DISCRETE DECISION PROBLEMS

By Yukio Suzuki
(Received Sept. 15, 1957)

1. Introduction.

In this paper we treat decision problems where probability distribu-
tions are all discrete ones which give positive probabilities over only
finite points.

Similar situations have been also treated by K. Matusita and H.
Akaike [1] by using of Matusita’s affinity concept. They have derived
a few theorems with respect to inequalities which give the bound of
probability that the distance of true distribution and emprical one is
smaller than a given positive number. By these inequalities, they have
found the decision errors.

Our main purpose of this paper is to treat multiple decision problem
from the viewpoint of minimum risk and its application to testing hypo-
theses. Further, the comparison between our procedure and procedure
of testing hypotheses is given.

Especially it seems to be interesting that the optimal decision proce-
dure obtained from our viewpoint is non-randomized ones.

A. Dvoretzky, A. Wald and J. Wolfowitz [2], [8] have proved that there
exists optimal non-randomized decision function under the assumption
that all probability measures are atomless.

Therefore, our result insures that their result is also relevant to dis-
crete decision problems in spite of the complete breakness of their
assumption.

Furthermore, it is to be noted that our results are analogous to the
Neymann-Pearson’s fundamental lemma and its three generalized lemmas
obtained by A. Wald [4], H. Scheffé [5] and the author [10], respectively.

We have derived our results by using the concept of linear pro-
gramming.

2. Multiple decision problem.

In this paper, we are concerned only with terminal decisions; i.e.
we assume that the decisions on experimentation have been made and the
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only decisions that remain to be made are terminal ones. Furthermore,
we assume that we treat a finite class of discrete probability measures
over a finite point set. Hence it follows that we are concerned only
with a finite set of decisions.

Let P, P, ---, P, be a class of probability measures over a finite
point set S, where S={1,2, ---, N}. We denote this class by .

Our broblem is to find an optimal decision procedure to decide which
probability measure of P is the true probability measure of a random
variable X on the basis of observations on X.

In general, a decision problem is said statistical when the choice of
degisions is depend on unknown probability measures.

Now, let the class of decisions be D={d,, d,, --- d,}. Before we
proceed to statistical one, we can solve non-statistical decision problem,
i. e. to any P, e ) a unique d, € D) can be corresponded which is opti-
mum in the sense that, if we knew the probability measure of X to be
P, then we would make the decision d, and the remaining members of
D will be, for P,, incorrect decisions.

If n is the size of sample by obsevation on X, the number of the
possible sample points is N*. Now, denote these points by O, (=1, 2,

+++, N"*), respectively, where O,=(j, Js **+, Jn), (g‘:elsz . n) There-

fore, the sample space S, is {O,; j=1,2, ---, N"}.

According as Wald’s definition, a non-randomized decision function

¢ is defined as follows, ‘¢ is a univalued function defined over S, whose
values are in D”’.
Before we proceed to the definition of randomized decision functions,
we must define randomized decisions. A randomized decision is deter-
mined uniquely by a probability measure defined over D according to
which the choice of decision is made.

Since, in our case, D is a finite set, there is one-to-one correspon-
dence between the class of all randomized decisions and the class, P,
of all discrete probability measures over D.

Then, a randomized decision function & can be defined as follows; ‘‘d
is a univalued function defined over S, whose values are in P,”’.

Let us now denote by 8(d,|0)=x,, (;’_’___"il’ g’ ’1”\},,), the probabi-

lity that, when the sample point O, has been obtained by observation on
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X, the decision d; is made.
Then, obviously, we get the following relations corresponding to a
decision function ¢

358,10 = S z,=1,
(2.1) fml fm1

220, (ichZoom

j = 1! 2) 0y N*J.
These equations mean that, when any sample point has been obtained,
it is not permitted to make no decision.

Let p;; be the probability that sample point O, is obtained when
probability measure P, is true;

(2.2) Py= xl-—-I1 P5x) »

where O,=(4y Joy =+, Jn), J: €S, and P,(j,) is the probability of occurrence
of j, under the probability measure P,.

For our purpose the sample space can be reduced, without loss of
generality, to the set of points

{Ojlgi : py>0 (t=1,2, --- m)} .

By changing the sufices of O, we can describe the reduced sample space
by {0;; (j=1,2, ---,J)}. Hereafter, we will treat only the reduced
sample space.

For any decision function J, we define

(di|0;; P)=p;0(dy |0))=pis ,

J
(2.3) a(dklpi)':;a(dkloj; P)= 121 DisCse 5
(¢, k=1,2, -+, m).

Then, &(d./P;) represents the probability with which the decision d,
is made according as decision function é when P, is the true probability
measure. As mentioned previously, in non-statistical decision problem,
we can assume unique correct decision is d, if it is known P, to be
true. Therefore, if i#k, 0(d, | P,) is regarded as the error committed by
making d, (incorrect decision) while P, is true. On the contrary, if 1=k,
d(d,| P,) is the probability of making the correct decision when P, is true.

Thus, for any decision function 4, there corresponds a square mat-
rix M®, where M® is '
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(2.4) M®=((dx| P,))

=(,§; p‘,zj,c) (k,i=1,2, ++-, m).

Let us denote by I the class of M® corresponding to all decision
functions.

If we regard each M® as the point of m?-dimensional Euclidean
space, the following lemma holds.

LEMMA 1. I ¢s bounded, convexr and closed.

PrROOF. Any element M of I is written as

(jEJ: Pustie G, k=12, -+, m).

From (2.1), the boundedness of M is eagily obtained.
Let M, M, be different elements of I and «, 4 be non-negative
numbers such that a¢+£=1.

Suppose
=3 postt)
M,:(; p,jx;p) G, k=1,2, -+, m).
Then
aM,+BM,= (3 paxsd+ Bx5)) -
Let

ot + o= (=480,

Obviously {y;} satisfies the condition (2.1), which means that {y,} de-
fines a decision function 6. Therefore, aM,+ AM,=(>, piys) € M. Thus,
the convexity of 9 has been proved.

Since the class M is obtained by applying the continuous transfor-

mation (2 Dys) (6, k=1,2, -++, m) upon the closed domain defined by
b
(2.1), it follows that M is closed.

Henceforth, we will regard each M as the point of m(m—1)-dimen-
sional Euclidean space, after elimination of diagonal elements, and use the
same notation M to represent the class of these M. Clearly, in this

case, lemma 1 also holds.
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It seems reasonable to judge the merit of any decision function &
entirely on the basis of M® associated with it.

Therefore, on the basis of M®, the choice of decision function will
be made. For this purpose, it is required to introduce a partial order-
ing into M, consequently into the space D of decision functions.

Let us define a partial ordering (<) as follows ;

DEFINITION. For any M®, M® in M, MO M® if every off-
diagonal element of MO is not smaller than the corresponping one of
M® and at least one inequality holds.

Of course other partial orderings may be possible, but our partial
ordering seems to be natural, simple and general. By this partial or-
dering in M, ‘“uniformly better >’ relation is induced into the space D
of decision functions.

DEFINITION. The decision function o, is uniformly better than 6, if
the following inequality holds

MO < MED |
Thus, in the same way as Wald, we can define the concepts of admis-
sible decision functions, complete class and minimal complete class of de-
cision functions.

DEFINITION. A decision function 0* i3 admissible if there ewists no
other decision function & which is uniformly better than 6*.

DEFINITION. A class C of decision functions is complete if for any
0 not in C we can find such an element 0* in C that is uniformly better
than 6.

DEFINITION. A complete class C is a minimal complete class if no
proper subclass of C is complete.

Since M is bounded, closed and convex, there exists supporting
hyperplane such that

(2.5) DD O DL D=2 D, Gy O Disf05
T £ XL ¥l
for every
M—_—(Z ptﬂ’jz) eM,
J
where
M® =(Z pkﬂ’?z’)) eM,

a’kl>0 (k,lzl, "',m).
k+l
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Then, decision functions {xgl; -g:%» g, T ;]n } are clearly admissible.

As A. Wald proved, the complete class of admissible decision func-
tions is minimal complete. Hereafter, our attention is centred on the
minimal complete class C of decision functions. Therefore, it is our main
problem to obtain the procedure to get the decision functions which are

optimal in the sense that it belongs to C, for given {a,;} (k = Ii’¢l " m),

where a,, may be interpreted as the relative weight put on the errors
which are committed if decision d, is made erraneously while the true
probability measure is P,. From (2.5), the optimal decision function can
be determined by the solution of the following problem which is a special
type of the so-called linear programming problem ; minimize

(A) 2 I > PrsTy
kFL J
subject to the following conditions
(B) Sa=1,
mﬁZO. (j‘_-]-; 29 "',J).

However, (A) is rewritten :
(C) ;{é(%aul’w)w}z} .

Therefore, the first linear programming problem is solved by solving
the following linear programming problems separately for each j (=1,

.o, J):
Minimize
(D) 3w Yo
subject to
(E) g‘_‘. wjz=1 I

wﬂgo y (l=1, ey, m).
Obviously, a solution of the last problem is

F) gL 1 110)
0 otherwise (j=1, -:-,J)
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where [,(j) is defined by

1=lsm \ k741

(@) min ( > A1 Px 5 )= > Ar1y(HPrs
E#L (D

(=12, ---,J).

The optimal decision function &, determined by (F) is a non-randomized
one. Of course, when [(j) is not univalued, there exist infinitely many
randomized decision functions. However, these are all equivalent to the
decision funection §,.

Thus we obtain the following theorem.

THEOREM 1. There exists always the non-randomized decision func-
tion which is equivalent to each optimal decision function.

REMARK. Under the assumption of non-atomicity of the probability
measures proposed, other authors have proved the possibility of elimina-
tion of randomization in optimal decision function. However, though
the assumption of non-atomicity is completely broken in our case, the
existence of non-randomized decision function equivalent to each optimal
one has been proved by the above theorem.

3. Testing hypothesis I.—simple case

In this section we treat the classical type of testing hypothesis,
where probability measures considered are all discrete ones defined over
a finite point set S={1,2, ..., N}. The same notations as in §2 are
used. Let P, and P, be such probability measures. By a hypothesis H,
we mean a statement that the unkown probability measure of a random
variable X is P, and a by a alternative H, we mean a statement the
unkown probability measure of X is P,, We want to test the hypothesis
H, against the alternative H, on the basis of a random sample of size n.
In this case, the decision space is D= {d,, d,}, where d, is the decision that
the unknown prob. measure is H,(¢=1, 2). Let the decision function ¢ be
defined over the reduced sample space S,, which takes the value in D.

Now, denote as in § 2.

adi0)=au=zy (21507,

where (; € S,.
Then we obtain
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(3'1) x]l"l'sz:l (j=1r 2’ cty J) ’
Ty, 520 .

If the significance level is a (0<a<1), the following equation concerning
with the first kind of error holds;

N
3.2) o(d,| P)= Jﬁ_llp«r’vjﬁa .

On the other hand, the second kind of error is

N”
(3.3) o(d,| P,)= ng D2y -

Then, the most powerful test is obtained by minimizing (3.3) subject to
the conditions (3.1) and (3.2).

This minimizing problem is nothing but a linear programming pro-
blem. As well-known, the domain specified by the condition is a convex
polyhedron in 2J-dimensional Euclidean space and the form (8.3) is
minimized at least at a extreme point of it.

Simultaneous linear equations in (3.1) and (3.2) is in vector notation

1 1 0 Qeceees 0 Xy 1
O 0 1 1 z, | _| 1
. 0 0 O 0 " I
. . . . 21
(3.4) Do a |1
0O 0 0 o0 1 1 : «
0 po 0 py---0 P a;J,l
Tr,2
Now, let us use the following notations ;
7 0\ 0 1
6 |} i } 1
’ . =Eo;
(35) 1 =Es ’ 1 =Ea ’ .
0 0 1
. : o
0 0 (5=1,2, -++, J).
\ Dis

As well-known in the theory of linear programming, there is one to
one correspondence between extreme points of the polyhedron and non-
degenerate feasible bases. Here the non-degenerate feasible basis means
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the class of J+1 independent vectors, say E,, E;J(j._f_}c’ _E’l” f" 7 +1),

such that for positive 4, 4, »
k J+1 ,
(3.6) ¢-212"E"+ ’Z_‘,l A B, =E, .

As easily be seen, from (3.4), in every non-degenerate feasible basis
there must appear only one pair of vectors, E, , E; x such that 8, =8y,
] 0

Above all, a minimizing solution of (8.3) subject to (3.4) can be re-
presented as the solution of the following equations; if the optimal

basis is non-degenerate,

k J=1 .
(8.7 2 Bt 3 BigatE, o, + B a5, ~F

where

{Ezly E‘z’ M) Ecky E M E;J_lv Et-’o’ E;,o}

’
e+’

is a feasible basis for optimal solution.
Therefore, the minimizing solution is
mttl":l, 7'=1, ce0y k»
z,,=1, i=k+1,...,J-1,

mtjl-l-xtj =1, 0<1'zj 0 &, 1< 1.
o o o Jo

This means that there exists an optimal decision function by which
randomized decision is made only on one sample point and non-rando-
mized decisions are made on all of the remaining sample points.

In degenerate case, the minimizing solution can be represented as
the solution of (8.7) or the following equations

K J
ZE; &, 1+ Z E;$33=E0.
7= S I R oy S R M
In the this case,
mttlzl (7;':'11 27 e, k)v 27;‘2"—“1 (i=k+19 M) J) .

Therefore, our optimal decision function is a non-randomized one. Thus
we obtain the following theorem.
THEOREM 2. In testing the hypothesis H(P,) against the alternative
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H(P,), for a given significance level a, there exists an optimal decision
SJunction (i.e. most powerful test) by which randomized decision is neces-
sary at most for one sample point.
Now, we treat the similar problem by the procedure described in § 2.
Then our error matrix is

(6(dll-P1)! 6(dalpl)) (2 D152 15 Z Puxn) .
o(d, | P, 2)» 3(d2|Pz) Z P2sT 515 Z D25 52

Therefore our problem is to solve the following minimizing problem
for given coefficients a, ay ;

P N®
(3-8) min. a12 ;.21' pl_’xﬂ-i—amj-zl pﬁjle
subject to
(3.9) Zutan=1 (=12, ---,J),

xj‘go (7:=1, 2) .
The minimizing solution is obtained by the following principle :

zp=1 if A Dyj = B3Py
zn=1 if A1 D25 < QyDry -

This is the same as given by the Neyman-Pearson’s Fundamental Lemma,
except its consideration of the significance level.

4. Testing hypothesis II. (Simple hypothesis and composite alternative).

Let P, P, P, .-, P,, be discrete probability measures defined over
S={1,2,.--, N}. We treat the problem of testing the hypothesis H,
against the alternative H, on the basis of a sample of size », where
H, is the statement that the unknown prob. measure is P, and H, is the
one that the unknown prob. measure is one of P, P, ---, P,.

Let O, be sample points (j=1,2, +--,J"), and define p,,=P,(0,)

1=0,1,2, .-, m)
j=192,"':'] :

Let the decision space be D={d,, d,, ---, d,,}, where d, is the deci-
sion that the unknown prob measure is Py(:=0,1,2, ---, m), and D*
={df, d¥}, where df= ={d,, +++,d,}. As in §2, consider the deci-
sion funection 0* for thls dec:slon problem and let
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(@10, =, (3222 0)
Then
7R) DERSE (G=1,2, -+, J).
The first kind of error is
4.2) SX(dF|P)= J}’:l Po@p=at .

In this case, there are m errors of judgement;
J
(4.3) 12_]1 DLy 5

if d, is taken when the true prob. measure is P,(i=1, 2, ---, m).

If we define the optimal test by the principle that a test is optimal if it
minimizes the maximum error of (4.3), it is obtained by solving the fol-
lowing linear programming problem : minimize

4.4) B
subject to

a’;u""zﬂ:l ’ (.7:1’ 2, "':J)
5 .
4.5) jZ Doy =0a ,

J
I_Z;Puw;oéﬂ ) ('I;=1, 2! R m) .

By considering new non-negative variables y,(i=1,2, ---, m), i. e. slack
variables, (4.5) is rewritten as follows:

x10+$‘ﬂ=1 ('i=1, 2, e, J) y
(46) ; PosTjn=«& ,

;4 puzjo—ﬁ‘l'yc:() ¢:=1,2,---,m).

The coefficient matrix of these equations is



142 YUKIO SUZUKI

2J+14+m

J=1 /1 1 OQeeecencocnen 0 \ /2 (1

2 ? 0 :!' 1 L .
e U N E

J10oo : : 11 0 oy | |1

J+l4+m]| 1 0 pn 09w O o oo | |
“D i=1 |pa 0pa 0 py 0 -1 1 0% fo
2 | o . Tl B :

3 BT T : .Y :

m z;mlf)p;zf) p;,u(') -1 ,0 1) y'm 0

As well-known in the theory of linear programming, mimimum value of
B is attained at an extreme point of the polyhedron defined by (4.6). i.e.
(4.7). The basis corresponding to this extreme point has the following
properties :

Let
(0 \ 0\ 0
o |7 o |7 0
J+1{| 1 Ny |l :
0 0 .
(4.8) : =V,, : =U,, 0 (=B,
0 1{ Doy —1
0 —1
m{ Dy m{ : :
. 0 -1
\ Dm; / \ /
( 0 \ 1
}J : }J
1
1 o ‘
=E¢, 0 =Wu
?; .

Sre o M o-olo‘ou
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In case of J>m,

0. at least one of V,, U, is in it.

1. it contains B.

This fact easily follows from (4.7).

2. if J+k of V or U vectors are chosen, m—k E;vectors must
be chosen, where ¥ < m. Thus the optimal basis contains just & pairs
of {U,, V,}. This means the optimal decision function requires rando-
mized decisions on just %k sample points, where k<m.

In case of J=<m, of course the number of sample points which
need the randomized decision for the optimal decision function cannot
be over J. Hence we obtain the following theorem.

THEOREM 3. The optimal test for testing H(P,) against H(P, ---,
P.), for a given significance level a(0<a<1), requires randomized deci-
sions at most for min(J, m) sample points.

This theorem is clearly a generalization of theorem 1.

The similar problem can be treated from the view-point of § 2. Here,
the decision space D* consists of two decisions df, d} as mentioned above.

The error matrix is

BF\P) | 8K | | S postn | Spon
(4.9) d(df|P) | d@FIP) |=| Zpue | Zpues
SfIPa) | JdfIPn) " X Dusi| 3 Dmsn

Therefore, the optimal decision function, for a given weight of errors
{@o1y Grgy By * +, B}, @, =0, is found by solving the problem below :

(4.10) min. @y 5}__‘. Dos s+ E‘_‘. Ay .?_1 Pis% 50
subject to

xjo+x11=1 (.7=1’ 29 b ') ’

(4.11) .
z;=0 (¢t=0,1).

By the same procedure in § 2, we obtain the following solution :

(4.12) 20=0, z,=1, if aup,< g_:.ampw )
Zp=1, ,=0, otherwise.

Thus we have obtained an optimal and non-randomized decision function.
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5. Testing hypothesis III. (Composite hypothesis and simple alternative).

Suppose P, P, P, -+, P, be defined as in §4. On the basis of a
random sample of size n», we treat the problem of testing the hypothesis
H, against the alternative H,, where H, is the statement that the un-
known prob. measure is one of P, ---, P, and H, is the one that the
unknown prob. measure is P,.

Let O, be sample points, and define

pu=P(0,), GZ25%00™).

In this case, the decision space is D={df, d}¥}, where df(:=0, 1) is the
decision that H(¢=0, 1) is true as in § 2, consider the decision function é
for this decision problem and let

B(dﬂoj)=a7u ’ (;:(1), ;’ .o 'J),
Then
(5.1) xju-l'x_“:l ’ (j=1, 2, e, J).

The error matrix corresponding ¢ is

( 8(d¥|\P,) |o(dif|P,) ;‘ D% 40 ; D155
5(‘?3‘ |P;) 3(d1* |P,) ; D25 50 ; D25 41

8(d¥|P,) | 8(d|P) 3 O | Siamin

L 3(d0|P %) 6(dllPo) ) jannjzjo IZ|$0;5U11

For given levels of significance, «,, ---, «,,, most powerful test can be
obtained by solving the minimizing problem below.

(5.2) min. ,E DosLs0

subject to

(5.3) Tptx,=1, (G=12, ---J),
20, (=0,1),

(5.4) 2 De@pt+ S (k=1,2, : -+, m),

where 2(=0)k=1,2, ---,m) are slack variables. By matrix notation
restrictions (5.3) and (5.4) can be represented as follows;
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1100 0 0 / Ty 1

11 T x, 1

0 0- 0 Ly :

L] . L] L] . 0 0 :

. . . . . xn = .

0 0 0 O 11 : .

. 1

(.) Pu q Z.)12 9 p.u 1 1 Lo Cfl

I AN I B P O

O pun 6 5 6l 1) |2 | \a
A

By the analogous reasoning obout the optimal basis of linear programing
problem in § 4, we obtain the following theorem.

THEOREM 4. (Composite hypothesis-simple alternative) For given signi-
ficance levels, there exists the optimal decision function such that the
number of the sample points, for which randomized decision is needed,
i8 at most min (J, m).

This theorem is also a generalization of the theorem in §3.

By our multiple decision procedure, the above decision problem can
be reduced to the following linear programing problem for a given weight

{@o0r @1y ==+, @i} ¢

m J J
(5.5) min{ 32 o 55 9o 3, Pue |
h=l J=1 J=1
subject to
=0, 1
(5.6) zptep=1, 2,20, (;‘z(l), 2, .o, J),

This problem can be reduced to J simple problems :

(5.7) min(g_]lampn,)mﬂ+awpomo
subject to
(5.8) 3711+a7;o:1 ’ wugo ’ =12, ..., J).

Therefore, we obtain the optimal, non-randomized decision function by
the following procedure :

g.l O Dns = AoPos —> Tp=1,
(5.9) ™
,Z:, ahlphj< Doy —> Ty=1,
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6. Testing hypotheses IV. (Composite hypothesis and Composite alter-
native).

Suppose P, P,, ---, P,,, Q,, Q,, -+, Q. be discrete prob. measures de-
finded as preceding sections. We treat the problem of testing hypothesis
H, against the alternative H,, where H, is the statement that the un-
known prob. measure is one of P, ---, P, and H, is the one that the

unknown prob. measure is one of @, Qs -+, Q-
Let O, be the sample point of the reduced sample space, and define

pJIc:Pk(OJ) ’ (k=1’ 2) 0y m)9
thth(OJ) ’ (h'=1! 21 M) m')
(j:]_, 2, «ce,J).

In this case, the decision space is D= {dy, d}}, where d} is the decision
that H(¢=0, 1) is true.
For any decision function ¢ we define

odFlO)) =, ,

The loss matrix corresponding to ¢ is

2dF1P) | a(dIP) Spen | Spges )
wasipy) | aatip) ;p;,x,o ;pf,,,xﬂ
2d51Q) | a(drI@) Sagwe | Samn
din) | odriQm) ) \qu,f,,,x,o ;q,iqx,l

For given levels of significance, a3, a,, «--, a,,, decision function § must
satisfy the following equations :

J
jZ_l pl.jmjzg ay
(6.1) :

J
> P =ay .
J=1
The 2nd errors comitted by the decision function é are

J
(6'2) .g:{ thmjl ’ (h_—_l’ 2’ sy m/)-

As optimal decision function let us choose such a decision function
that attains the minimum value of the maximum of (6.2).
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From this viewpoint, we obtain following linear programing problem ;

(6.3) min S
subject to
Tpt+xa=1, 2420, (=0, 1),
J
Zpkl‘vﬂéa]k ’ (k=1’ 2) ] m)y
(6.4) o
qu q’”xﬁ’éﬂl ’ (k=1’ 27 b '7m,)°

The restriction (6.4) can be written by matrix notation as follows:

2J m 1 m’
e e ——t—

1 1 0. e e 0 0 0 \ 11710 1

0 0 : S 5 Tn

J : 0 0 0 : 0 -
0 0....0 11 0 Lop 1
? p.u ? Dy 1 0 0 9?:.10 _ gl
mil i AE I N I | P
0 Pm 0 Pn 110 A n
q.ll (.) qlJ 0 _1 1 O 9
m’ . . . . 0 -1 . zm E
Do Do : . B :
Qmn 0 Qs 0 —-1|1 1 " 0

Kﬂm’

where 1, p are slack variables. Again, by the similar reasoning as the
previous sections, we can conclude that the number of sample points
corresponding to randomized decisions needed by the optimal decision
function is at most min(J, m+m'—1).

THEOREM 5. (Composite hypothesis-Composite alternative) For given
signifivance levels, there exists the optimal decision function such that
the number of the sample points, for which randomized decision is needed,
is at most min (J, m+m'—1). »

This result is clearly the generalized one of theorems of previous

sections.



148 YUKIO SUZUKI

From the point of view in § 2, the above decision problem can be
solved by solving the following linear programing problem for given
Weight {an! sy Uy blo! M) bm'o}:

m J m’ J
(6.5) min. {Z Gy X Pes@nt Dl bue D Qns®s }
=1 = hel  j=1
subject to
=0, 1
(6.6) Tptxa=1, 4,20, (;-_:(])_’ 2 ... J).

Again, this problem can be reduced to J simple problems :

min (kE_ll a’klpkj)mjl + (g.l bnthj)xjo
subject to
w_,l-l-xj.,:l, mﬂgo ’ (?:—_—0, 1).

Thus, we obtain the optimal, non-randomized decision function by the
following procedure :

m m’
kz:nlaklpkjg g}lbrm%u —a,=1,

m m’
kZJ A1 Die; < rgi buns = =1 .

This procedure is analogous to the one obtained by H. Scheffé in con-
nection with the generalization of Neyman-Pearson’s fundamental lemma.
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