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1. Introduction

When selecting a leader in a small group, for example, a leader
for the athletic games in a small group of pupils, we often need to
decide which factor is effective for it. Some pupils select the leader
from the standpoint of athletic ability and others from that of popularity
in their class room. Here, we are interested in deciding which of these
factors is effective for the selection. In this paper we shall show the
distribution of a certain statistic for the decision when the group is
divided into three sub-groups, that is, upper, middle and lower groups
with regard to a certain characteristic.

2. Statistic # of the number of selections from the upper group.

Suppose the pupils select d members in their group in order to
decide the leader(s) for an athletic game. We divide the group into
three subgroups—upper, middle and lower subgroups—which consist of
N,, N, and N, pupils, respectively. If we denote by f(N,—1, N,, N;; d) the
number of possible selections for by any pupil in the upper subgroup,
we have obviously
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where N=N,+N,+N,. In this last expression the first term equals to
the number of cases in which d persons are all selected from the upper
subgroup, the second term equals to the number of cases in which d—1
persons are selected from the upper subgroup and one person from the
other subgroups, and so on.

Similarly we denote by f(N,, N,—1, N;; d) and f(N,, N,, N;—1; d)
the numbers of possible selections by two pupils each from the middle
and lower subgroups, respectively. Then we have
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Assume the selection of members occurs independently. Then the
probabilities, that a pupil in the upper subgroup select d, d—1, d—2,

-++, 0 members from his group, are (NI('; 1) / (Nd_ 1)' (l:szll)(Nz-{Ns)

/(Nd_l), -++, and (Nz-gN?,)/(Ng 1) which we denote by p,, Pa-1y =+,

», and p, respectively. Similarly we denote those probabilities with
regard to the middle and lower subgroups q., ¢u—y, *++, @i, @ and 7,
Pa-1y ***, Ty, To, respectively. For example, ¢, is the probability that a
pupil in the middle subgroup select ¢ members from the upper sub-
group and d—7 members from the other subgroups.

As we assume the selections of pupils occur independently, we
may think the probability P(x, z,, +--, ., %) that 2, pupils in the up-
per subgroup select ¢ members from the same group and d—i members
from the other groups is defined by the multinomial probability, that is,

N, ! 4
(4) P(xlv Tay ***y Lay 270)= 1 ! prt
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where Ni=z,+2,+ o+, +2,

In this case the total number of persons selected from the upper
subgroup is z=ux,+2x,+3x;+ --- +dx,, when we count twice a person
selected two times and so on. Similarly, as to the probabilities P(y,, ¥,,
ceo, Yoo o) and Pz, 2,, + -+, 24, 2,) for other groups we have

N} .
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Yyt Yoi 0 Ya: Yy =0

M=y1+yz+ cee +Yat Y
Y=4:+2y,+ -+ +dy,
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Now we shall consider the distribution of u=x+y+2.* This statistic u
represents the total number of persons selected from the upper subgroup
by all members. Hence the u obtained by an experiment is significant
if it is greater than a certain u, which is calculated by the probability
distribution for a given significance level.

3. E(u) and D(u).

If the selections of all members are assumed to occur independently,
we can derive the expectation E(x) and the variance D*(u) of the statistic
u. From (4), (56) and (6) we have

(7) Bl)= 33 {E () + B@) + E@)}

a d [
=N, 5 (p)+ N, 5 (g0 + N, 3 (i)

On the other hand we can prove easily

SO ()
and

S )
hence we get by some reduction from (7), (8) and (9)
(10) E@w)=Nd

As for the variance of u it follows from the independence among
x, ¥y and z that

(11) D¥(u)=D(x)+ D(y) + D*(2)

Here we get
(12) D)= iizD"(xi) +2 550 cov (&, )
d
=N{S i -p)-2 ST ijpw}
i=1 i<j

x WEsﬁsér;tially we consider only two groups of sizes N1 and Nz+N3.
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{5}
Further we have

a  Se(MTMER @Y s -3 )

=1

For we have

N = DN a+ byre=-T{@+ by}

¥-1 (N,—1)!
= k(k—1) 1 : k=2 N —1-k
=D N1 @

and
N, -1

— N2 0 T : (Nl—l)' k-1pNi-1-k
Ni=D(atbyi=—" {@+om}= sk M1 &

and by adding these two equations
a(N;—1)(N,—2)(a+b)"17*+ (N, —1)(a+ b)"1*
— ikZ(le_ l)ak—lblvl—l—k .

k=1

Multiply this equation by (a+b)**"s and compare the coefficient of
a®~'b"'-* of two sides, and then we have (13).
Hence we have from (12) and (13)

vt 000) oy
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(14) D’(x)=N1[

Similarly we get

N=-3\, n(N—2
w5  Dw-n] N‘(N‘_l)(d;,_z_z i) -(323) ]
| (*a")

and

(16) D'(e)=N{ -~

7"

NN=-)(N 3+ N, sz .
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therefore, we have

an D*(u)=Nld(1— Ng;ﬂl,l—,,,l,,,+ ((lzfv -_-i;d )

4. The limiting distribution and the practically approximated distribu-
tion of u.

From the equation (17) we have for large N
(18) DX (u)~N,d
hence keeping in mind the equation (10), we have as the limiting distri-

bution the Poisson distribution with the mean N,d, that is

(19) Py e

But this approximation is not adequate for small N, because the variance
D¥u) is smaller than E(u), as is seen from

N—1 _N-N
Dw)=Nd(1— N=1 _ N-N 4
@) ( N—1  (N—1y )

Now let us calculate the factorial moments a,=FEuu—1)---(u—k+1)).
If these moments satisfy the equation

(20) D = %e _p 0 4 (p_1)a,=0,
10) (2768}

we can use the binomial approximation b(u; n, p) by Katz’ criteria [1].

Then we have

(21) ag,=FEu)=Nd .
As for a,, we have
(22) uu—1)=@+y+2)(x+y+z—1)
=z(x—1)+yly—1)+2(z— 1)+ 2xy + 22z + 2yz
and
a

(23) w(z—1)= 3,2 +2 S S ijwa,— S,

{=1 1<j 1

d a
— S+ Si(i— Do+ 23 Sijes,
{m1 =1 i<j

where P=w(x;—1)
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Therefore we have
@) Ee@—1)=N?5ep+N,Sip+ 2NN~ 1) S ijpo,
d .
=N§”<Z m) +NIZ 1®p,
i=1

d(ﬁ)

R CED

by the above mentioned formula :

(N, —1)(N; — 2)d(d—1)

2P T N D(N—g)

where N»=N(N,—1), NP=N,(N,—1)(N;,—2) and i®=4(¢—1). Similarly
we can derive the analogous equation for E{y(y—1)} and E{z(z—1)},
so that

@5)  E(u(u—1))— Nm( Ni=1 d)2+N§”<——N1-— d)Z+N§”<L d)z

N-1 N—1 N—1
+2N1N2( %1_ d)( NMl d)+2N1N3( %_‘11 d)( Nl\fl d)
+2NAN( 7ty d) R =N (M AT Ja- B0 ]

We can also rewrite (25) as follows :

(26)  E(u(u—1))=Nipl+ Ni[g1]+ Ni[r1]+2N,N,[pl]l¢l]
+2N\Ny[p1][r1]+2N,Ny[q1][r1]
+ N {[p(2)] - [p1T} + N {[0(2)] - [q1T} + Ns {[7(2)] - [»1F}

where [p1]= Zzpi N, — 1 —d,
N—
_ a o _ (Nl_l)(z)d(Z)
[p(2)]= %%ps TN—1®

and so on.
Thus we have

@7) E(u(u—1))=(N:d)' + N, {[p(2)] - [p1T' + N, {[¢(2)] - [¢1]’}
+ N {[r(2)] - [r17} = (N:d)* + O(1/N)

Similarly we have
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(28) E(u(u—1)(u—2))=(N.d)’ + 3N{pl|{[n(2)] - [P1T}
+3Nq1]{[¢(2)]—[¢1T} + 3N3[r{[»(2)] - [r1]%}
+ 3N, N, {[p1]([¢(2)] —[q1]) + [q11([n(2)] - [P1]")}
+ 3NN, {[g11([r(2)] - [r11) + [r1)([e(@)] - [g1])}
+3N,N, {[r1]([(2)] - [p1P) + [P1[r(2)] - ["1])}
+N:{[p(3)1—-3[p(2)1[p1]+ 2[p1T}

+ N, {[a(3)]—3[e(2)][g1] + 2[¢1T}

+ N, {[r(3)] —3[()][r1] +2[r1T}

< (N,dy'+3N* max ([p1]{[2p)]-[p1)},
[(1{le@)]—-[e1F} -
[p1]([r(2)]—[r1]})) + 3N max ([p(3)] —3[n(2)][r1]
+2[plF, --+)

=(Nd)’*+O01/N)+O(1/N?

where evidently [p(k)], [¢(k)] and [r(k)] exist only for d =K.
Therefore we may think that we have generally
(29) E@u—1) -+ (@—k+1)~(Nd)*

although the author can not have a general expression of ay,. Thus
the criterion D, of Katz is approximately zero for large N. Accordingly
we may use the approximated binomial distribution, and we have from
(10) and (17)

N-1 (N—=1)
(31) n=Nd/p

We shall here present an example for d=1, N;=N,=4, N,=12 in
the following table. In this case it holds »=0.20, n=20 for the bino-

Exact value ‘ Binomial approximation Poisson approximation
0 .0115 L0115 ; .0183
1 .0575 .0576 .0733
2 .1368 .1369 .1465
3 .2056 .2054 ' .1954
4 .2186 ' .2182 .1954
5 | .1748 .1746 i .1563
6 .1092 i .1091 .1042
7 .0545 .0545 .0595
8 .0223 ‘ .0222 .0298
9 .0073 .0074 .0132
10| .0020 .0020 .0053
1 .0004 : .0005 .0019
12
I}

.0001 ‘ .0001 : .0006
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mial approximation and the result is better than that for the Poisson
approximation.

For d=3 we have also the following table. In this case we get
1=0.292683 and n=41 but the binomial approximation for p=0.8, n=40

is better, that is, p= N};'_di"l - (2](\711\7_—11); is better than equation

(30).
Exact value ! b (u; 41, 0.292683) b (u; 40, 0.3)
0 .0000 006 | .0000 007 .0000 006
1 10000 108 | 10000 116 10000 110
2 10000 911 ’ 0000 958 10000 912
3 10004 978 10005 155 0004 951
4 ‘0019 073 10020 263 10019 630
5 10061 354 0062 048 0060 572
6 0152 84 0154 049 0151 428
7 ‘0314 08 f 0318 722 0315 220
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