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1. Introduction

When traffic control is required at any crossing of two streets, it
will be desirable to have some means which enable us to determine the
control method of high efficiency for the crossing. The purpose of the
present paper is to determine an optimum method, in some sense, of
traffic control at a congested crossroads, which has two flows of
vehicles, the one in the north and south direction, the other in the
west and east direction, control being made by the repeated fixed-cycle
traffic lights. By the control of the repeated fixed-cycle we mean
the one, in which a green interval of fixed length is followed by a red
interval of fixed length, though the length of the red interval may differ
from that of the green one. The whole cycle is repeated indefinitely.
In practice there are additional warning intervals between the green
and red intervals or between the red and the green. But we need not
consider such an additional one, for we may appropriately make this
belong to the red or the green one.

First we consider the case where two flows have the same degree
of arrivals of vehicles, possible passages per unit time of green period
being equal. If the control is inequitable and the green period assigned
for S-N flow is much longer than that for W-E flow, for example, a
long waiting line will rapidly be formed in W-E flow, while that in
S-N flow will remain short. Obviously the admission of less passage in
S-N flow and more passage in W-E flow is adequate in this case. Even
if the difference of green periods for both flows is not so large, the
flow to which shorter green period is assigned will have more chances
of forming a long waiting line than the one to which longer green
period is assigned. From these points of view it will be natural, in
this case, to take the method of equitable control for both flows as the
optimum one. On the other hand if one flow has more arrivals of
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vehicles than the other, the control of longer green period for the
former will be more efficient. It is necessary to define, in general case,
the concept of efficiency of traffic control more clearly, which was
considered rather vaguely in the special cases mentioned above.

In any intersection we may consider that the very long waiting line
of a flow causes uncontrollable confusion in the traffic, for the congestion
of vehicles over the road capacity will, in the long run, cause the im-
possible communication of the flow. So, it will be reasonable to set up
some levels for the length of waiting line of a flow, which warns the
risk of uncontrollable confusion in the traffic of the flow. Now that the
aim of traffic control is to prevent the confusion in traffic, it must be
carried out so as to attain this level as little as possible. We shall call
it the level of confusion of the flow. It depends on the capacity of the
road on which the flow runs. If the level of confusion in S-N flow
under a control by some rule is attained rapidly, while that in W-E
flow is attained slowly, then it will be more efficient to allow less pas-
sage in S-N flow, more passage in W-E flow being allowed.

Considering the efficiency of traffic control in such a sense, we may
conclude that the optimum method of control is the one which balances
the times, in which confusion levels of both flows are attained. By
taking the meaning of optimum method of control as the above, we
treated here the following problem. When some random arrivals, possible
passages per unit time of green period, the levels of confusion, for both
flows, and the length of one cycle of control are given, how should
we determine the green periods 7' and T* of both flows, in order to
make the control optimum?

2. Formulation of the problem
Let T and T* be the green periods for S-N and W-E flow, respec-
tively, in any cycle of control. Of course these are non-negative
numbers.
Define the variables X,, Y, as follows:
X,=the length of waiting line in S-N flow at the end
of the time T* of n-th cycle
Y,=the length of waiting line in W-E flow at the end
of the time T of (n+1)th eycle, n=1,2, ...
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These are random variables under the assumption on arrivals of vehicles
in both flows, which will be described later.

In addition, by X, we will denote the length of the waiting line in
S-N flow at the start of control, and by Y, that in W-E flow at the
end of the time 7T in the 1st cycle. As an initial condition we assume
that X,=0 and Y,=A(T), where A(T) denotes the nearest integer to the
mean of the arrival number of vehicles in W-E flow during the time
T in the 1st cycle.

Cycle oo Ist 2nd. 3rd
T T* T T* T T* T
Length of waiting line  X,=0 Y,=A(T) X, Y, X, 1A X3
Fig. 1.

Now define the constants

a=the possible passage per unit time of green period
in S-N flow

b=the possible passage per unit time of green period
in W-E flow l

G=the level of confusion of S-N flow

H=the level of confusion of W-E flow

C=the period of one cycle of control.

Of course C=T+T*, the possible passage in green period T in S-N
flow is given by a7, and that in green period T* in W-E flow by bT™.
We substitute a7 and bT™* respectively by their nearest integers.

As for the arrivals of vehicles in both flows, we assume either of
the following two types of models.

Model 1. Arrivals of vehicles of both flows are independent. In
each flow, arrivals during the mutually non-overlapping time intervals
are mutually independent random variables, and the distribution of ar-
rival during any time interval depends only on the length of this interval
and is irrespective of its position.

When we take the time of start of the control as the time origin
and denote respectively by &, and 7, (£=0) the accumulated numbers of
arrivals of S-N and W-E flow from time 0 to time ¢, the assumption
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of model 1 means that {§} and {7,} are mutually independent and
each is a process with independent stationary increments.

If in this model we count arrivals only every unit time starting
from the time origin, taking no notice of the manner of arrival during
any sub-interval of these unit time, we are led to the following model.

Model 2. Arrivals of vehicles of both flows are independent. When
we divide the time axis every unit time starting from the time origin,
the arrivals during every unit time are mutually independent random
variables having the same distribution.

When model 2 is assumed, it is natural to restrict 7' and T™* to the
multiples of the unit time, and then they may be assumed to be non-
negative integers.

Now given T and T™*, divide the time axis alternately at every time

T and T*. Then we represent the distribution of the arrival during
each T or T™*-interval as follows:

for S-N flow,
P, (k arrivals)=p, in each T-interval

P,(k arrivals)=p; in each T*-interval;

for W-E flows,
P,(k arrivals)=gq, in each T-interval
P,(k arrivals)=q¢ in each T*-interval;

£=0,1,2, ..,

Here p, and ¢, are functions of 7', and »f and ¢ are functions of 7™.
Moreover, we put for convenience p,=p; =q¢,=qf =0 for k=—1, —2, ---.

When a, b, G, H, and C are given, and either of the two models
are assumed, we define for any T and T'*, satisfying T+ T*=C, the
random variables m” and n’ as follows:

m”=the smallest integer m such that X,>G,

nT”=the smallest integer n such that Y,>H.

Now our problem is stated as follows :

Given a, b, G, H, C and assuming either of the two models, deter-
mine T and T* so that the relation E[m']=E[nr”] may hold, where
E[—] denotes the expectation.

Of course a and b are non-negative numbers and C is positive
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number, while G and H are positive integers.

Put f(T)=E[m"] and g(T)=E[n"]. Then it is clear that f(T) isa
monotone increasing function of 7', and ¢g(T') is a monotone decreasing
function of 7. It is intuitively clear that f(0)<g(0) and f(C)>g(C)
except in the case where the one traffic is exceedingly busier than the
other. So that the problem will have a solution in a practical case.
When model 2 is assumed, we restrict 7 and T'* only to the integral values
as mentioned above, but this makes no difficulty in practical purpose.

3. A random walk

Before we proceed further, we consider the following random walk :

A particle moves on a half-line OZ in such a way that, every unit
time, it either makes one leap in positive or negative direction or does
not move, the possible positions being integral points on OZ; at every
leap the particle moves from some integral point on OZ to another.
When the particle took the position ¢ after some stage, let p;, be the
probability that it takes the position j after the next stage (1=0,1,2,

see37=0,1,2, .-+ ; g)puz]_),

. L L 1 1 i L ' n Il I 1 1 [ I

0 7 Z 3 4 5 K 7
Fig. 2.

Let K be a given positive integer. We denote by n, the random
variable that represents the number of the stage at which the particle,
starting from ¢, gets over the point K for the first time, and put
E[n]=m,, i=0,1,2, ---, K—1, if these expectations are finite. We
shall treat some case, where these are finite, and want to find these
quantities in that case.

If we denote by u,, the probability that the particle gets over the
position K at the nth stage for the first time, starting from ¢ (=1, 2,
eee;4=0,1,2, ..., K—1), then,

K-1
(1) Ugp+1= jz_:]ujnpu ’ n=1’ 2’ ctty
K-1
(2) Uy=1-— jz_%pu ’

for i=0,1,2, +--, K—1.
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Moreover we denote by p{P the probability that the particle, starting
from 4, takes the position j after r stages without getting over K all
the way, and by p{ the probability that the particle, starting from <,
does not get over K during r stages (¢,7=0,1,2, ---, K—1). Clearly

K-1
pr="3, 5.
. j-o
Then the following theorem holds

THEOREM 1. If there exist some positive integer r such that

(3) pgr)<1, 1'=Or 1’2’...1K'——1
then,
(4) Sum=1, =0,1,2 ---,K—1,

n=1

that s, the probability is zero that the particle never gets over K starting
from 1.

Conversely if condition (3) does not hold, then (4) does not hold, and
Sfurthermore, for at least one 1, Si,u,,, %8 equal to zero, that s, the pro-

n=1

bability is one that the particle never gets over K starting from i.

ProoF. By E® we denote the event that the particle, starting
from 4, does not get over K during k stages, 1=0,1,2, ..., K—1; k=
1,2, ---, and by E; the one that the particle, starting from ¢, never
gets over K.

Now assume condition (3) for some integer . Then for an arbitrary
positive integer n the occurrence of E{™*"” implies that of E{”, and the

occurrence of the event E; means the simultaneous occurrence of all
E&, Consequently

-1
pE)=lim p(E) =3, (lim p§"), i=0, 1, 2, -+, K—1.
n—>oo J=0 n—oo
From the assumption there exists some 0<e<1 such that
K-1
(5) jz-pg)él—e. 7":0: 19 2, -, K-1,
=0
and hence

K-1 K-1
o= 3, pPpifs Sy piPsl—e,  4,7=0,1,2,---, K-1.

k=0
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Now assume that for n (=2)
(6) pg;n')g(l_e)n—l s 1:,]'20, 1, 2; R K—-1 .

Then for 4, j=0,1,2, ---, K—1, we have
K-1 K-1
P = 3 pR o< (1—e)" " 3 pR<(1—e)",
k=0 k=0

therefore by induction (6) holds for every n>2. It follows that lim o5
=0, and consequently P,(E,)=0, =0,1,2, ---, K—1. T
Conversely assume that (8) does not hold. Then for any positive
integer r there exists some ¢ (0<i<K—1) such that p{”>=1. It follows
that there exist some ¢ (0<¢{<K-—1) and some increasing sequence
{7} k=1,2,... of positive integers such that p{¥=1 for k=1,2, ---. Now
P(E{®)=p{* and in the same way as mentioned above we know that
Pr(Ei)——_}.’i_E} P(E{¥). Hence, for some i (0<i<K—1), P,(E;)=1, that is,

the probability is equal to one that the particle never gets over K

starting from <.
By this theorem m,= i‘,nu,,. and more generally E[nf]= f}ln"u,,,
n=1 n=

(where ¢ is a positive integer), =0, 2, - --, K—1, under the condition (8).

LEMMA. Under the condition (3), for an arbitrary positive integer
M, we have

(7) lim N*u,, =0, 1=0,1,2,---, K—1,

N—oo

Proor. From the assumption there exists some positive integer »
for which (5) holds. Now take a fixed arbitrary integer » (0<v<r—1).
Then ‘

K~-1 K-1
Ug,rey = jZ| pg)ujvé 12 pg)él_e ’ 1;:0: 1’ 2y ct Ty K-1.
=0 =0
Assume that for integer.k k=1)

(8) Ui =(1—e)*, ©=0,1,2, ..., K—1,
then for :=0,1,2, ..., K—1,

K-1 K-1
Ui, (k+1)r 4y = 120 Z’g)uj,tr+v§(1“e)k jE% pf})§(1—£)“‘ .
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and so by induction (8) holds for every positive integer k. It follows
that

lim (kr+ ) s i er < lim (r +2)*(1—€)*=0 ,

k—>o0 k—>o0
+=0,1,2,..-, K—1, v=0,1,2, +++,r—1, from which we have lim N*u,,

N-sco
=0.

From this lemma, the following theorem obviously holds.

THEOREM 2. Under the condition (3), the random variable n, has

all the moments, that is, f]n“u,,.<oo, p=1,2, .-+, for 1=0,1,2, ---,
n=1
K-1.
In particular in this case, m,= inu,,,< ©, $=0,1,2, .-+, K—1, and
Nwm]l

we can actually obtain m,’s as follows.

THEOREM 3. If the matriz I.—P is non-singular and condition (3)
is statisfied, then we have

My 1
m, 1
(9) . =I—P)"| -
Mg -1 1

where Ix 18 a unit matric of Kth order and

Do D **°*Dox-1
Do DPu ***DPirg-1

. .

Px-1,0Px-11"°"°"Pr-1,£-1
ProOF. From (1) and (2)

N
> (1)U e Uy

n=1
E-1 N K-1 N E-1
=3 Doy 2 Mlhynt D Dij 2, U +(1“ > pz;) ,
J=0 n=1 J=0 n=1 J=0
2=0,1,2, .-, K—1.

. K-1 N
Therefore, m;ys«1= >, DijMyx+Ciy, Where my= E_‘inu‘,, and c¢;y=
J=0 n=
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K-1 N

K-1
Dis D Upm+(1— Pu)‘-
0 n=1 J=0

Now let N— o, then by theorems 1 and 2 m 5.1, My — Mmy< o

J=

K-1
and ¢,y —1, and we get m,= >, p;;m,;+1, 1=0,1,2, ..., K—1, that is,
J=0

(9) holds.
We remark that if

(10) for every 0<4s<K-—1 there exists
%' >4 such that p,. >0,

then condition (3) holds.

For we have only to take r=K.

Besides as we shall see later (cf. Corollary 3 to Theorem 4) the
non-singularity of I, — P follows from condition (10), so that the assump-
tions of Theorem 4 are satisfied if condition (10) holds.

For the discrimination of the non-singularity of I,— P the following
criteria will be useful. Let

be a matrix of nth order with non-negative elements, in which the sum
of the elements of every row is not greater than 1. For arbitiary
positive integers 4, 4, -, & (5,<6<---<3,<n) we denote by Agpeens, the
submatrix of A obtained by taking its ¢,th to ¢,th rows and deleting its
2,;th to 7,th columns.

We now prove

THEOREM 4. The following conditions are mecessary and sufficient for
the matriz I,—A to be non-singular :

(1°) the sum of the elements of at least one of the rows of A is actually
less than 1

(2°) for every k (<n—1) and for arbitrary positive integers t,,1,,
eyt (<6< <G=n), Ay, cannot be zero-matrix without at least
one of the sums of the elements of the i,th to ith rows of it being actually
less than 1.

PROOF. Necessity: We assume that I,—A is non-singular. Then
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(1°) holds obviously. Suppose that (2°) does not hold, and for example, that
Aj..., be zero matrix for some k (<n—1), every sum of the elements
of the 1st to kth row of A being equal to 1. Then we have

oooooooooooooooooooooooooooooooooooooooooo

—Qy  —Q 1—ay —Qy k41 —Qy, g4z l—a,,

But it follows from our assumption that the first factor in the right-
hand side of the above equality is equal to zero, and so |I,—A|=0 in
contradiction to the assumption of non-singularity of I,— A.

Sufficiency : Suppose that the conditions (1°) and (2°) are satisfied. If
I,— A is singular, there exist » real numbers 2, ,, ---, 4,, at least one of
which is not zero, such that

Al—ay) —2A@a— -+ —2,0,=0
(11) —21(1:21 +22(1_a21)_ e _Xna'inzo

ooooooooooooooooooooooooooooo

If necessary by rearranging rows and columns of A we may assume,
without loss of generality, that

(12) . 112222"'2113

In addition we may assume that 1,>0, for if 4,<0, we may take —4,
—2, +++, —4, instead of 4, 4,, +++, 2,. From (11) we get

A=A A0+ -+ 2,00,
Dividing the both sides by 1, we have
_ A An
(13) l=a,+2a,+- - +ay,
4 4 )
saytaptce-+a,<1.

Consequently a,;+ %am+ oo —i—%‘al,,:a,u+am+ «eeat,,, that is
1 1

( —%)amh-- +(1—%)am=0 .

Now in the left-hand side of this expression, each term is non-negative,
and so we get
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14) (1-Haw=0,---,  (1-")a.=0.
2, 2
If ay,=a;=:--=a,=0 we get from assumption (2°) a,,<1 on the one

hand, and get from (13) a,,=1 on the other hand, which is a contradic-
tion. Therefore, there exists 7, (2<%,<n) with a;,#0. Consequently
from (14) 4 =4, which means by (12),
(15) h=hy=-e =2, .

If 4,<n, we proceed as follows. From (11) we get for every j
(1=sj=9w)

Ay=A0n+ o+, A 1101t o Al

Dividing the both sides of this equation by 4, and noticing (15), we get

(16) l1=a,+--- +ay,+ lslﬂaj,clﬂ‘l‘ cee +%am

1 1

SOptecc 0, a0t +a;,=1.
So, in the same way, we have
) (1—_@_1)%,. w=0, «en (1—ﬁ)a,,.=o .

A ! A

If a,,=0 for every jand v(1=<j<4,, ©,+1<v<m), we learn from assump-
tion (2°) that at least one of ap+-e-+ay (=1, ---,%) is less than 1,
on the one hand, and from (16) that a,+---+ay, =1, j=1, ---, ¢, on the
other hand, which is a contradiction. Consequently there exist some j
and ¢, (1=j<4,, 4,<%=<mn), such that a,,#0. Therefore from A7) we
get 2,=4, and from (12)

(18) h=reee=2, .

In the same way there exists 4; (5,<%;<n) such that 4,=-..=1;,
and 4, (3<%, <n) suce that i4,=-.-=4,, and so on, as long as %,<n,
PNy oo

Thus we have finally
19) Lh=l=-ce=1,

so that from (11)
A=24(0; +a,+ -+ +a,,)

zlzzl(anl T+ Ayt +ann) .
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But 2,#0, therefore we have
O+ + o040, =1

ooooooooooooooooo

A+ st +a,,=1.

This contradicts assumption (1°).
From this theorem we get at once the following corollaries.

COROLLARY 1. If every sum of the elements of the row of A is less
than 1, then I,— A is non-singular.

COROLLARY 2. If for every i (1<i<n) the following condition is
satisfied, then I,— A 18 non-singular: either there exists i (1<i' <n) with
- >0 or the sum of the elements of the ith row in A is less than 1.

In particular we have

COROLLARY 3. If the condition (10) of this section 38 is satisfied,
then I.—P is non-singular.
By A(i}’ Tt i') we denote the matrix which is made from A by

Jiy ** %y j: .
taking its ¢,th to ¢,th rows and jth to jth columns. Then

COROLLARY 4. If the following condition ts satisfied, the matriz
I,—A is nom-singular: there exists some positive integer m (<mn), such
that every sum of the elements of each of the first m rows from A is
equal to 1, and every sum of the elements of each among the rest is less
than 1; and there exist some positive integer k (<m), 71, <=+, Tr
(1< oo e <1 <ry=m), such that in each of matrices A( 1, ""rl),

r+l, .0, n
cee, A(T""'H’ Tt r"“), ATet L e r,,) there ewxists at least one
Pe-1F1l, cee, m rv+1l, o, m
non-zero element in every row of it. (cf. Fig. 3).

Even though A is not of the form stated in Corollary 4, this corol-
lary is applicable if A can be transformed into that form by those
permutations, in which the row- and the column-permutations are per-
formed in all the same way. We will see this procedure in some detail.

Let in each of some m (<n) rows of A the sum of its elements be
equal to 1 and in each of the rest the sum of its elements be less than
1. First we distinguish two cases. If m=mn, I,—A is singular, and if
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Fig. 3.

m<n, we transform A by the above operations into the form, in which

the first m rows are such that in each of them sum of its elements is

equal to 1. We denote the transformed matrix again by A. Here we

distinguish three cases. If A ’ ) is zero-matrix, then it is

m+1 .
easily seen that I,—A is singular. Otherw1se we examine the rows of
A( Liee,m ) If in each row of this matrix there is at least one
m+1, e, n

non-zero element, then A have the form stated in Corollary 4, and so

I,—A is non-singular. If not we transform A, by carrying out the

above operations for 1st to mth rows and columns, into B in such a way
Loeee,m ) all the rows, having zero-elements only, are

m+1, -+, m

arranged from the top. We denote B newly by A. Let 7., be the

that in B(

positive integer such that A( *1 T ) is zero-matrix and in each
m+1 oo,

row of A(""“l'l'1 Tt m) there is at least one non-zero element.
m+1, -
Here we also dlstmgulsh three cases according to the form of

A( Leees Tem ) and proceed as mentioned above, and so on. Thus
Tyrt1, oo, m

either we know at some stage of the procedure that I,—A is singular,

or A can be transformed by the above-mentioned operations to the

matrix of the form illustrated by Fig. 4 and we know that I,—A4 is

non-singular, where in Fig. 4 each of the submatrices exhibited by the
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shadowed rectangles is the one, in every row of which there exists
at least one non-zero element. Thus we have proved the following
equivalent to Theorem 4.

COROLLARY 5. For the non-singularity of the matrixz I,—A it is
necessary and sufficient that by the above-mentioned procedure A can be
tramsformed into the form illustrated by Fig. 4, where each of the sha-
dowed rectangles represents such a submatrixz that we mentioned above.

r

re

Tkt

mary

Fig. 4.

4. The waiting line as the random walk mentioned above

The length {X,} or {Y,} of waiting line of S-N or W-E flow can be
regarded as the random walk that was mentioned in the preceding section.
For example, take the S-N flow, and fix 7 and T*. We may con-
sider that, X;=0 means that the particle lies at 0 at the beginning, and
that X, X,, - -- represent the positions of the particle respectively after
the 1st, 2nd, -.-- stage. Let x, and z, be the random variables which
denote the arrivals of vehicles in S-N flow respectively during the time
T and T* in the nth cycle. Then by the assumption «, 2, +-- , @, @,
- are the sequence of mutually independent random variables, and

(20) X,,=(X,,_1+$”-'—(1/T)++$; ’ n=1: 27 ctt

where (X,,_,+x,—aT)* denotes the maximum [X,_,+x,—aT, 0]. From
(20) it is obvious that x,, «, are stochastically independent of X, X,,
«+, X,-;. From this fact, together with relation (20), it follows that

P,.(X”:‘j/Xo:’l;o, %y Xu-z=in—2’ X”_IZi)
= ,(X,.=_7./X,,-1=’I:)
=P {(i+z,—al)* +a,=3}



ON THE TRAFFIC CONTROL AT AN INTERSECTION CONTROLLED 101

for arbitrary non-negative integers 4, ---,4,.,, ¢ and j. Here it is
obvious that P.(X,=j/X,-,=4) does not depend on n. These show that
{X,} forms the random walk mentioned in Section 8, and that the
transition probabilities ,.p,, are given by

(21) rmPiy=P {(i+z,—aT)*+a,=7} .

In the same way {Y,} forms the random walk mentioned above,
and if we denote by y, and y, the arrivals of vehicles in W-E flow
respectively during the time 7 in the nth cycle and the time 7' in the
(n+1)th eycle, the transition probabilities ,.p;; are given by

(22) 203y =P {0 +y,—0T*)* +y,=7} .

Now put i P=(r0i))i, =01+ =15 72P=(zsDis)i,sm01,-+.0-1- 1f condition
(3) holds and if I,—,,P and I;,—,,P are non-singular for all 7, then by
Theorem 4 the functions f(T') and ¢(T), defined in Section 2, are given
as follows:

S(T)=the sum of elements of the first row of (I;—..P)!,
9(T)=the sum of elements of the A(T)th row of (I;—rP)".

As remarked in Section 8, the condition (10) is sufficient for the
assumptions of Theorem 4 to hold. Therefore if the condition (10) holds
both for ,p;; and ,.p,;, for all T, then f(T) and ¢(T) are given as the
above, too.

It is difficult to obtain the explicit forms of f(T) and g(T) theo-
retically, but in practice the curves of these functions may be obtained
by numerical computation, and our problem can be solved. For this
purpose it is necessary to count ,,P and ,,P, which will be done in the
following.

Using the notation in Section 2, for fixed 7" and T*, we have

(23) Pr(wn:‘k):pk s P,.(:U;:k) =pl’: s
k=0, +1, +2,+++; n=1,2,---.
Now fix ¢. Then from (21) and stochastic independence of x, and «, we
have
mpij:Pr{(xn+'i_aT)++w;=j}
=P, (x,<aT—3) P, {(x,+i—aTl)* +z,=jlz,<aT—1}
+P,(x,=zaT —7) P, {(x,+1—aT)* +z,=jlx,=aTl —i}
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— P,(w, < aT—i) P,(x, = j 2, < aT —i)
+P, (x,=aT—1) P (x,+1—aTl +a,=j/w,=aT —1)
=P,(a7,,<a,T—'b)Pr(m;.=j)+P,(a:,,+z—aT+x,',=,7, mnza’T_i) .

From this we obtain, noticing pf=0 for k<0,

al-1-1 J
(24) Tlptj:( kZO pk)p;k +k=20 paT—i+kp;k—k .

For ¢=aT, noticing p,=0 when k<0, (24) becomes

j . .
_{ > paT—i-bkp;k—k: j=i1—al

rPiy= § k=i-ar

0 : j<i—al .

From this it is seen that for ¢=aT, ,p;, is completely determined when
j .

rPar,;= > PePfi =P, (@, +x=7), j=0,1,2, ---, are known, that is, the
k=0

sth and the following rows of the matrix of transition probabilities are
given as follows:

I o 1 2 3 4

aT raPro  riPar,r rilar2 7110ar;s r1lars *
aT+1 0 r1Par0  110ar1  7iPar,2 11lar.3
aT+2 0 0 r1Dar0  11Par,1  r110ar s
al+3 0 0 0 rPar,o0 r1Para1 * * *

. . . . . .

Next consider the case 1<aZ. From (24) we obtain

(25) Tlpi+1,j+1:1'1ptj+dij ’
1=0,1, ---, a’T—'zx .7=01 1, 29 cecy

where
al-{-1 * *
du =( kzo Pt) (D31 — Dy ) .

Therefore, in this case, the general ,p;, is deduced from ppy; and zpw
adding d,, successively, where ,p,, and rp, are as follows:

ar ] )
T1p~).1=('§6pk)p7+ kz_alpal'-*kp;'k-k ’ .7=0’ 1,2 .-,
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ar—4
rlpmz( kgo pk)p: ’ 1=0,1, «c-,al—1.

Deduction of ,p;; for i<aTl can be described by the following scheme.

71000 r1Po 71002 r1Po3 r1Pos
AN AN AN AN
N+dw N\+dy \+dn N+dy
N N\ e N
1010 r1Pu 1P 11013 11014
N AN AN AN
N+de \+dy N\ +d. \+d;
N N e N
1P r1Pn 1P 1P ven

AN AN AN
Nty \+dn \+dx \+dy
N N p N

r1Par-20 11Par-2,1 1Par-22 11Par-23 11Par-2.4

AN AN AN AN
\ + da!’-z,o\ + dal'-z,l\ + dar—z,z\ + aT -2,3
N N N e

. .

r1Par-1,0 711Par-1,1 1Par-12 1Par-13 r1Par-1,4

In the same way we can count ,,P. For that we have only to substitute b7'*
for aT, H for G, qf for p, and ¢, for p; in the above deduction of ,P.

5. Special cases

Assuming Poisson processes concerning the arrivals of the vehicles
in S-N and ‘W-E flow, we get a case of Model 1 for the arrivals of
vehicles. Let a and /3 respectively be the mean arrivals in S-N and
W-E flow per unit time. Fix 7 and T*. Then using the notation of
Section 2, for £k=0,1,2, ---, we have

_ e—dT(aT)k . e-u*(aT*)m

pk—"—k!—‘— ’ D _—k!

gz SHETY «_ e "(BT)
k— ’C! ’ qx = k! ’

In this case the condition (10) of Section 3 is clearly satisfied for both
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mPi; and gp;;, for every T. Therefore, by Section 4 we can solve our
problem in this case.

Next consider a special case of Model 2 for the arrivals of the
vehicles in S-N and W-E flows. It is as follows:

In each flow the arrival of vehicles is given by Model 2 with the
additional assumption that at most one car arrives during each unit
interval of time, the probabilities of one arrival in each interval for
S-N and W-E flows being p(>0) and q(>0) respectively. Fix T and
T*. Then using the notation of Section 2, we have

p=(T )pra-pr, k=01,
pe=(T ) pa-pmr, k=01, 00, T
o=(T)ea-om, k=017
a=(")ea-omr, k=01, v

In the case of this model we shall consider the case where C=2.
Then the following theorem holds.

THEOREM 5. If a<1 and b<1, then condition (10) of Section 3 1s
satisfied for both r,p,; and ,p;;, for every integer 0<T<C.

PrOOF. We remark that p,>0 for 0<k<T and p¥ >0 for 0<k<T*.
Now, from a<1 we have (¢t+7T—aT)*=i+(1—a)T, so that

rPii+a-ara =P+, —al)* +x,=1+(1—a)T+1}
=P, (x,=T, «,=1)=p.f .

But T'=1, T*=1, and so p, >0, pf >0. Consequently ;,0; i+1-ayr+:1>0. That
is, taking ¢’=44+(1—a)T+1, condition (10) holds for ,p;;. In the same
way we can conclude from b<1 that condition (10) is satisfied for r,p;;.

From Theorem 5 and Section 4 we can solve our problem in this
case provided that a<1 and b=<1.

Even though a or b is greater than 1, we can ensure the validity
of condition (10) by making restriction on the range of variation of T
and T*. That is
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THEOREM 6. Let 2 (0<A<C) and p (0<p<C) be such given integers
that A=C—p (and consequently p<C—2). Then if

Cc-1
26) as =
( i
and

Cc-1
2 b=—-—,
@7 —C-2

condition (10) of Section 3 is satisfied, provided that
29) IST<C—p
and consequently

(29) p<T*<C—1.

Proor. By Theorem 5 we have only to prove in the case where a
or b is larger than 1. Let a>1, and for arbitrary ¢ (0<¢<G—1) take
©'=@+T—aT)*+T*. Then we have

D =P A(i+2,—aT)* +a,=@G+T—aT)* +T*)
2P, (x,=T, x,=T*)=pp>0 .

But ¢>¢. In fact when i=T(a—1), using (26), (28) and (29) we
get V' =i+T—aT+T*=i—(a—1) (C—p)+p=(0¢+1)—a(C—p)+(C—-1)=
@+ —(C-1)+(C-1)=i+1>i. When 0=Zi<T(@a—1), =T*>p, but
t+1=<T(@—1)=(C—p)(a—1)<(C—1)—(C—p)=p—1<p, hence 7' >7 in this
case, too. Thus the condition (10) holds for ,p;;. In the same way
using (27), (28) and (29) we can conclude that the condition (10) is
satisfied for ,,p,, when b>1.

6. A simple numerical example

Here we carried out a numerical computation for the case where
C=10, A=B=10 and ¢=0.7, b=0.5, the arrivals of vehicles in S-N
and W-E flows being Poisson processes respectively with a=0.8 and
£=0.6. Computation was carried out for four values of T (or T'*) given
in Table 1.

For these values of T, m, in S-N flow and m, (0<¢<5) in W-E
flow were computed, and these values are shown in Table 2. Compu-



106 TOSIO UEMATU

Table 1

Values of constants for given T (or T%)
T " 1.4 4.0 6.0 7.6
T* 8.6 6.0 4.0 2.4
aT 1. 3. 4. 5.
oT 1.12 3.20 4.80 6.08
oT* 6.88 4.80 3.20 1.92
bT™* 4, 3. 2. 1.
BT* 5.16 3.60 2.40 1.44
BT 0.84 2.40 3.60 4.56
AT) 1. 2. 4. 5.

Remark: a7, bT* and A(T') are respectively the nearest
integers to their true values.

Table 2
Values of m, for given T

I W-E
i me m ms ms my ms
| 5.50 5.15 4.74 4.27 3.79 3.29
. 3.79 3.57 3.28 2.96 2.63 2.29
} 2.95 - 2.78 2.56 2.31 2.05 1.79
| 2.47 2.32 2.12 1.92 1.70 1.49
Mo or
mar
6L
St \x
4|
3L
2t é \
! ——
v |
1
1 L i i 1 s L 7'

05 3 4 5 6 7 8 9 10
Fig. 5.
tation was easily carried out by means of FACOM 128, a digital com-

puter installed in the Institute of Statistical Mathematics.
Using these values we roughly drew the graphs of functions f(T')
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and ¢g(T) (cf. Fig. 5). From Fig. 5 it is seen that the optimum value
of T is roughly equal to 4.9.

7. Summary and Acknowledgements

The present paper is an attempt to obtain any reasonable method
of traffic control at a given intersection on the basis of probability
theory, and as the first step a simple type of traffic was considered,
under the control method by the repeated fixed-cycle traffic lights.

With regard to the efficiency of traffic control, a concept of optimum
method of control was introduced from the point of view of balanced
prolongation of the occurrence of uncontrollable confusion for two
mutually intersecting flows of vehicles, and then the problem to deter-
mine this method of control was studied. For this purpose we considered
two types of models concerning the arrivals of vehicles of both flows,
and made the problem resolve into a certain general type of random
walk.

Certain conditions were given under which we could solve our
problem. Incidentally a certain type of matrix was studied, and the
necessary and sufficient conditions for the matrix to be non-singular
were given.

In some special cases we showed that one of the above-mentioned
conditions was satisfied and our problem could be solved.

Finally the result of a numerical computation was given and we
showed that our treatment was feasible in practice.

The author is grateful to Professor C. Hayashi and Mr. M. Isida
for their helpful guidance and advices and to Mr. Y. Taga and Mr. C.
Fujiwara for their favor to have undertaken the programming of neces-
sary numerical computation.
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