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1. The iterated logarithm type theorems for the absolute value of
k-dimensional Brownian motion (k= 1, 2, ---) have been given by many
authors in various ways. The aim of this paper is to prove these theorems
by a unified method.

Let {X(t)} be a diffusion process in an interval, and let C,, C,, (C,, G,)
be the classes of increasing (decreasing) functions in (0, =) such that

Ci={¢: P{Im (X(H)—p(#)20} =1}
C,={¢: P{lim (X(t)—¢(£))=0} =0}
C,={¢ : P{lim (X(8)— ¢(t))<0} =1}
=19 : P{lim (X(t)— () <0} =0}

In section 2, we shall completely determine the classes C,, C,, C, and
C,, if X(t) is recurrent and the expectation of it’s recurrence time is
finite. For example, Uhlenbeck’s process satisfies this condition. ‘

In section 3, we treat the absolute value of k-dimensional Brownian
motion. This process is a one-dimensional diffusion process which does
not satisfy the above conditions. But by change of scale and time, we
can apply the theorem of section 2. And we shall prove the iterated

logarithm type theorems.

I wish to thank Mr. T. Ueno for his helpfull advices.

2. For a diffusion process in an interval [a, b], we take notations
and definitions as in Ray’s paper (Ray [1]). Namely,

Def. 1. Transition probabilities and Chapman-Kolmogoroff’s equa-
tions. (Definition 1 in Ray [1])
(In this definition and the following, R should be considered as the in-
terval [a, b].)

Def. 2. Probability space and the continuity of sample function.
(Definition 2 in Ray [1])

In this definition, 2° is replaced by a stronger assumption 2.

2°” For every ¢, >0 and every J > 0, there is A > 0 such that
| #(8, w)—X(¥, w) | £0 whenever 0=t, £'<t,, | t—t | <A.
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Def. 3. The first passage relation. (Definition 3 in Ray [1])
Moreover for every open interval I=(z, y), a<x<y<b and every zel,
Def. 4. Communicative relation.

P{a*(z})=2} >0 and P{a*(cf)=y}>0.

Then, by Dinkin (Dinkin [5]) there exist canonical scale s(x) and cano-
nical measure m(dx) in (a, b)®. The canonical scale satisfies the following
relation.

Pl =af = S Plare = g) = SO0

For the purpose of this section we make the next additional assumption.
A. For every z, y (a<ax<y<b)

P{tf, ,<oo}=1 and P{rl,  , <o}=1
Moreover
E{tf, )} <o and E{tl, ,} <.

Without loss of generality, we may assume s(z)=x and 1, 0€(a, d)
in this section.

THEOREM. Let X(t) be a diffusion process in an interval [a, b] satisfying
the assumption A, and ¢(t) (¢(t)) be an increasing (decreasing) function such
that 0< ¢(0)<¢(t)<b, (0>¢(0)=¢(¢)=a). Then

P{lti?(X”(t)—¢)t))20}=1 or 0, foral ze(a,b),
if and only if

= dt
———= o or <o,
So o(t)

P{lim (X*(¢)—¢(t))=0}=1 or 0

s . © dt
if and only if S = or <oo
o [ ¢ ()]

We consider only the case b=s8(b)=, otherwise

D By these m and 8 infinitesimal generator 4 of the semigroup of the process is re-
presented as Af(x) = d/dm d+/ds flx) for z€(a, b)Where flx) is in the domain of A.
2) For there is no mass defect at any point in R nor trap, this assumption is eqnivalent

to the condition j:'m(dx) < oo,
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P{EX *(t)=b} =1. (c. f. foot note (2))

Moreover, without loss of generality, we prove the theorem for process
X(t)=X(®), (X(0) =1).
Let T(w)=0
S(w)=inf{t: X(t)=0}
T(w)=inf{t: X(¢)=1 ¢t>8,}
Sp(w)=inf{¢: X(t)=0 t>T,_,}
T\ (w)=inf{ ¢t : X(t)=1 t>8S,}
(S, and T, are finite with probability one by assumption).
Then we first prove the following.

LEMMA 1. Let Y(t, w) = sup X(8), and {a,} be an increasing sequence
8t

such that a, 1 o (n4 ). Then the following two conditions are equivalent
Sor almost all w.

(i) Y(T.(w), w)=a, for infinitely many n.
(ii) sup X(t)=a, for infinitely many n.
Tp-1St<Tp

Proor. It is easily seen that (ii) implies (i).
If (i) is true, we only consider those » whose T”s are finite and X(¢) is
continuous. If n, is arbitrarily given, we can find n, > n, such that

@y > Y(Ty,) (for Y(T,,) is bounded and a, t «).
Then by (i), there exists n, such that n, > n, and Y(7.,) = au,.
Therefore sup X(¢)=a,,, (for W=y, > Y(E) if t<T,,) and there exists

Tnost< T"’

Ny My = My > Ny Such that
sup  X() = @n, = @, -

Tpg—-15t<Tpg
Thus the lemma is proved.
In the similar way as in the Lemma 1, we can get

LEMMA 2. Let ¢(t) be an increasing function such that ¢(t)co (tfo0).
Then the following two conditions are equivalent for almost all o.

(i) Tim (Y (£, w)—¢(t))20 .
(ii) E@(X(t, w)—¢(t))=0.

By the property of canonical scale,
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P{ sup X(t)>a,.} P{ sup X(t)>a,.} 1/a,

-1t Tn-15t<

for @, > 1. But the Borel fields generated by {X(t): T.., <t < T.},
n=1,2, ... are mutually independent. Then, by the Borel-Cantelli’s
theorem we get the following.

LEMMA 3. For a,>1

P{ sup X(t)= a, for infinitely many n}=1 or 0

Tp-1St<Tp

if and only if > lla,=c or <oo,
Now we shall prove the theorem. (7,—T,_,)’s (rn=1, 2, --.) are mutually
independent, and distributed according to the same distribution. Moreover

E{7(a,1)}=7, and E{Z0, «)}=17, (b= )
are finite by the assumption and so
E{T,~T,-} =E{T\— S} + E{S,—T,_} =t,+r,=t
is finite. Therefore, by the strong law of large numbers, we get
1/n)T,—7 (a.8.) (n—>) .
Hence (especially) for almost all w, there exists n(w) such that
(1) (n/2)r < Tw(w) < 2nt n=nyw).
Now, let ¢(¢) be an increasing function such that ¢(¢)>0.

¢()oo (t—>00)® and §%<

{w: Hm (X(£)—¢(t)) 20}
= {o: li_m(Y(t)—?(t))_Z_O} (by Lemma 2)

| C{a) Y(E r) -;— go("EI r) for infinitely many n}

C{a): Y(lz"— r)g 1 ¢(% z‘) for infinitely many n}

1 n . .
. > (2
g.{w Y(T)= 2 50(4 ‘r) for infinitely many n} (by (1))

3 The condition ¢(f) 1 «o(t—>c0) is not essential. For if ¢(f)<k, then
P{tli_m_X(t)- ¢ (=0} =1.
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={w: sup X(¢) = = «p(z r) for infinitely many n}

as. Tn-15t<Tn

(by Lemma 1).

As f} 1 gﬁr dt < o, the probability of the last set is zero
a=1 1 ¢(ﬁr ) T Jo S"(t)
2 4

by Lemma 8. Therefore

P{ltiE(X(t) —¢(t) 20} =0.

Now, if ¢(¢) be an increasing function, ¢(0)>C>0 andrﬂ_=oo

oe(®)
then
o Tm (X(t)—¢(t)) 20}
i{w: E;(Y(t)—fp(t));o} (by Lemma 2)
S{w: Y(2nrt)=¢(2n 7) for infinitely many n}
D{w: Y(T,)=¢(2nt) for infinitely many n} (by (1))

={w ' sgp X(t)=¢(2n ) for infinitely many n}
a.8. n-15t<Ty
' (by Lemma 1)

For 5_‘, 1 - = 1 Sn dt =oo, the probability of the last set is 1 by
i g@nt) T 20 Jr @(t)

Lemma 8. Therefore
P{w : fim. X(t)—¢(t)go}=1.
t—eoo

Hence the theorem was proved.
Example. Uhlenbeck process.
We consider the process whose infinitesimal generator A is given by
—ax(d/dx)+(d*da*) for CY(— oo, ). Then its canonical scale and
canonical measure are given as follows:

s(x)= S exp( 5 )du
m{dz)= exp (—ﬁ‘;—%)d:v

As s(x)~(1/a’x) exp (’2?/2)(|z|—> ) and m(— o, )<, we get

P,{Eﬁ(X(t)—?(t))zo}:l or 0
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. o [ a’o(t)\ 5, . .

if and only if | ¢(t) exp =5 dt=c0 or <o for increasing ¢
(1]

which is positive.

3. Now we shall consider the application of the theorem to the k-
dimensional Brownian motion.

Let Z,(t)=(X\(#), -+, Xi(¢)) be k-dimensional Brownian motion (i. e.
whose coordinates X(t), ---, X,(t) are mutually independent one-dimen-
sional Brownian motion), and

B®)=|Z®) | =V Xi(t}+-- - + X,(2)

Then R,(t) is a one-dimensional stationary diffusion process, but does not
satisfy our assumption made in section 2.

So we set

1

Yi(s)=e"Ru(e—1)= 1+t

Ei(t) s=log(1+t)

for s=0.

Then Y,(s) becomes also a one-dimensional stationary diffusion process
whose infinitesimal generator A is given by

A=(k—2)-2% 2% tor C[0, w].
iz g

And if Si(-) and m,(-) are its canonical scale and canonical measure res-
pectively, it is easily seen that

m(0, ©)<oo for all &
8(0)=—oc0 and s(o)=c for k=2,

84(0)>—c and s(w)=o, and 0 is a reflecting barrier of the process
for k=1.2 Therefore for all k process {Y,(s)} satisfies our condition. So

4) g,&x):"?u—(k/!) exp (u/2)du

mi(dx)=(1/2)x®/-1 exp (- (w/2))dz.
8e(x)~z~*/) exp (/2) (w—>o0)
8x(x)~x- (k-2/2) (x—0) for k=3
~|logz| (x—0) for k=2.
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{o: Tm (Ya(o)—¢(s)) 20}={ : Tm (Bu(t)—V/¢oRAFDNAF D) 20 |

§—+00

or
({w : lim (Y,(0)— $(s)) <0} ={ o : lim (Ra(t)—/ Flog(TFENA+) 2 o})

and the probability of the left-hand side is one or zero if and only if

I, o) = = (I, o= <)

Therefore we get the following theorems.

THEOREM. For an increasing ¢(t)
P{mRk(t)—V1+tgo(t)gO }:1 or 0
t—roo
of and only if

S”¢(t)ke—¢<»>f=%=w or <o for dll k.
0

THEOREM. For a decreasing ¢(t)

P{@_ R(t)—VITEH(t)=<0 }:1 or 0

t—oo

if and only if

S:il’(t)""'zfd—-iz::m or <e for k23,

and

= dt
= or <o Sfor k=29
so | log ¢(¢) | (1+¢)

4. The method of section 3 can be applied for a little general process
with a certain regular property.

Let X(t) be a diffusion process in [@,b], where a is the entrance
boundary and b is the natural boundary.” And let s(x)=2 and m(dz) be
it’s canonical scale and measure respectively.

Now we assume the following two conditions.

5 This is given by Dvoretzky and Erdds [2].
. ® This is given by Spitzer [3].
7> This condition is not essential. By a slight change of wording we can get similar
results for 2-natural boundaries etc. '
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1. The measure m(dx) has a strictly positive density function p(x)
in (a,b).

2. Setling m(:v)=rp(:v)d:c and n(x)zrm(a:)d:c,s)

o= D))

n(x)*

Then, for this process we define a new process Y(t) as

is a strictly positive constant.

Y(s) = tiln(X(t)) where s=log (14¢).
Then T(s) is a (stationary) diffusion process in [0, o] whose infinitesimal
generator is given by the formula:
a*
dy*’
It is easily seen that this process satisfies our condition in section 2.

Thus our theorem is applicable to Y(¢) and therefore X(t). Processesin
section 8 satisfy the above conditions 1 and 2.

A=) toy
Y
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