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1. Introduction

Let X,, Y, (n=1,2, ---) be real random variables with “laws” or
cumulative distribution functions (c.d.f.’s) I(X,), L(Y,) and character-
istic functions (c.f.’s) ¢r (¢), ¢r,(t) respectively. Suppose, as we shall
throughout, that there are c.d.f.’s F(z), G(z) with corresponding c.f.’s
f(t), g(t) such that

(1) I(X,)—F, Ly, -G,
i.e., X, and Y, converge in law or distribution. If * denotes convolution,

we seek conditions under which I(cX,+7Y,)— F(-‘j-)* G(x), for some fixed
positive ¢ (mutatis mutandis for ¢<0) or equivalently for any fixed c+0,
(2) }‘ip_g Poxpsr,(E)=S(ct) 9(t)

for all real £. It is well known that the independence of X, and Y,
for all n or the degeneracy” of F or G is ample to guarantee this for
all real ¢. In fact, if X, and Y, are merely asymptotically independent,
that is

lim E ¢ta5a+¥a! = f(t,) g(t,)

then (2) is the immediate consequence of the substitution #,=ct, t,=t¢.
As customary, E is the expected value operator. _

Note that the distribution of ¢X,+Y, arises from the projection of
the 2-dimensional mass distribution of X,, Y, on the ray through the
origin with slope 1/c.

REMARK. Clearly, (2) holds when ¢.x, .r,(£)=¢z,(ct)¢r,(t), hence
when X, and Y, are independent (n=1,2, --.). On the other hand, if
* Research under Contract with Office of Naval Research.

1) A c.d.f. F(z) is called degenerate if it has only one point of increase (with unit
saltus).
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c=1, Y,=X, then (2) holds if and only if f(2t)=r*t), a severe limi-
tation. If, further, r x*dF(x)< «, then F'is degenerate.

For if X and Y are independent random variables, each having
c.f. f(¢), the prior functional equation asserts that 2X and X+Y are
equidistributed ; hence, from a result of Linnik (Dokl. Akad. Nauk SSSR
89 (1958) pp. 9-11), X is normally distributed, but then the functional
equation coerces f(¢) to equal ¢ for some real a.

2. Convergence?

As the point of departure, we recall the unusual definition of the
independence of two random variables proffered by Wintner. In [3, p.
5], X and Y are defined to be statistically independent if

(3) L(X+Y)=L(X)* L(Y)

That this is not equivalent to the standard definition (in terms of product

measure) is shown by an example of Cramér [see section 3]. Note,

however, that if EX*<o, EY*< o for some integer k>1, (3) implies
k

py (’t) EX+YY + o(t*)= [ (‘t) EX’—i—o(t"):ﬂ: (j_?JEY’—I—o(t"):l

which in turn requires that

b (’;’) Cov (X!, Y™)=0, r=2,8,---k

J=1

where Cov(X, Y)=E[X—EX]J[Y—EY]. In particular (£=2), if it is
meaningful to speak of the existence or lack of correlation between X
and Y, i.e., E[X—EXTJ and E[Y—EYYJ are non-zero finite quantities,
(3) implies that X and Y are uncorrelated.

Let I be the class of all infinitely differentiable c.f.’s; let I, be the
subclass such that ¢el, ¢, e I,, D[¢(t)];me=¢®(0)=¢,®0) (k=1,2, --+)

imply ¢(t)=¢.(t). For instance, ¢el, if ¢el and ,i le®P(0)|-Y* = oo
=0
(Carleman). This is true in turn when ¢(¢) is analytic at t=0, e.g.,

when the corresponding random variable has a finite range.

LEMMA 1. Let ¢()e L, ¢,t)el (n=1,2, ---). In order that

'2) The writer cordially thanks his colleagues Dr. J. H. B. Kemperman and Dr. J. L.
Rosenblatt for helpful suggestions.
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(4) ' lim¢,()=¢@), —oo<t<e
it is sufficient that
(5) lim ¢(0)=¢(0)
for all positive integers k. If, for infinitely many even k, the sequence

{¢¥(0)} is bounded, then a necessary condition for (4) is that (5) holds
Sfor all k=1,2, ... .

PrROOF. cf. [2, p. 184-185].
When it is unnecessary or inconvenient to emphasize the random

variable in question, we shall denote ¢ (f), ¢r,(t), @cx,+r,(!) DY [fult),
ga(t) and A,(t) respectively.

THEOREM 1. Suppose that for each n=1,2, .-+, fu(t)el, g.(t)€l,
f(ct)g(t)e I,. Moreover, suppose that for each k=1,2, --- the sequences
{F®0)} and {g®(0)} are bounded. Then, in order that (2) holds, it is
sufficient that

(6) hmE( )c’Cov(X,’.,Y"’) 0

00 j=1
for all positive integers r. Conversely, (2) implies that (6) holds for every
integer r=2.
Proor. For each k, {D[f.(ct)-9.(6)];-} is a bounded sequence.
Further, from (1), lim f,.(ct)g.(t)=f(ct) 9(2).
Hence, from lemma 1, for each k&

(7) }H& D, [fu(ct) 9u(@)]eme=DiL £ (ct) 9(t)]c 0 -

Also, the sequence {A{(0)} = {i*E(cX,+Y,)} is easily seen to be bounded
(k=1,2, --.). Again, using lemma 1, it follows that (2) holds if

(8) lim A2(0)=D,L (et 9(¢)]i-o -

for all positive k& and only if (8) holds for all .. The assertion of the
theorem now follows from (7), (8) and ’

(9) MO Dfe) o= 5 (1§ )o’ Cov (s, ¥I)
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THEOREM 2. Let X, Y be real random variables with joint cf.
o(z, 2,). Suppose that ¢(z)=¢(z,0) and ¢,(2)=¢(0, 2) are analytic for
[2|< 7y, |2|<7,, respectively. Then ¢(z,2,) is analytic for |¥(z)|<1/2r,,
[8(2,)| <1/27,.

ProOF. Since 5_‘, [¢$°(0)|r%/k! is convergent, we have |¢9(0)| < C k! r;*
for j=1, 2 where C,, C, are absolute constants. Further,
lg®™(0, 0)|<E|X*|Y "<V EIX*E[Y["
S CGritrs™V/ (2k)! (2m)!
<C@A/27)* (1/27,)™ k! m!

since lim ——_ (2n)! =0. The assertion now follows from a straight-forward

w= (20l
generalization of a standard procedure (cf. [1, p. 177], [2, p. 212]).

REMARK. Taking X=Y, we have ¢(t,, t,)=¢(t,+¢t,) showing the
stated region of analyticity cannot be improved very much.

COROLLARY. Under the hypothesis of Theorem 2, ¢(z, z,) defines an
analytic function for |9(z)|<0r, |3(z)|<@—0)r, for any 6 in (0, 1).

PrOOF. Now Ee¢1¥'<ow, Een'¥'<ow (cf. [2, p. 212]). Hence, by
Holder’s inequality, Ee’n\X!*0-0nl¥l< o, Thus, the integral

Elexp {iz,X+1i2,Y }1=¢(2, 2,)

converges and defines an analytic function in |3(z,)| <8, |9(2)| < (1—6) 7.
LY

'rl+'ra.

We are now in a position to prove:

The optimum choice seems 6=

THEOREM 3. Suppose that f,(2), 9.(2) are analytic in |z|<r, |2|<T,
respectively and that f(ct) g9(t) has a wunique extension from an

LU —12_/T+¢ mneighborhood of the origin. Let
lelr,+ 7

c £
Gn@)= 5 2 Cov (X4, Y2

and suppose further that for some positive number ¢> "7V 1+¢

lelr,+7, ’
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lim 51'}, @ (€)lt =0 .
Then (2) holds.

ProoF. From [2, p. 211], it suffices to prove that (2) holds in a
neighborhood of zero. Then, according to (1), it suffices to demonstrate
that

}‘i_’le [hn(t) '—f ,,(Ot) gn(t)] =0

holds in a neighborhood of the origin. However, from the corollary to

Theorem 2 h,(t) is analytic (Take (1—0)r,=le|fr,) for lt|< — T2 _/TFo=6
lelry+ 7,

(say). From (9), for |t|<d
(10) 7t = Folet) 9a(t)= 3 auit)* ;

hence, the left hand side of (10) tends to zero for [£[<d.
If, in Theorem 1, we take X,=X, Y,=Y (n=1,2, .-+), we obtain
the following :

COROLLARY. If f(t),9(t)eI and f(ct)g(t)e I, then cX+Y has the
characteristic function f(ct)g(t) if
a1 0="5(")e Cov (X?, ¥7-)=P.(c) (say)

=1\j

for all positive integers r and only if (11) holds for all integers r=2 (in
particular, X and Y are uncorrelated).
Now, (11) will certainly hold if

12) Cov (X’, Y¥)=0 for all 7, k=1,2, «--

Suppose this to be the case and in addition that f(f) and g(f) are
analytic, say for [t{<2r, and [|t{<2r, respectively. Then (11) is valid for
all integers =2 and all real ¢, whence by the corollary just cited,
@ox+r(t)=¢x(ct) ¢z(¢), for all real ¢. But then if (6, t) is the polar coordi-
nate representation of a point (¢, %) of the real plane and c=cot?,
0+0,

¢xr(ty, t) =@ x coso, rainalls t)
=@ coso+remnelt) =@ex+r(t sin 6)
=@, (¢ 8in 0) ¢y (t 8in 0) =@ £(t,) Pr(ts) -



84 ' H. TEICHER

Consequently, X and Y are independent in this case. An alternative
argument, due to J. H. B. Kemperman, consists in noting that by
Theorem 2

(0, 6= By G )
is analytic in a neighborhood of (0, 0), that according to (12), EX’Y*=
EX’.-EY* and hence ¢(t, t,)=f(t;)9(t,), first, in a neighborhood of the
origin and then for all real (¢, ¢,) by analytic continuation.

_If (11) obtains and (12) does not, let » be the smallest positive
1nteger with Cov (X?, Y"-/)#0 for some (and therefore at least two such)

j=1,2,..-,r—1. Again, by the corollary, since P,(c) has constant term
Zero,
(13) Cex+r(t)=¢x(ct)-¢y(t),  all real ¢

for at most r—2 non-zero values of ¢. We have thus proved:

THEOREM 4. If X and Y have analytic characteristic functions and
Cov (X/, Y*)=0 for all integers j, k=1, then X and Y are independent
random variables. Conversely, if r=2 18 the smallest integer with
Cov (X, Y~))#0 for some j=1,2, ---,r—1, then (13) obtains for at most
r—2 mon-zero values of c. ‘

3. Extension and Examples
Under the hypothesis of Theorem 1, we. have even lim Popxprr, )=

Sf(ct)g(t) where c, is a sequence of real constants approaching c.

If in (6), X, and Y, are replaced by log X, and log Y, (where X,
and Y, are now presumed to be positive r.v.’s), we obtain a condition
for L(X?-Y}) — H where b#0 is an arbitrary constant and

Ho=| | aF@a6e), 2>0

b'b<.
=0, 2=0.
Results analogous to those of section 2 may be obtained for the

case of a sequence of & dimensional vectors X,=(X,;, X,., -+, X.:) Where
it is known that IL(X,)—F,, i=1,2,---,k and it is desired that
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E(geXn) = B(5)«R(%) <+ B(Z).

In the following example of Cramér (=1) already alluded to, r=4
while X+Y and —X+Y are precisely the two linear combinations with
the property (13):

1

Sz, y)= 7

M+ay@—y)], if |2<0, <0

=0, otherwise.

Here, both X and Y are uniformly distributed in [—8, §]. Theorem 1
may be trivially exemplified for ¢=1 or —1 by assigning X, and Y, the
joint density function f, (x, y) where lim 6,=6>0.

The question naturally poses itself whether for every integer r>2
and arbitrary constants ¢, ¢,, ---, ¢, (s=r—2), there exists a joint distri-
bution such that (13) obtains for these and only these values of ¢ (ex-
cluding the trivial value zero). The answer is affirmative.

Let ¢(x)=sinx, —n<x<n

0, x| >n

Its Fourier transform, say Q(t) is

_sinz(1—¢) sina(14¢)
Q(t)—"[ 1—t 1+¢ ]

an entire function of exponential order 1 with Q(0)=0. Define

I'(, t.)=Q(t) Q) ilill Q. —cits)

where ¢, ¢, --+, ¢, are the previously specified constants. Then
', 0=r,t)=r(ct,t)=0 for all real ¢, ¢=1,2,.--,s

and since I'(t,t,) is of exponential order, entire, its inverse Fourier
transform, say y(z, y) vanishes outside some bounded region A of the
z,y plane. [cf. 4, p. 13] Finally, since y(x,y) is the convolution of
functions one of which is continuous, it is bounded in A. Thus, if
fi(x), fi(x) are probability density functions with spectrum (— o, =)

e.g., fi(x) =f;(a:)=—1/L2_ne‘”2”, then for sufficiently small e,

S(@, v)=fi(x) f,(y) +er(x, v)
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is a probability density function whose c.f.

@ty £)=¢i(t) @u(ts) +el (¢, £2)
Where go,(t)=r o= (z) dz, Clearly,

(e, t)y=¢i(c,t) eu(t) for all real ¢
and j=1,2, .-+, s, and no other non-zero values of c.

STATISTICAL LABORATORY, PERDUE UNIVERSITY AND
L’INSTITUT HENRI POINCARE
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