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1. Introduction

Let (X, X,, --+, X,) be a permutation random variable of (1, 2, ---,
N), each of which has probability 1/N!, and {¢f; 1 <i< N, 1<j< N)}
a set of »®real numbers. Then we shall consider the limit distribution of

(1) Sy=3 ek, -

Many authors have studied this problem (see Wald-Wolfowitz [6], Noc-
ther [5], Madow [4], Hoeffding [2], Dwass [1])®. Among them, Hoeffding
established this form and proved that under the condition

S
(5) lim— =0 r=34,--.
N—oo (—lzd?f) 12
N

the distribution of Sy tends to the normal distribution in law, where
(3) dy=cl— = Sl — = S+ o Sl
NS NTY TN

In this paper we shall prove the following.
THEOREM 1. Under a Lindeberg tyve condition

(4) lim S (‘ftvf)z=0

N
Nooo ldg/d”l>e d

the distribution of Sy tends to the normal distribution in law, where

d”2=—1%7- >y

2. Preliminaries

For simplicity we shall drop the index N for all coefficients,

1 Recently, Dwass has proved in his interesting paper the same result under the
non-overlapping condition with that of Hoeffding’s. But his condition is of different type
from ours,
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i.e., we put ¢fi=c,;, Sy=S, ete.
Moreover, we can assume that
i) by adding a suitable constant to S

7 7
il) by multiplying a suitable constant

1 2
(6) NZCU=1;

iii) by reordering ¢
(7) A== 204y

where
1
AN T
Then the following lemma is evident.

LEMMA 1. We have
(8) > q=1

and

sa<N=n,
i>n

Let -{y.,}, {Y;} be a set of random variables (1 <4, j < N) such that
(9) Yis=1 if X,=j,
and

Yi;=0 if X,5%j,

(10) Yo, =S -
Then we have
11 S=>¢, Y -
and

LEMMA 2.
(12) Yy=0 or 1

554 Yuy=1, 2}: Yy=1



ON THE HOEFFDING'S COMBINATIALR CENTRAL LIMIT THEOREM 147

(13) p,.{yk,—l}-l y;b for k>n

pn{ylcj:l, ykj’=1}=0 Sor k>'n, eV

- 1= 1=Ya)1=Y,,) ' Ty
Pa{¥es=1, Ypry=1}= (N-—-n)j(N—n ’1) Jor kb, k' >n, kF k', j 7]

ete.
where p,{-} means the conditional probability

O} =0{ ¥y, 1< m, j=1, 2, ---, N}.

3. Proof of theorem 1
According to the above convention, Theorém 1 is stated as follows.

THEOREM 1’. If

(14) N, B0 Vo),

the distribution of S=3¢,y,, tends to the normal distribution with 0
mean and unit variance.

Let
(15) Cuy= Zc,,
Y
(16) T=3(S e+ ) n<N,

and for an arbitrarily small » with 0 <7 <1, take N, such that
(17) <H Mo,

Our proof of the theorem is carried out in the three steps, which
consist of the proofs of the following three propositions.
PROPOSITION 1.

(18) E(S—-Ty)y <2y.
PROPOSITION 2.
(19) 1—a%,1<2p
. 1 X
(20) lim E%r.,—]v P 03. =0 for fized 7,

2 This is possible for sufficiently large N.
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where

L 1 C?
(21) (,;0=N.;( ) ety + ol )

ISN — N,

2 __ CnJA)Z
ol ;(C"J-*-N—n .

PROPOSITION 3. In fixed 7 we have
" N
22) |E(e" w5 2, >0 (N — o)

where u 18 any (fixed) real number and *=—1.
When these propositions are proved, it becomes clear that Theorem
1’ holds, for » can be chosen arbitrarily small.

PROOF oF PROPOSITION 1.

S—T,— g.( S ey —C”‘”Y”"’)

SN N—N,
Let
= _ e
CJ l>§1‘:r'0 N_ Ng ’
then
= C
Cy+ M _=0,
" N=N,
YNOJ +1>ZN y“= 1 .
0
Therefore
S—Ty=23. 3. (c;— C)is »
R
and

1 — 1
BS-Tof =g 15 & - Orsy 33 5%
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_N ;»E., (c;;—C)* .

Then

=l2quN;,N°g27-

1
0<1—0} <o 2
= oNy gN ¢§1‘voc“ Nt>N0

Thus (19) is proved.
Before proving (20), we shall state the following remark.
Let ¢ be any positive number, and

(23) E”=CU When IC“|> €
EU=0 When Iculg €
(24) Ci=Cyy—Cy .

We can assume by (14)

(25) t‘JV_‘NHEf, < &  for sufficiently large N.
Then we get:
LEMMA 3.
(26) l%;, <2
n=1, 2, , N
N CE’L
(27) s S <.
Proor
C, 1 & 1.,
J'NJJ =% g‘{lc“]+ Z Ic“|< z‘,e ,/%‘_z1 8, < 2

A FRADERS LS 3

Now we can prove (20) in Proposition 2.

Oy === Z(iz,o ¢+ NEV"XTO)

15 x ci _ Ci,
—Iv'tz-u%(c“-l-N—n N—n-l-l)
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10z C, b [ ¢ 2¢,,C.
= C —_— nJ + iy~ny
Nn-ljz-:x{( “ N-—n) (N—n (N—n)(N=n+1)

T N=n )2(1(7 n+1)>}

Then, since N—wn_> N— N, > Ny, we have

63’0 Z %
ﬂ-l

Gy (1+c2)|C,l H
gnz-lfg(N——jn (N——n)(]\lf—nj—}—l) (N—n)Z(Nj——n+1))

1 1( 1) 1
<1104 e 1,
=Ny AV NS Ny

This proves (20) for N may be arbitrarily large and e arbitrarily small.
PROOF OF PROPOSITION 3. Assuming (25), and therefore Lemma 3,
we divide the proof in four parts.

(1) %ré‘,la?. is bounded.
This is easily seen by Proposion 2.
No_l
an $ (L UTydp—0 (V=) for any 33>0.
n=0 JIAT |>38
where
ATn=Tn+1"'Tn
PRoOOF.
1 Ch;
AT n+ nﬂ 1 n+1, n,
Z(C W Nl 1>y T N—n— 1( N—n )Y
=utv+w. )
where
=§‘4 En-l-l,]yn-i-l,j
. / Cn-l-l,]
(28) v ;(Cmu + m)@lmu
=—1_ an v
w N_n_lg(c . N_n)Y,.,.

Then we have

@) | Ty
(AT”l>36
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<3 (Su’dp + Sw’dp+ S v’dp + van>a v’dp + Swmv"dp )

1%1>8

- N
(30 [war=B(S n o, V= - S

R S b G

1 nN-n) Cn,
(31) T (N—n—1P NN - Z<0M11+N-—n>

S s (et )

< -2 @+ 1 (by Lemma 3)
7

For

< SUD | €y +

ST

<e+ 2e_ e(1+ %) (by Lemma 3)

7

C'n+1 Mn+l,
N—n

and

Prob. (|u|>6)<——N; 1, g

2 (G 1
Prob. (|w|>3)_<_§2~x]( +774N)

(by (30), (31) and Chebyshev’s inequality),

1 2 ( w2 2qu+1 1 )
2 2 < o+ & B
2 [ oan+] wan=< L oe(1+ v) S 8, + 2y L

Finally, we have

Chs1.g

3
N— n— 1 yn+1,j}

S vdp < - Slvlsdp< L E{Z Cnsr +
iv1>8

1
" 6N ;
1

—— Su
oN 5P

Cn-l-l..l

.cl +
n+1 N—-—n—]_

(33)

n+1 J

2
= L
N—n— 1Z mr

N—n-1

IA

Crs1, 3 T

< %E (1 + %)(Qﬁu + le—) (Lemma 3)
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By (29), (30), (31), (32) and (33) we obtain

N -
01
Wl

=0 S\ATnl>38

AT dp < 3{5 + 1577 + 1\;;; (1+;)

-@+£%+;J %O+2XM~J}
which proves (II).
(11I) E(4T.)=0,

where

En(")=E("lyiJ! j=1v 2, cc ey Ny ’ién)
PRrOOF.

En(ATn)=E'n‘1 (Cn+ 5 +N:;: ! 1)?/n+1. J}

e LA

N —1 n

_ Carsy =Yy, 1 (c
Mems N2 N Y N e 1A

nj —
+ ¢ )Y,,,_o .
N(!

(IV) E E En(ATn) _'_“71”1

n=0

-0 (N-—»oo)

Proor. By using the inequality

(34) l(@+by'—a?| < pai+ (1 + 21)>b where p> 0,

we get for p=1711»;v—

{ }

E.(4T2)— E,,{;(cm,_J i nl ¥ l)ym ,}

(35) +(N31n4§71_)2 E{;( | ;',,, )Y,,,}z
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2
1 One1+ — 4 Z{n+11+ }

- 1/N3 V Ny (N— n)l
1 ., 4 (., 1
é "/N3 On41 + _‘/N-vz \Qn+1+ sz )

and

}

68 BY| B3 enns + gty ) o} = Fyobe

O b e i

{5 (e o) e+ 52

S o5 (Bt )
2 G )

But, for 7, with |c,.,, /> ¢ and

ICn+1 1| < <2lcn+1 jl 2|5n+1.j|
N—n—1" 7 7

we have

.,14 P Cn+1_1
(37) Nwwﬂzwm(cn+l,j+N_n <)= <N L1+ )c,,m

On the other hand,

n_ 4 Cn+11 )2
j:lC,ﬂ%ﬂSs(N Ynj)(cn“’j-FN—n 1 “

VEL, 2, (et 2oy ¥

1
Ny

él\} ]/Z(Cnﬂ s+ C"”vl )47{(ng)_
1

(38) ,A}va {

N—n—1/ N(N-1) ‘_
< L suple,,,+ Crns Cnm ’
< (1 Do ¥
<% 1+7 onar < (1+ )(1+o ).

From (385), (36), (837) and (38) it follows that
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Z Ei ) — ""n+1 }
<l Bt gl D a2
+277 (1 + ;2])(1 + ]%7 +i°2:;a:+l)

which proves IV.

Noting that T, is {y;;, ¢ < n, j=1, 2, -+, N} measurable, (I), (II),
(III) and (IV) altogether show that the condition of Loéve’s theorem is
satisfled for Ty=d4Ty+ 4T +--- +AT1.,0_1 (Theorem C: page 337 in [3]),
and Proposition 3 is proved.

4. Relation with Hoeffding’s conditian

- Z lds|”
THEOREM 2. If -~ -0 (N> o) forr>2,

me)”

then the condition of Theorem 1 is satisfied.
Proor. Normalizing ¢;;, it is sufficient to prove that, if

jl\?ZICi,]T»O, then 2-1\} >, ¢, —0.

This is easily seen from the fact:

1

1
2 < = 5 r .
N m,zm v lew|
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