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0. Introduction

In this paper we treat the numerical method for solving the N-
dimensional eigenvalue problem Ax=21Bxr where B is an Nx N Dpositive
definite real symmetric matrix, A is an Nx N real symmetric matrix and
z is an N-dimensional column vector. Our main object is to propose a
definite computation scheme which will practically allow us to get a
complete solution of the problem just stated above even for large N.

When we adopt the linear discriminant function method for the
statistical classification of objects into three or more groups or more
generally when we apply the canonical correlation method to some
multidimensional statistical phenomena we must solve numerically the
equation of the type just mentioned above. Nevertheless we have
been unable to get complete description of the numerical method for
solving practically these equations with large N [4] [6]. Some com-
putation method which does not necessarily use B-' will be most
desirable [6].

C. Hayashi at our institute has long been trying to apply the
linear discriminant function method to the so-called quantification pro-
blem aiming at objectifing the scoring procedure of objects for their
qualitative characters. In this case the problem is formulated in
such a way that we seek the vector 2 which gives the largest value
to the ratio (z, Az)/(x, Bx) [1]. This formulation of the problem and
the fact that we usually encountered with the case where N is rather
big invited the author in 1952 heuristically to a successive approximation
method and the method was used by Hayashi and others in many
practical applications of the ¢‘quantification’ procedures with satis-
factory results [2] [3]. Nevertheless, we were not able to give the
complete theoretical description to the convergence properties of our
solution.
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In 1957 S. Huzino of Kyushu University announced some results on
the same type problem at the annual meeting of Japan Mathematical
Society. He has presented his results to the recent paper [7], but it
seems that in his results there remains some difficulty to apply them
to practical computation.

In this paper we start from general discussion of a type of successive
approximation method for Ax=ABx in §2 and then give some specific
procedures in §83 and 4. In §5 we present a definite computation
scheme. We can observe in our computation procedure some interesting
interplay between theoretical model and its finite digital representation
and we discuss an acceleration scheme in §6. Also in §6 our appro-
ximation procedure is discussed about its convergence property against
rounding off errors. In §7 convergence to the eigenvector with maxi-
mum eigenvalue is discussed. In practical applications it is sometimes
necessary to get only such eigenvector. In §8 some generalization of
our process is discussed and a computation scheme is proposed which
will be suited for high speed computers. In §9 numerical examples for
our procedure are given. Most of these results are obtained by a
FACOM-128 automatic relay computer at our institute. Though their
dimensions are too low to show the feature of our method these examples
will serve to explain how our method works. Technical details of the
computation scheme on FACOM-128 automatic relay computer will be
presented to the future issue of the Proceedings of our institute.
Statistical applications are also discussed very briefly in §10 which are
mainly concerned with the canonical correlation analysis. We hope these
discussions will be of some help to those who want to apply the
canonical correlation method to practical problems and at the same
time will clarify the importance in statistical analysis of the numerical
method for the solution of Ax=2Bzx.

1. Notations

By 4,=4>=-.-- =2y and z, «,, ---, &y We represent the eigenvalues
and their corresponding eigenvectors. It is well known that in our pro-
blem every eigenvalue is real. We can further assume that x;’s are
real and B-orthonormal i.e. (x;, Bx,)=4,; where d;;,=1, 8,,=0 (2+7).

We shall use the notation ||z||% for (x, Mz) and (x, y). for (z, My)
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where M is a real matrix and z, y are vectors. We omit the suffix M
when M is equal to identity matrix. Of course (x, y) means the
ordinary inner product of vectors  and y. We use the symbol ' to
show the transposed matrix and | M| to show the determinant of matrix
M.

2. General approximation procedure

In this section we shall discuss the approximation procedure defined
as follows:

0. We define how to construct a set of vectors (£(x), &(x), « -+, &)
where &,(x)’s are continuous functions of vector # and the vectors
x, &), &(x), - -+, &(x) are supposed to be linearly independent N-dimen-
sional vectors satisfying the following inequality except the case where
z coincides with one of the eigenvectors of Axr=41Bx:

Max llam+2a¢$¢(x)lli S eI

“ gt Sag@lly 17N

When z is an eigenvector above > must be replaced by =. We shall
represent by a(z), ay(x), - - -, ay(x) the coefficients which give the maxi-
mum value to the above stated ratio and satisfy the equation ||ax+
éacec(x)ilzs:l-

1. Given a (rn—1)-th approximation vector z™-» we compute
(51(;,,("-1))’ 52(x(n—1)), cee, Ek(w(”’l))).

2. We find the éoeﬂic1ents (a(z™D), a(x®V), «--, ay(z™ V) and put
2™ = (D) 1)+Ea (D) (D).

3. Starting from some x®, we repeat the steps 1. and 2. eyclically
to get the sequence {x™}.

It is easy to see that the above stated approximation procedure
gives a sequence {x™} convergent to one of the eigenvectors when
every eigenvalue has multiplicity unity and gives generally a sequence
{a™]} ‘‘convergent’’ to a space spanned by eigenvectors which corre-
spond to one and the same eigenvalue.

The condition [|z™||;=1 is not always necessary in practical com-
putation.

To make the above stated procedure practicable it is necessary and
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sufficient to give the proper difinition for &(x)’s and a computing scheme
for the coefficients a(z), a,(x), - -, ai(x). This set of coefficients is given
as an eigenvector, which corresponds to the maximum eigenvalue 7.,
of the equation A(x)a=7B(x)a where

a (=, ). (=, El(w))A tect (=, &u()).
a=|% A(z)= (El(w}9 Z)4 (51.(37), 3169) FEEEE (El‘(a’), (@)

A (€(@), 2, (@), E@))a - -+ - @), &),
(x,2)s (@, Ex())5 =v - (x, &u(@))s
B(z)= (51(37}, z)s (S}(m), §@))p » 00 (51:(517); N

(E®), 2)s (Eu@), E@))s - -+ (@), Ex())

Thus to find the coefficients (a(x), ax) «- - ai(x)) seems to be essentially
equivalent to solve the problem of the type for which we are just try-
ing to provide a computation method. But our main concern is with the
problem where dimension N is large and when we adopt a scheme with
small £ we are able to get the desired result by some simple computa-
tion, for example, when A is non-negative definite by taking the inverse
of B(x) and applying the power metheod to B(x)'A(x)*. When k=1
we can get an explicit representation for the coefficients, and we shall
treat this case precisely in the following section. It should be noticed
that in the formulation of our procedure we may take a «, --- a
which minimize the ratio ||az+ S (@)l laz+ Saé (@)l Such for-
mulation is sometimes more desir'a:i)le and we haviélonly to change the
sign before the square root in the following sections to get it.

3. Approximation procedure with k=1

In this section we shall treat the approximation procedure of the
former section with k=1. We shall use the notation & for &(x). We
have the following results:

izl (=, E)A)

hellz (2, 5)a>
(& @) 1I€11%

A(x)=
(@)= € 2 NEN

B(a)= (

*) We take (B(x)~1A(x))L ap as a set of coefficients (a(x),al(x)- - -a®)(x)) where a¢ is a
properly chosen initial vector and L is some integer which assures practically sufficient
accuracy as an approximation to the set of coefficients.
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1

2 3 (=, §)s
et~ )
(llEII% Nolli—(, E)s(@, &)a €N, s — lI€]] (=, S)B) _
Hz|liz, £)—llzlli(z, €)s |lBlIE]L—(=, sz, é).
Thus the maximum eigenvalue 7.., for the equation A(x)a=7B(x)a is
given by solving the equation
| B(z)Ax)— 71| =0,

B(x)'A(x)=

and we have
_ BNzl 5 —2(=, €)=, £)s+V' D

2l (1 ()

77max

where
D=(l|¢1B1l lZ+11E 2|3 —2(, §)u(x, £)s)
—4(l€1B N1 (=, )5, OB N2 —(=, ), §).)
+4(llzlix(=, )=z, E)a)IE 2=, E)a—11€114(=; £)5)
=111z — 2 l5)
+4(llzlix, §)a—llzllie, )€ N5, )a—1I€1=, 6)s) -

Eigenvector corresponding to 7.., must satisfy the equations

(15— (=, £)s(@, ©)—l2lizl €113 — (@, £)3)7me)(2)
+(I1€15(, £)4—11€1li(=, Ha)au(x)=0
(=1, .—llzlli(, )s)(x)
+ ()31~ (=, (@, §a— Uz 31 €1z (@, §)5)Tm)(®)=0 .

From these equations or more directly from the relation

_aa_x_lu(x—{—lé) R = 2 (“27“%(&7, E)A—"x“i(‘v! E)B)

-zl

2

= (Az—p(x)Bz, ) ,©
Nz llz

we can see that if ¢ satisfies at least one of the two conditions p(§)> p(x)
and (Az—p(x)B, £)+0 we can expect 7y, > ().

When (Az—p(x)Bzx, £)=0 and p#(§)<p(x) hold we have by a simple
calculation 7,,,=#(x), and in this case we can not expect the increase
of ¢ by taking a linear combination of # and ¢.

el %

*) We shall use the notation u(x) for the ratio T .
Zlls
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Thus to assure 7., > #(x) it is necessary and sufficient for ¢ to satisfy
at least one of the two conditions x#(§)>pu(x) and (Ax— p(x)Bwx, §)+0. It
is also obvious that any such & is linearly independent of z. To find
directly a & which satisfies the condition p(§)>p(x) is rather difficult,
but it is easy to get a & which satisfies the condition (Az— u(x)Bx, £)+0,
except for  which is identical with some of the eigenvectors.

When zis an eigenvector we have Az — p(x)Br=0 and (Ax— p(x)Bx, §)=
0 for any ¢ and it is difficult in this case to get a § which assures
Pmax > #(x) for p(x) which is different from the minimum eigenvalue.

From these observations it is now easy to give some specific ex-
amples of £ satisfying the postulates for the correction factor given in
§2. We shall give some examples of ¢ in the next section.

The following relations should be noticed: for x in a subspace
spanned by some subset of eigenvectors (@,,, @, -+ -, #, ) we have (4z, §)=
(Az, &), (Bz, §) = (Bz, §¢) and (Az — p(x)Bz, &) = (Ax — p(x)Bz, ¢') where

Y CER

From these relations it becomes clear that we have only to define ¢ as
a function of z satisfying the inequality (Az— p(x)Bz, £)#0 and to use
& as a correction factor when we restrict our attension to some subspace
as described above.

4. Some specific £’s

1. ¢=PAxz— p(x)Bx)
P is a positive definite matrix. This £ is characterized by the property

that it maximizes%p(w-k 2€)|  under the restriction ||£]l3=1. We have
A=0

(Ax— p(x)Bz, §)=|| Ax— p(x)Bx||3-1. It is obvious that this ¢ satisfies all
the postulates for the correction factor.

2. t=Ax—m(x)Bx
m(x) is defined as the ratio (Az, Bx)/(Bz, Bx). This & is characterized
as a least square residual and satisfies the relations (§, Bx)=(¢, 2);=0

) Az, Bx)* .
Az — p(x)Bz, £)=(Az, §)=|| Ax|]’ 1___(,;#__ . From the last equation
(A=) )=l s uAmwquw)
it is obvious that except for  which satisfys the relation Ax = ABz the
inequality (Ax— p(x)Bz, £)>0 holds. Continuity of & as a funection of

« is also obvious,
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5. Computation scheme

By the observations made in §3 it is obvious that we can use the
following computation scheme with ¢ defined in §4. Here we suppose
that some set of eigenvectors (x,, z.,, ---, @) is already obtained.

1. Take a proper vector « and delete from it its components in , , @.,,

z,, to get non zero PAO8

x(o)_ Z (x! w\q)B

=l ENT P
2. Calculate £@®,

8. Delete from §© its components in ., @.,, +**, T, to get §&:

, t (§9, )5

O = £® _EW

4. Compute the ratio

0= (@, €)= pE)@®, & )} (&, E©O),— HE OYa®, )}
(@) — p(§ @) |2 ||311€" )] 5

5. When |Q,]| is less than some preassigned positive small fixed value
¥<L1) we put

_ (=@, £0),— p(a®)a®, €O),
| (@ @) — (€ @) E 113

2 o —

When |Q,| =6 we put

— (Mz®)— E O Iz [BIE @ 3+1/D

Ay =
O O G®, TO),— a0, )]

where
D=(p(@®)— i @) | 25118151 +4Q)) -

6. Calculate @42’ @ to get @ .

7. Repeat the cycle after 2 taking =™ instead of @ to get @, x®
instead of 2® to get a® ...

8 Make checks of rounding off errors by inserting step 1.

9. Continue the whole process untill el becomes smaller than

iz

some preassigned small positive constant.

In actual computation we have to use finite digital representation
of each quantity and as is shown in the next section our problem some-
times reduces to a linear one after some steps of approximation. This

*) In this section we shall use the abbreviated notation &®) for &x(n)). Thus ¢© stands
for &a®),
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will afford us an interesting example which shows explicitly the fact
that the theoretical expression of the problem is sometimes only a crude
image of the actual computation procedure and when we can get at some
stage of computation another theoretical model with difference less than
some preassigned quantity (usually of the order of errors due to roundings
which is inevitable in the computation procedure) from the original one
it would be better to use the model which is more suited for the
actual computation. We shall discuss this point in the next section.

6. Acceleration scheme

In the course of computations we have often observed the fact that
when the approximate eigenvéctoxs ™ become steady up to their m-th
digits the corresponding ;t(:v("))’sAbecome steady up to nearly 2m-th digits.
The following relation will explain the above stated fact: for vector
r=x,+¢ where (x;, £);=0

)= p)= (e — (o) 1M (14 T1EE )T g,

EAIANIEAH

and for ¢ with p(e)<p(x,) we have

M) =) _lelh
u(@) AL

Thus it may sometimes happen that at = which has significant
deviation even in its finite digital representation from z; u(x) takes a
value whose difference from p(x,) is less than the order of error in the
computation of g#(x) due to the roundings of . In this way, when we use
the same number of digits for all quantities, the following observations
will explain that stage of computation where the degree of approximé-
tion is fairly high and x(x™) stops its steady increase.

Hereafter we shall restrict ourselves to the case where the vector
z i8 so near to z;, that the difference A,—p(x) is less than the order of
errors due to roundings in the computation of g(x) and 4,>4, holds.
In this case if we use the representation x=a,x,+¢ where (x, §)=0 we
have Ce=Ax— A Bx for C=A—1.B.

Thus taking into account the fact that we can use the value u(x)
for 4, our problem is reduced to solving the linear equation (A— p(x)B)e=
(A-—- mx)B)x for given xz. Obviously the equation Ce=Czx has a solu-
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tion which is unique except for its &; component and we can apply the
conjugate gradient method or some other successive approximation method
to get the solution e,

If we define ¢=Ax— p(x)Bx the coefficient 1 given in our approxi-

2
mation procedure by the formula (@, e)‘—‘f‘ @)@, s . NEI* 45 eggen-
Héla1A] [&1151A]
tially the value of 2 which minimize — ||eé+1Ce||,. Thus if we continue

our approximation procedure in this stage it is equivalent to solving the
equation Ce=¢ for a given £ by a successive approximation method which
mininize the residual in its —C-norm(—|| }|2) using the former residual
as a linear correction factor. Obviously this approximation procedure is
not always very efficient one and the most convenient procedure for
solving the linear equation for given C and ¢ with |C|=0 will be the most
recommendable here. After we have solved the equation (A— p(z)B)e=¢
it would be better to follow our original approximation procedure using
x—e¢ as starting value until the rounding off errors dominate in the com-

putation of x™’s and &™’s. In this case even afltell'| the §=Ax— p(x)Bx
€l

_ &1 | () — m(6) |
reliable by the roundings still we can expect the theoretical increase of

p(x) untill the & becomes comparable with the order of error due to
roundings. This is shown by the facts that in this case we can expect
#(x)> p(¢) and for any such ¢ we can expect generally u(z+ 715)> m(x) for
1 which satisfies either one of the inequalities 0=1=2 (Az— p(x)B2, §)

&) — ()

Thus even if we use the calculated value of Ax— p(x)Bx as £ so long

2 A
as the value et remains in the range stated above for 1 we
& NR(() — (%))
can expect the theoretical increase of p(x). If we represent our ¢ as

a sum of Ax— p(x)Br and error term ¢, the above stated condition for
¢ is represented by the inequalities

(Ax— p(z)Bw, Ax— p(x)Bx+€)>0
2(Ax— p(x)Bx, Ax— p(x)Br+e)= || Ax— p(x)Br+cl? .
From the latter inequality we get the condition
| Az — p(@) B =] |*

and it is clear that under this condition the former inequality also holds.
This result means that untill the error ¢ (due to roundings ) becomes
comparable with the order of true residual Ax— u(x)Bx our approxima-
tion procedure will work.

become small and the value of 1 given by become un-
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7. Convergence to &,

In this section we consider the case 1,>2,.

There sometimes occurs the case where we have only to seek for the
eigenvector x; which corresponds to the maximum eigenvalue 4,. If we
follow the computation scheme z™*D=x™ 4 1.,,§™ where £=B-(Az—

x)Bx) and ¢,y = 15 we are sure to get x; as the limit
HBD) A A=) — ) 16 [ get &

N
of our sequence {x™} starting from arbitrary z©®=>>\a, @z, with a,® =
§=1 R
(@®, x,),#0. This is easily proved by using the following relations:

M2(Ax— p(x)Ba, £)— Al| € [13(x(x) — £(£)))
ll+2¢ |3 ’

B-(Az— u(z)Bx) = St (3s— p(a))o;

p(x+ A8)— p(x)=

We can see from the former equation that for our definition of i,
pE™ 42 yE™) > p(2™) holds for #™ which is different from any one
of the eigenvectors. If we put x(")=§]a‘<")m, we can also see from the
latter equation that =

n-1 n—-1
ax(”): az(")3 cee? aN(")=ax(°)£Io(1+ 1(‘)(11_#@(1)»: a’(o)‘l;lo(l_{_ 1(0(12_ #(x(c)))
n—1
tee et ay@ T+ Aoy — (@)

holds and taking into account of the fact that A,,>0 we can see that
between those a;*~1’s with 4, greater than g(x™-?) «,®-V has the greatest
rate of increase and the convergence of ™ to some z;, with 2,<21, is
impossible. Thus we almost surely get «, as the first solution. For
general £ and computation scheme we cannot prove such a desirable
property explicitly. In actual computation additional informations about
the matrices A an B sometimes enable us to select x which lies near
o, and the limit of our {x™} is strongly supposed to be x,. In such a
case there still remains the check whether our solution really corresponds
to the maximum eigenvalue A, or not. For this check the following pro-
cedure may be of use:

1. Given a solution & we difine by D the difference D=A4—
mx)B.

2. We take an arbitrary vector z® with (2®, z)=0 and compute
Dz®,

3. We compute 2@ =2® —¢(2®)Dz® where c(z)= (z, Dz)

I Dell* -




ON A COMPUTATION METHOD FOR EIGENVALUE PROBLEM 11

4. We repeat the steps 2, 3 cyclically using 2™ to get z™*V
successively.

5. We decide that x is the desired solution when the coefficients
¢(z™) remain all negative until Az becomes very small.

lizli*

The validity of above process is obvious from the fact that the
matrix —D is positive definite if #(x)=4, and otherwise not.

8. Some generalization

Our computation procedure is mainly based on the monotone increasing
property of u#(xz™). Taking into account of this fact we can get many
other modifications of our procedure. The following one will deserve
attension.

We choose a set of linearly independent vectors &,¢,, ---, £y and
apply the successive approximation procedure z*¥++D—gq, ., oc®&¥*+) |

a®,v.6,.; where 0=<v<N and a,y.,, a®,y., are «a, a' which give the
maximum value to paz®¥*»+a'¢,,;) and satisfy [[z®¥+*D|P=1. As
§, &, -+, &y are linearly independent there is at least one &, for which
(Az— p(x)Bx, §,)#0 holds for given z with Az— pu(x)Bx+0. Thus from
the discussion made in §3 it is obvious that #(x®*")< p(x(*+D) holds and
we can expect the sequence {z™™} to converge to some eigenvector.

If we adopt special &, such as §,=(0--- «++ 0)(1<i<N) the com-

putations needed in the apprommatlon procedure are much simplified.
For example we have (z, E,)A—Za‘,a:,, (z, E‘)B—Zb‘,:v, and the correction
is made with one component at each step.® Ajfter some of the solutions
are given we must use &' (§;=§,—components in eigenvectors already
obtained) instead of &, but in this case (z, &,),=(x, &), (@, §)s=(x, &)
hold for x# which has no component in the space spanned by the eigen-
vectors already given and the process still maintains its simplicity.
This process will be suited for the high speed computer for its simplicity
of operation especially when N is large. Further it must be noticed
that the simplicity of operation means less error due to roundings. Thus

this generalized procedure will persuade the former ones at the final stage
of approximation. This fact is observed in our numerical example.

9. Numerical examples*®

We have used eight digits for the computation of these examples
except one for which we have used ten digits.

*) a¢; and by are (4, j) element of A and B respectively.
**) In these examples x;’s are not normalized.
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ON A COMPUTATION METHOD FOR EIGENVALUE PROBLEM
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2. numerical results obtained by following the acceleration scheme of §6

We have applied the acceleration scheme of §6 to the first example of this section.
We have taken x=2®» and the resulting x—¢ differes from (% only in its final digits. e
is obtained by the conjugate gradient method.

r=x02) 1.9090299 —1.2591787 0.72977391 1.4796588
€ 0.00050793 0.00021387  0.000160096 —0.00055272

r—e 1.9085220 —1.2593926 0.72961381 1.4802115

(%) 1.9085222 —1.2593922 0.72961373 1.4802109

This result is trivial in some sense, but will serve for understanding of the state of affairs.
3. checking for z;

We have applied our checking scheme to the first example of this section with 2@=

(e, o)
e— x where e=(1,1,1, 1).
ER ¢ )
r=x;
n 2z(™ c(z(™)
0 0.31382590 1.4527913  0.73768079  0.46781736 —7.7431189 x 10-5
1 0.00189588 0.50178314  1.0654544 —0.21673513 —1.8783074 x 10-*
2 0.25257432 0.72602079  0.33869748  0.12510577 —7.7841331 x 10-5
3 0.13749493 0.27272604  0.49787468 —0.19064798 —1.9123408 x 10~
86 0.00000007 0.00000008 —0.00000001 —0.00000005 —8.1177666 % 10-5
Xx=2o3
n | ) | (z™)
0 j 0.73718181 1.3255223  0.97796996  0.68385433 } +3.3685725 x 10-5

4. numerical results obtained by following the generalized scheme of §8
We have applied the computation scheme of §7 with &=(0---010---0)’s.

N=4
n (™) sy

4x0 0.47781605 1.0 1.0 1.0 1.0

4x1 0.55474965 —0.44906200 0.00868745 1.4867737 1.2016828
4x2 0.58791528 1.1856323 —0.42189774 1.2143895 1.0575363
4%3 0.59492885 1.5715290 —0.58511478 0.97317382 0.97841635
4x10 0.60541932 1.1377673 —0.72340286 0.44047172 0.85557884
4x20 0.60552482 1.0973896 —0.72403476  0.41954005 0.85100234
4x28 0.60552478 1.0972273 —0.72403494 0.41946252  0.85098604

(A(@Ax8)) — p B(a¢x )y = —0.0009 0.0023  —0.0018 0.0002
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n w(x(n)) 2(n)!
3x0 0.77777778 1.0 1.0 1.0
3x1 0.93671463 —14.460012 0.32587380 2.3603754
3x2 0.93743486 —14.999564 —0.18978745 2.7770820
3x3 0.93751435 —14.901404 —0.38296706 2.8786173
3x4 0.93751951 —14.852119 —0.43313821 2.9006579
3x5 0.93751975 —14.839896 —0.44420899 2.9052768
3x6 0.93751976 —14.837261 —0.44654104 2.9062382
3x7 77 —14.836702 —0.44702499 2.9064359
3x8 78 —14.836622 —0.44712365 2.9064820
3x9 80 —14.836622 —0.44714754 2.9064970
3x10 76 —14.836622 —0.44715273 2.9064992
3Ix11 74 —14.836622 —0.44715481 2.9065009
3x12 78 —14.836622 —0.44715689 2.9065026
3x13 71 —14.836542 —0.44716416 2.9064915
3Ix14 67 —14.836542 —0.44716419 2.9064915
3x15 67 | —14.836542 —0.44716219 2.9064915
(A(x3x18)) — y B(z(3x18)))/ = 0.000000 0.000000 0.000002

10. Statistical applications

In this section we shall discuss some of the statistical problems
which will show the aspects of the so-called canonical correlation analysis.
1. canonical correlations

In this section we shall use the following notations ; a=(a, @,, * - @)
b=(by, by +++ b)) T=(21, @, =+ %) Y=Yy, Y1, +++ ¥;)’ Where z,’s and Y,'s
are random variables with E{x;}=E{y,} =0, ||u|*=Eu? (u,v)=Euv for
random variables » and v, and A=||t'y|l/||a’z|| p=(a'z, by)/||a'z||||bY]] .
We have

lla'z|P=E(@'z)*=a’E(xx )a=a' Aa
1Yy IP=E@®y) =V E(yy')o =b'Bb
(a'z, b'y)=E(a'z)(b'y)=a E(xy o=a'Co=b'E(yx')a=b'C'a
where A=E(xz'), B=E(yy') and C=E(zy').

Canonical correlation coefficients are defined as the stationary values
of p with respect to variables a and b.

We shall here present two formulations of statistical problems which
will show the practical meaning of the canonical correlation coefficients.
lla'z—by|

a) stationary values of V™= " — I
) lla/z | lby
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The function |la’z—by|/|la’z|*+||b’y|[* may be considered to be
showing the effect of correlations between x and y on the difference
a'xz—b'y compared with the case where + and y are taken to be un-
correlated. When we consider the ratio [|la'z—by|P/|la’z|P+|byIP
=1- 202 as a function of p (function of az’ and b'y/||b’y||) and 2 we have

142
%(1—1%5';’)= ‘:{’3_ ';’;’) and generally (except for the trivial case where

p=0) at 2==+1 the above stated ratio takes its maximum and minimum
values 1+p. Thus to discuss the stationary values of the above stated
ratio is equivalent to discussing the stationary values of (a'z, b’y) under
the condition ||a’z||=||b'y|l. This is the ordinary formulation of the canoni-
cal correlation. As is easily seen the above stated ratio is represented as

B DE/E 0= GOEE) )
and to get the stationary points of this function we have only to apply
the numerical method described in this paper to the equation

(=& ~B)6)=+(B)G) o (-2 ~6)6)=403)6)
and the eigenvalue (1) is equal to some canonical correlation coefficient
(+1).

b) stationary values of M,i,"_@;_””’
lla’z ||

This formulation corresponds to the least square method. In this
case we have

ﬂa'x’—b;?l“’=1—2pd+2’
lfa'z|l
and this ratio takes its minimum value 1—p* as a function of 1 at i=p
and 2=p is the only value of A for which the partial derivative of
(1—2p2+ 2*) with respect to 1 vanishes. Thus the discussion of stationary

i — / z . . 3 .
values of ”—a“‘”a——é’ﬁgj« is reduced to the discussion of stationary values of

p*. Using the representation

g (@COP
(¢’ Aa)(b'Bb)

we have for stationary points
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v e (@ CD).
(C'aa’'Co= 9l Bb.

If C'a#0 then taking into account the fact that the matrix at the left
hand side has rank one there is only one solution of the equation
(C'aa’C)o=2Bb with 2+0. Thus if we can find @, b which satisfy the
equation with A0 this b will give the maximum p* for given a. The equa-
tion may be represented in the form (a’Cb)C’a=ABb, thus any b which
satisfies the relation Bb=kC’a with some constant k¥ will be a solution
of the equation. Especially when B! exists we can take b=B"'C’'a and
the problem is reduced to the discussion of the stationary points of
the ratio (¢’'CB-'C'a)/(a’Aa) and this leads to the equation CB-'C'a=
AAa. The eigenvalues of this equation will give the stationary values of
p®. This formulation of problem may be of some use when we are
interested only in the canonical vector ¢ and corresponding p’.b
2. linear discriminant function (classification into three or more groups)

Here we assume |A|#0. We can treat the general discriminant
function problem by the formulation b). We take 3, as an indicator for
the i-th group i.e. when an individual belongs to the 4-th group then
#:=1 otherwise #,=0. We shall here consider the case where [ mutually
exclusive groups exist and every individual belongs to at least one of
them. We shall use the notation p, to represent E{f,} or the probability
that an individual belongs to the ¢-th group. Obviously ip,:l holds.
We take y, as given by y,=#,—p; and in this case by tﬂg formulation
of b) it can easily be seen that Ba=C’a holds where @ B and C’ are
given as follows ;

a=(SaE()—5), S E@—F), - SaEl)—7)
=(Saa (D), T2, -+ Saz0)
Z,(j)=conditional expectation of x; over the group j |
Z,=(expectation of %):éjlpjac‘(j) (now taken to be equal to zero)
B=(b;)  b,=0(pi—pip,  (9@)=1 8(i)=0 (i #7)).

C'=(ciy) Ciy=Di4(1) .
We have thus only to discuss the ratio

(a’Cb) taking b 1 - (a'Ca)
(@ Ag) aking b equal to @ or (@ Ag) .
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Now (a’Cd):é}vil, a, cw:%aﬁ,(u)=é‘,§é§:,(u)§,(u)p,a.a, and if there is at
least one j, with Z,(j)+Z,=0 for each 4 then C’a#0. Thus to apply the
general linear discriminant function method we have only to solve the
equation

Da=1Aa

where D.—-(izit(u):'éj(u)p,) (in practical applications care should be taken
v=1 .

to the fact that we have put Z,=0 otherwise we must replace Z,(v) in
D with Z(v)—2Z;). In this case we can expect at most /—1 eigenvalues
to be >0.
3. quantification problem

When z; is given by the form &,— E(&,) where #, takes only values
0 or 1 A takes orather simple form and in this case &’z may be considered
as a score given to each individual. This is the case which is taken up
by Hayashi in the so-called quantification problem.
4, trend analysis of multiple time series

As was discussed by M. S. Bartlett [8] when we want to analyse
the trend pattern of linear combination of some multiple time series it
may sometimes be useful to analyse the canonical correlation between
the multiple time series and a set of regular curves. If we take as a
set of regular curves a set of orthogonal polynomials it is very easy to
analyse the canonical correlation.

Given a multiple time series (£,(), #,(¢), - - &,(t)) t=0, 1,2, -+ N and
a set of orthogonal polynomials of degree N (y(t), (t), - -- y(t))
t=0,1, 2, --- N(l<N) we can calculate 4, B and C by taking the symbol
E as an operator for arithmetic mean of the series. For example

we put z,(t)==,(t)—E{Z,} where E{:f;‘}=§;:%‘(t)/N+1 and A=((z,, z,)

where (z,, a:,)=Em¢:vj=téw‘(t)z,(t)/N+ 1.

In this case if we take the polynomials to be normalized we have
B=I (identity matrix) and we have only to solve the equation (CC')a
=AAa.
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