"ON THE CONVERGENCE OF PROJECTED DISTRIBUTIONS"*

By HENRY TEICHER (Received May 4, 1957)

1. Introduction

Let X_n , Y_n $(n=1, 2, \cdots)$ be real random variables with "laws" or cumulative distribution functions (c.d.f.'s) $L(X_n)$, $L(Y_n)$ and characteristic functions (c.f.'s) $\varphi_{X_n}(t)$, $\varphi_{Y_n}(t)$ respectively. Suppose, as we shall throughout, that there are c.d.f.'s F(x), G(x) with corresponding c.f.'s f(t), g(t) such that

$$(1) L(X_n) \to F , L(Y_n) \to G ,$$

i.e., X_n and Y_n converge in law or distribution. If * denotes convolution, we seek conditions under which $L(cX_n+Y_n)\to F\left(\frac{x}{c}\right)*G(x)$, for some fixed positive c (mutatis mutandis for c<0) or equivalently for any fixed $c\neq 0$,

(2)
$$\lim_{n\to\infty} \varphi_{cX_n+Y_n}(t) = f(ct)g(t)$$

for all real t. It is well known that the independence of X_n and Y_n for all n or the degeneracy¹⁾ of F or G is ample to guarantee this for all real c. In fact, if X_n and Y_n are merely asymptotically independent, that is

$$\lim_{n\to\infty} E e^{i[t_1X_n+t_2Y_n]} = f(t_1)g(t_2)$$

then (2) is the immediate consequence of the substitution $t_1=ct$, $t_2=t$. As customary, E is the expected value operator.

Note that the distribution of $cX_n + Y_n$ arises from the projection of the 2-dimensional mass distribution of X_n , Y_n on the ray through the origin with slope 1/c.

REMARK. Clearly, (2) holds when $\varphi_{cx_n+r_n}(t) = \varphi_{x_n}(ct) \varphi_{r_n}(t)$, hence when X_n and Y_n are independent $(n=1, 2, \cdots)$. On the other hand, if

^{*} Research under Contract with Office of Naval Research.

¹⁾ A c.d.f. F(x) is called degenerate if it has only one point of increase (with unit saltus).

80 H. TEICHER

c=1, $Y_n=X_n$ then (2) holds if and only if $f(2t)=f^2(t)$, a severe limitation. If, further, $\int_{-\infty}^{\infty} x^2 dF(x) < \infty$, then F is degenerate.

For if X and Y are independent random variables, each having c.f. f(t), the prior functional equation asserts that 2X and X+Y are equidistributed; hence, from a result of Linnik (Dokl. Akad. Nauk SSSR 89 (1953) pp. 9-11), X is normally distributed, but then the functional equation coerces f(t) to equal e^{iat} for some real a.

2. Convergence²⁾

As the point of departure, we recall the unusual definition of the independence of two random variables proffered by Wintner. In [3, p. 5], X and Y are defined to be statistically independent if

$$L(X+Y)=L(X)*L(Y)$$

That this is not equivalent to the standard definition (in terms of product measure) is shown by an example of Cramér [see section 3]. Note, however, that if $EX^k < \infty$, $EY^k < \infty$ for some integer k > 1, (3) implies

$$\sum_{j=0}^{k} \frac{(it)^{j}}{j!} E(X+Y)^{j} + o(t^{k}) \equiv \left[\sum_{j=0}^{k} \frac{(it)^{j}}{j!} EX^{j} + o(t^{k}) \right] \left[\sum_{j=0}^{k} \frac{(it)^{j}}{j!} EY^{j} + o(t^{k}) \right]$$

which in turn requires that

$$\sum_{j=1}^{r-1} {r \choose j} \operatorname{Cov}(X^j, Y^{r-j}) = 0, \qquad r = 2, 3, \dots, k$$

where Cov(X, Y) = E[X - EX][Y - EY]. In particular (k=2), if it is meaningful to speak of the existence or lack of correlation between X and Y, i.e., $E[X - EX]^2$ and $E[Y - EY]^2$ are non-zero finite quantities, (3) implies that X and Y are uncorrelated.

Let I be the class of all infinitely differentiable c.f.'s; let I_1 be the subclass such that $\varphi \in I$, $\varphi_1 \in I_1$, $D_k[\varphi(t)]_{t=0} = \varphi^{(k)}(0) = \varphi_1^{(k)}(0)$ $(k=1,2,\cdots)$ imply $\varphi(t) = \varphi_1(t)$. For instance, $\varphi \in I_1$ if $\varphi \in I$ and $\sum_{j=0}^{\infty} |\varphi^{(2j)}(0)|^{-1/2j} = \infty$ (Carleman). This is true in turn when $\varphi(t)$ is analytic at t=0, e.g., when the corresponding random variable has a finite range.

LEMMA 1. Let
$$\varphi(t) \in I_1$$
, $\varphi_n(t) \in I$ $(n=1, 2, \dots)$. In order that

²⁾ The writer cordially thanks his colleagues Dr. J. H. B. Kemperman and Dr. J. I. Rosenblatt for helpful suggestions.

$$\lim_{n \to \infty} \varphi_n(t) = \varphi(t) , \qquad -\infty < t < \infty$$

it is sufficient that

$$\lim_{n \to \infty} \varphi_n^{(k)}(0) = \varphi^{(k)}(0)$$

for all positive integers k. If, for infinitely many even k, the sequence $\{\varphi_n^{(k)}(0)\}$ is bounded, then a necessary condition for (4) is that (5) holds for all $k=1, 2, \cdots$.

Proof. cf. [2, p. 184-185].

When it is unnecessary or inconvenient to emphasize the random variable in question, we shall denote $\varphi_{x_n}(t)$, $\varphi_{r_n}(t)$, $\varphi_{cx_n+r_n}(t)$ by $f_n(t)$, $g_n(t)$ and $h_n(t)$ respectively.

THEOREM 1. Suppose that for each $n=1, 2, \dots, f_n(t) \in I$, $g_n(t) \in I$, $f(ct)g(t) \in I_1$. Moreover, suppose that for each $k=1, 2, \dots$ the sequences $\{f_n^{(k)}(0)\}$ and $\{g_n^{(k)}(0)\}$ are bounded. Then, in order that (2) holds, it is sufficient that

(6)
$$\lim_{n \to \infty} \sum_{j=1}^{r-1} {r \choose j} c^j \operatorname{Cov}(X_n^j, Y_n^{r-j}) = 0$$

for all positive integers r. Conversely, (2) implies that (6) holds for every integer $r \ge 2$.

PROOF. For each k, $\{D_k[f_n(ct)\cdot g_n(t)]_{t=0}\}$ is a bounded sequence. Further, from (1), $\lim_{n\to\infty} f_n(ct)g_n(t) = f(ct)g(t)$.

Hence, from lemma 1, for each k

(7)
$$\lim_{n\to\infty} D_{k}[f_{n}(ct)g_{n}(t)]_{t=0} = D_{k}[f(ct)g(t)]_{t=0}.$$

Also, the sequence $\{h_n^{(k)}(0)\} = \{i^k E(cX_n + Y_n)^k\}$ is easily seen to be bounded $(k=1, 2, \cdots)$. Again, using lemma 1, it follows that (2) holds if

(8)
$$\lim_{n \to \infty} h_n^{(k)}(0) = D_k[f(ct)g(t)]_{t=0}.$$

for all positive k and only if (8) holds for all k. The assertion of the theorem now follows from (7), (8) and

(9)
$$h_n^{(k)}(0) - D_k[f_n(ct)g_n(t)]_{t=0} = i^k \sum_{j=1}^{k-1} \binom{k}{j} c^j \operatorname{Cov}(X_n^j, Y_n^{k-j}).$$

H. TEICHER

THEOREM 2. Let X, Y be real random variables with joint of. $\varphi(z_1, z_2)$. Suppose that $\psi_1(z) = \varphi(z, 0)$ and $\psi_2(z) = \varphi(0, z)$ are analytic for $|z| \le r_1$, $|z| \le r_2$, respectively. Then $\varphi(z_1, z_2)$ is analytic for $|\vartheta(z_1)| < 1/2 r_1$, $|\vartheta(z_2)| < 1/2 r_2$.

PROOF. Since $\sum_{k=0}^{\infty} |\psi_j^{(k)}(0)| r_j^k/k!$ is convergent, we have $|\psi_j^{(k)}(0)| \leq C_j k! r_j^{-k}$ for j=1, 2 where C_1 , C_2 are absolute constants. Further,

$$\begin{aligned} |\varphi^{(k,m)}(0,0)| &\leq E|X|^{k}|Y|^{m} \leq \sqrt{E|X|^{2k}E|Y|^{2m}} \\ &\leq C_{1}C_{2}r_{1}^{-k}r_{2}^{-m}\sqrt{(2k)!(2m)!} \\ &\leq C(1/2r_{1})^{-k}(1/2r_{2})^{-m}k!m! \end{aligned}$$

since $\lim_{n\to\infty} \frac{(2n)!}{(2^n n!)^2} = 0$. The assertion now follows from a straight-forward generalization of a standard procedure (cf. [1, p. 177], [2, p. 212]).

REMARK. Taking $X \equiv Y$, we have $\varphi(t_1, t_2) = \psi_1(t_1 + t_2)$ showing the stated region of analyticity cannot be improved very much.

COROLLARY. Under the hypothesis of Theorem 2, $\varphi(z_1, z_2)$ defines an analytic function for $|\vartheta(z_1)| < \theta r_1$, $|\vartheta(z_2)| < (1-\theta)r_2$ for any θ in (0, 1).

PROOF. Now $Ee^{r_1|x|} < \infty$, $Ee^{r_2|x|} < \infty$ (cf. [2, p. 212]). Hence, by Holder's inequality, $Ee^{\theta r_1|x|+(1-\theta)r_2|x|} < \infty$. Thus, the integral

$$E[\exp\{iz_1X+iz_2Y\}]=\varphi(z_1,z_2)$$

converges and defines an analytic function in $|\vartheta(z_1)| < \theta r_1$, $|\vartheta(z_2)| < (1-\theta) r_2$. The optimum choice seems $\theta = \frac{r_2}{r_1 + r_2}$.

We are now in a position to prove:

THEOREM 3. Suppose that $f_n(z)$, $g_n(z)$ are analytic in $|z| \le r_1$, $|z| \le r_2$ respectively and that f(ct) g(t) has a unique extension from an $\frac{r_1 r_2}{|c|r_1 + r_2} \sqrt{1 + c^2}$ neighborhood of the origin. Let

$$a_{n,k}(c) = \sum_{j=1}^{k-1} \frac{c^j}{j! (k-j)!} \operatorname{Cov}(X_n^j, Y_n^{k-j})$$

and suppose further that for some positive number $\epsilon > \frac{r_1 r_2 \sqrt{1+c^2}}{|c|r_1+r_2|}$,

$$\lim_{n\to\infty}\sum_{1}^{\infty}|a_{nk}(c)|\epsilon^{k}=0.$$

Then (2) holds.

PROOF. From [2, p. 211], it suffices to prove that (2) holds in a neighborhood of zero. Then, according to (1), it suffices to demonstrate that

$$\lim_{n\to\infty} [h_n(t) - f_n(ct) g_n(t)] = 0$$

holds in a neighborhood of the origin. However, from the corollary to Theorem 2 $h_n(t)$ is analytic (Take $(1-\theta)r_2=|c|\theta r_1$) for $|t|<\frac{r_1r_2}{|c|r_1+r_2}\sqrt{1+c^2}=\delta$ (say). From (9), for $|t|<\delta$

(10)
$$h_n(t) - f_n(ct) g_n(t) = \sum_{i=1}^{n} a_{nk}(it)^k;$$

hence, the left hand side of (10) tends to zero for $|t| < \delta$.

If, in Theorem 1, we take $X_n=X$, $Y_n=Y$ $(n=1, 2, \cdots)$, we obtain the following:

COROLLARY. If f(t), $g(t) \in I$ and $f(ct)g(t) \in I$, then cX+Y has the characteristic function f(ct)g(t) if

(11)
$$0 = \sum_{j=1}^{r-1} {r \choose j} c^j \operatorname{Cov}(X^j, Y^{r-j}) = P_r(c) \text{ (say)}$$

for all positive integers r and only if (11) holds for all integers $r \ge 2$ (in particular, X and Y are uncorrelated).

Now. (11) will certainly hold if

(12)
$$\operatorname{Cov}(X^{j}, Y^{k}) = 0$$
 for all $j, k = 1, 2, \cdots$.

Suppose this to be the case and in addition that f(t) and g(t) are analytic, say for $|t| < 2r_1$ and $|t| < 2r_2$ respectively. Then (11) is valid for all integers $r \ge 2$ and all real c, whence by the corollary just cited, $\varphi_{cx+r}(t) = \varphi_x(ct) \varphi_r(t)$, for all real c. But then if (θ, t) is the polar coordinate representation of a point (t_1, t_2) of the real plane and $c = \cot \theta$, $\theta \ne 0$,

$$\varphi_{X,Y}(t_1, t_2) = \varphi_{X \cos \theta, Y \sin \theta}(t, t)$$

$$= \varphi_{X \cos \theta + Y \sin \theta}(t) = \varphi_{\sigma X + Y}(t \sin \theta)$$

$$= \varphi_{\sigma X}(t \sin \theta) \varphi_{Y}(t \sin \theta) = \varphi_{X}(t_1) \varphi_{Y}(t_2) .$$

Consequently, X and Y are independent in this case. An alternative argument, due to J. H. B. Kemperman, consists in noting that by Theorem 2

$$\varphi(t_1, t_2) = \sum_{j,k} E(X^j Y^k) \frac{(it_1)^j (it_2)^k}{j! \, k!}$$

is analytic in a neighborhood of (0,0), that according to (12), $EX^{j}Y^{k} = EX^{j} \cdot EY^{k}$ and hence $\varphi(t_{1}, t_{2}) = f(t_{1})g(t_{2})$, first, in a neighborhood of the origin and then for all real (t_{1}, t_{2}) by analytic continuation.

If (11) obtains and (12) does not, let r be the smallest positive integer with $Cov(X^j, Y^{r-j}) \neq 0$ for some (and therefore at least two such) $j=1, 2, \dots, r-1$. Again, by the corollary, since $P_r(c)$ has constant term zero,

(13)
$$\varphi_{cx+y}(t) = \varphi_x(ct) \cdot \varphi_y(t), \quad \text{all real } t$$

for at most r-2 non-zero values of c. We have thus proved:

THEOREM 4. If X and Y have analytic characteristic functions and $\operatorname{Cov}(X^j, Y^k) = 0$ for all integers $j, k \ge 1$, then X and Y are independent random variables. Conversely, if $r \ge 2$ is the smallest integer with $\operatorname{Cov}(X^j, Y^{r-j}) \ne 0$ for some $j = 1, 2, \dots, r-1$, then (13) obtains for at most r-2 non-zero values of c.

3. Extension and Examples

Under the hypothesis of Theorem 1, we have even $\lim_{n\to\infty} \varphi_{c_n x_n + Y_n}(t) = f(ct)g(t)$ where c_n is a sequence of real constants approaching c.

If in (6), X_n and Y_n are replaced by $\log X_n$ and $\log Y_n$ (where X_n and Y_n are now presumed to be positive r.v.'s), we obtain a condition for $L(X_n^{e_b} \cdot Y_n^b) \to H$ where $b \neq 0$ is an arbitrary constant and

$$H(z) = \int_{\mathbf{x}^{ob}} \int_{\mathbf{y}^{o} < \mathbf{s}} dF(x) dG(y) , \qquad z > 0$$

$$= 0 , \qquad z \le 0 .$$

Results analogous to those of section 2 may be obtained for the case of a sequence of k dimensional vectors $X_n = (X_{n1}, X_{n2}, \dots, X_{nk})$ where it is known that $L(X_{nj}) \to F_j$, $j=1, 2, \dots, k$ and it is desired that

$$L\left(\sum_{j=1}^k c_j X_{nj}\right) \to F_1\left(\frac{x}{c_1}\right) * F_2\left(\frac{x}{c_2}\right) * \cdots * F_k\left(\frac{x}{c_k}\right).$$

In the following example of Cramér $(\theta=1)$ already alluded to, r=4 while X+Y and -X+Y are precisely the two linear combinations with the property (13):

$$f_{ heta}(x,y)\!=\!rac{1}{4 heta^2}[1\!+\!xy(x^2\!-\!y^2)]$$
 , if $|x|\!\leq\! heta$, $|y|\!\leq\! heta$ = 0 . otherwise.

Here, both X and Y are uniformly distributed in $[-\theta, \theta]$. Theorem 1 may be trivially exemplified for c=1 or -1 by assigning X_n and Y_n the joint density function $f_{\theta_n}(x, y)$ where $\lim_{n\to\infty} \theta_n = \theta > 0$.

The question naturally poses itself whether for every integer r>2 and arbitrary constants c_1, c_2, \dots, c_s (s=r-2), there exists a joint distribution such that (13) obtains for these and only these values of c (excluding the trivial value zero). The answer is affirmative.

Let
$$q(x) = \sin x$$
, $-\pi \le x \le \pi$

$$0$$
, $|x| > \pi$

Its Fourier transform, say Q(t) is

$$Q(t) = i \left[\frac{\sin \pi (1-t)}{1-t} - \frac{\sin \pi (1+t)}{1+t} \right]$$

an entire function of exponential order 1 with Q(0)=0. Define

$$\Gamma(t_1, t_2) = Q(t_1) Q(t_2) \prod_{i=1}^{s} Q(t_1 - c_i t_2)$$

where c_1, c_2, \dots, c_s are the previously specified constants. Then

$$\Gamma(t, 0) = \Gamma(0, t) = \Gamma(c_i t, t) = 0$$
 for all real $t, i=1, 2, \dots, s$

and since $\Gamma(t_1,t_2)$ is of exponential order, entire, its inverse Fourier transform, say $\gamma(x,y)$ vanishes outside some bounded region A of the x,y plane. [cf. 4, p. 13] Finally, since $\gamma(x,y)$ is the convolution of functions one of which is continuous, it is bounded in A. Thus, if $f_1(x)$, $f_2(x)$ are probability density functions with spectrum $(-\infty,\infty)$ e.g., $f_1(x)=f_2(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$, then for sufficiently small ε ,

$$f(x, y) = f_1(x) f_2(y) + \varepsilon \gamma(x, y)$$

is a probability density function whose c.f.

$$\varphi(t_1, t_2) = \varphi_1(t_1) \varphi_2(t_2) + \varepsilon \Gamma(t_1, t_2)$$

where
$$\varphi_{j}(t) = \int_{-\infty}^{\infty} e^{itx} f_{j}(x) dx$$
, Clearly,

86

$$\varphi(c,t,t) = \varphi_1(c,t) \varphi_2(t)$$
 for all real t

and $j=1, 2, \dots, s$, and no other non-zero values of c.

STATISTICAL LABORATORY, PERDUE UNIVERSITY AND L'INSTITUT HENRI POINCARÉ

REFERENCES

- [1] Cramér, H.: Mathematical Methods of Statistics, Princeton University Press (1946).
- [2] Loève, M.: Probability Theory, D. Van Nostrand Company, Inc., New York (1955).
- [3] Wintner, A.: Asymptotic Distributions and Infinite Convolutions, Planographed by Edwards Brothers, Inc., Ann Arbor, Michigan.
- [4] Paley and Wiener: Fourier Transforms in the Complex Domain, American Mathematical Society Colloquium Publication, Volume 19.