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the following
THEOREM 5

(19) P(IISn—FIl”zv’Kk{ exp (— 2’;’72 )+ exp( ”TVS)} .
Proor. Clearly

PIS.—Firzns S Py ™ v

1/k)

Since for each ¢ the random variable =, is distributed according to
B(n, p,), we have from Theorems 3 and 4

P( —V'p, _1/—)<exp( 2’—;:7?) ,

Hy -vis—F)<em (=),

whence the required inequality follows.
We shall compare our result (19) with that of Matusita and Motoo
(18), that is, we shall ask which of

A= F+k—1 and D___k(e-znn’/k+e-nn”/k)

(n7")?
is better (smaller in value). If we put A'=FK*(n7*)’, which is better
than A, it holds identically

D=k(eV4 +¢ V),
Now we mention two examples of the comparison of A and D: For
=1/25
D=Fk(e™+e*)<1/26=A'<A if k<5,
and for A'=1/100
D=k(e®+e ) <1/10=A'<A if £<220.

Though the comparison depends on k%, the number of classes, if A is
around or below 0.01, then D is seen to be better than A in almost all
practical cases.
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ERRATA

These Annals Vol. IX, No. 3

P. 204, in the determinant of the second member in formula (9):

”»

read ‘“1—a,,”’ instead of ‘‘ —a,,
P. 207, 1st line: read ‘‘ quantitative’’ instead of ‘‘ quantitive”.
R,

(2]
k+ k

P. 211, the last line: read “‘---+an.q. + »’ instead of

éé R'
cee +a:kqn‘?k'1‘k)k7 ” .

Vol. X, No. 1
P. 33, Theorems 1~4: read ‘“ X'’ instead of “a”.
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