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1. Introduction

In taste-testing, we frequently meet with the necessity of testing
the homogeneity of % mutually independent frequencies of occurrences
of a certain event and also testing the significance of the largest or
the smallest of a set of the observed frequencies. If the number of
trials is sufficiently large, we can easily carry out the test by using the
normal approximation. But we have frequently experienced the situa-
tion that the number of trials is not so large enough to apply the nor-
mal application, in the routine work, for example, in tasting-wine.

In this paper, we consider the probability distributions of the larg-
est value, the smallest value and the range of k& observations taken
from a discrete type population. An application to the comparison of
k independent observed numbers each of which is subject to the
binomial law will also be given.

2. Distributions of the largest value and the smallest value

Let = be the discrete random variable which may take the values
0,1,2, --- with probabilities »(0), »(1), p(2), --+, respectively, where

p(a)=0 and ﬁ‘,op(a)——:l. When « takes only the finite number of

values, 0,1, 2, ---, M, we interpret that p(M+a)=0 for a=1,2, ---.
Suppose that we make k£ independent observations on & and have the
values, @), T@y, ***) Ty (k=2). Let z, be the largest value among
them, i.e..

(1) z=max{Tu, Tw, ***, Tw} »
and let x, be the smallest
(2) Ty=min{xw), Ty, ** ) T} -

The probability distributions of z; and «, are easily obtained. Putting
95
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S p(@=P(),

we have
(3) p*@)= 3 (¥ ) e} Pz — 1)
(4) = (P@)}*~ {P@—1)}*

where 2,=0,1,2, ... and P(x;—1)=0 when ,=0. If p(a)=1/N for
a=1,2,---, N and p(a)=0 for a=0, N+1, N+2, ---, then we have

(@)= {t—(z,— 1)} N7*,

which is the probability distribution of the largest number in k& drawings
from a bowl containing balls numbered 1 to N when random sampling
with replacement is used (Feller, 1950, pape 176).

For the binomial distribution with parameters p and N,

p(@)=b(a; p, N)=(lx)p"‘(l—p)”'“,

P(e)=B(z:; p, N)=3,b@ p, N)
=1-I,(x,+1, N—=z,),
where I,(a, b) is the incomplete beta function. Therefore, we have
(5:a)  p*@; p, N)={B(=; p, N)}*— {B(z,—1; p, N)}*
r5°b) ={1-I,(x,+1, N—a,)}*— {1-I,(2;,, N—x,+1)}*

where 2,=0, 1, 2, -+, N. The numerical values of p*(x,; p, N) are easi-
ly obtained from (5-a) by using the ‘‘ Tables of the Binomial Probabili-
ty Distribution ” (U.S.D.E. 1950) or from (5-b) by using the ‘‘Tables
of the Incomplete Beta-Function’’ (Pearson, 1948) for fixed values of k&,
p and N.

For the Poisson distribution with parameter 2,

pa)=ple; =" e

P(z))=P(x,; )= ;_1‘6 p(a; 2)
=1-7I(a,+1),

where I,(a) is the incomplete gamma function. Then we have
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(6-a) p¥(@; )= {P(x:; )}F—{Pw,—1; }F,
(6-b) ={1-L(2:+ D} — {1—L(z)} %,
where z,=0, 1, 2, --.. Formula (6-a) is for using the ‘‘ Tables of the
Poisson Distribution ’’ (Kitagawa, 1951) and (6-Db) is for using the ‘‘Tables
of the Incomplete I"-Function’’ (Pearson, 1951).

Similarly we can obtain the distribution of x, as follows:

(7) pa@) =3 (%) b (1 - P}
(8) — (1-P@— D}~ (1-P@)}*

where #,=0,1,2, --- and P(xr,—1)=0 when z,—0. The expressions for
the binomial case and the poisson case are obvious.

3. Joint distribution of x;, and x, and distribution of the range.

In this section, we shall consider the joint probability distribution
of the largest value z, and the smallest value x, and also the distribu-
tion of the range, R=ax,—z,. If we take into consideration, only the
case when z, % z, the required distributions are the conditional ones
under the restriction that ¥ sampled values =z, ), **+, 2u) are not
of the same value. But the unconditional probability distributions are
easily obtained. First we shall derive the joint distribution of z, and

5. .
For the case when z,=uz,,

(9) P,{:c1=m2=a}={p(a)}", a=0,1,2,---,

and for x; > =,,

10  pa, wz)=§'m(,c—’j’-i—_j)—!{p(wz)}'{P(zl—l)—P(z,)}k-*-’{p(xl)}f,

where %’ denotes the summation that ¢ and j run over 1, 2, ---, k—1,
while being subject to the restriction £ >¢+j5. Then,
(11) o, 2,)= {p(@) + (@) — P(e,—1)— P(x,)} *

=5 (B ey 1P —1) - Pla} -+

=5 (¥ )tp@)y (P~ 1) Py
+{P@—)—P@)}*



98 M. SIOTANI
= {P(@,)—P(x,— 1)} *— {P(a)) — P(,)} *
— {P(@—1)—P@,—1)}*+ {P@—1)— P(x,)}",

where x;, >z, and P(x,—1)=0 when z,=0.
The probability distribution of the range

(13) R,=x,—u,
of k observed values, z«, u), ***, Ty is obtained from (9) and (11).
Since R, is zero if and only if all values are same,

(14) P,{R,=0} =3 {(a)}".

The remaining part of the distribution of R, is obtained by trans-
forming the formula (11) into the expression of R, and x, and summing
up the resultant with respect to z,, that is,

(15) p(@, R)={PR;+a,)— Plw,—1)}*— {P(R, +x,) - P(2,)} *
— {P(Bc+a,—1)— P,— D} + {P(B, +2,— 1) — P(@,)}*

where B, >>1. If the original random variable = can take only the
finite number of values, 0, 1, 2, --., M, the summation with respect to
x, is taken over 0, ---, M—R,, and when there is no such a finite value
M, we must sum up over the whole set (0, 1, 2, ---).

4. Mean and variance of x;, x, and R,
First we consider the case when there is a finite number M which
is the largest value x takes.

Since P(M)=1,
E(@)= 3, 50" (@) =3 L P@) — (P~ 1))
—M- 3 (P}

Hence we have

(16) B(z)= 3, [1— (P@)}]
For the variance of x,, we have
E@)= 3, dip* (@)= 3 el (P~ D}~ (P2~ 1}]

M — :2:,:(2:1:1 +1) {P(2)}*



ORDER STATISTICS FOR DISCRETE CASE 9

_ "2 (2, + 1)[1— {P(x)}*],

=zi'§ @ [1— {P(z)} ]+ E@,) ,

therefore,
an Di(@)=2 §:wl[1 — {P(a)} ]+ E(z,) {1— E(z,)} .
Similarly, we can evaluate the mean and variance of x,, that is,
(18) E(w)=3, (1-P@)}",
(19) Di@)=2 3, 5 {1~ P@)} "+ E@){1- E@)} .

The mean of the range, R,=x,—x,, can easily be obtained from
(16) and (17);
E(Rk) =E(371) "E(wz)
M-1 -1
=3[~ {P@)]- 3 {(1-P@)}*.
This can be rewritten as

(20) ER)= 3, [1- {P@)}*— (1- Pa)} ],

which is the corresponding form to Tippett’s formula for the continuous
case (Tippett, 1925).
To get the formula of the variance of R,, we shall evaluate E(R}).

ER)= 5, 3 =) [ (Pe) P = 1)) - (Plar) ~ ) ]
— 3, 5 = m) P 1) P =D}~ (A=)~ P} ]
=5 S PE) - P11
~3 3 Ce—e)-HI{PE) P} — (P ~1) - Pa) ]

=le_1 (22, — 1)[1 — {P(x,— 1)} *]

3 CM—2)-1} {1-P)*

M z-1

+2 3] Z {P(x,—1)—P(x,)} *

Z1=1 #2=0
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¥ z-1

=23, >, [1—{P(@—-D}*— {1-P@)}*+ {P(x,—1)—P(x,)} "]

=33 [~ (P =1}~ (1-P@—1)}"].

Hence the variance of R, is expressible in the form

M-1 =y

@)  D(R)=2 2, 21— {P@)} = {1 —=P(@)}*+ {Pla) —P(z,)} "]
—E(R,){1+E(R.)} ,

which is the corresponding form to the continuous case (Tippett, 1925).

Now, we consider the case when the original variable z assumes 0
and all positive integral values. Let us consider, for example, the mean
and variance of @, in this case. For any finite M and fixed %, we have

22) S ep*(@)= 5 [{PAD} — (P@))]
and
(23) 3, #ip* (@)= 3, @t DHPQD}— (P@)} ]

Here P(M) is not equal to 1. If the original distribution has finite
mean and variance, then E(x,) and E(a?) exist, for

S atr@= S a(3( ) we) Pe—1y-)
<@-1( S atr@),

< (@ 1)( g @ p(a)) . =1, 2

Consequently, we have, from (22) and (23),

@9 B(@)=lim 3, op* @)=, [1- (P)}"]
and
(25) B(@)= lim 35 aip*(@) =3 (2, + D1 — {P@)}]

- 2115';;0:01[1— {(P(@)}¥]+E(z) .
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The means and variances of x, and R, are also obtained in a similar
way and have the expressions (18), (19), (20) and (21) with the symbol
o replacing M in the upper limits of the summation, provided that x
has the finite mean and variance. Thus, for the range R,, we have

(26) E[R)= X [1—{P(@)}*— {1—P(@)}"]

z1=0

and
@) DE)-23 30— {Pa) — (1- P+ (Pe)—P@)}]
'_E(Rk) {1 + E(Rk)}

5. Application to the binomial distribution

In this section we shall illustrate an application of the order statis-
tics considered in the preceeding sections for binomial case. Let v,
(t=1, 2, -+, k) be the observed number of occurrences of a certain
event in the ith succession of N trials, where N is fixed for each suc-
cession, and let p, (¢=1, 2, ---, k) be the probability of the event in
the ith experiment. In order to test the homogeneity of k£ experiments,
that is, to test the hypothesis that

(28) H; poy=pe="+-"=pw (=p, say),
we can use the range defined by
(29) R(N, p)=vi—»,

where v; and v, are the largest and the smallest values of % observa-
tions, respectively. Suppose that we are in the situation that the con-
ditions for applying the normal approximation formulas are not fulfilled
but NE is large enough for the estimate of p, to be taken for the true
value under the hypothesis H, that is,

(80) ®=u(1) + v(z)l-\{]—l‘; . e YO ~ p.

Then, from (15), we can evaluate the probability
(31) Pr{Rlc(N; p) = rk} = U(’rk; k, N, p)

where 7, is the observed value of the range in a specified comparison.
~ This value of probability is compared with the significance level a:
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if U(ri; k, N, p) <a, the hypothesis H is rejected on the 1009 level
and otherwise accepted.

For numerical example, we have the following data, which are
obtained in tasting wine. Each of k=8 brands is tasted by N=17
judges and each judge makes decision whether or not the wine tasted

i | 1] o2 3 4| 5 6| 7| s

m,‘14}12}6'13)13i15 8\13

is classified in the 1st class of quality. »(, is the number of the judgé-
ment of the 1st class of quality. Then we have

ry=156—6=9,

14+12+---+13
~ =0.69.
P 8x 17

U@9; 8, 17, 0.69)=U(9; 8, 17, 0.31)=0.02793 ,

hence the hypothesis of homogeneity is rejected on the 59 level of
significance. The mean and variance of R; (17, 0.69) are -calculated,
from the formulas (20) and (21), as
E{R,17, 0.69)} =E{Ry17, 0.831)} =5.3531,
D*{Ry(17, 0.69)} =D*{Ry(17, 0.31)} =2.4291 .
This means that our observed value of the range, 9, is deviated from
the mean value, 5.3531, by 2.98 times the standard deviation, 1.5586.
By a simple inspection of our data, it can be seen that the hetero-
geneity is caused by the difference between two groups.
G: vor=14, ve»y=12, vy»,=13, v»=18, ve=15, vx=13,
ng 1«’(3)=6, V(7)=8.
In fact, if we carry out the same procedure as before as to each

group, the hypothesis of homogeneity is accepted. Moreover, since G,
can now be grouped into a single sample from a population with the

parameter p;, we can test the null hypothesis that pl=% against the
alternative hypothesis that p, > %— (assuming that the brand with p > —;—

is classified into the 1st class of quality) by the usual test procedure
based on the normal approximation. The similar argument is made for
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the group G,.

When the alternative to the homogeneity is that one of the numbers
v Substantially exceeds the expected values of the others, which may
be homogeneous or not, the test procedure based on the range, though
applicable, seems not suitable. In this situation, we shall use the
largest value »,. Since, for the binomial case,

max {N—v, N—y@, +++, N=yg}=N—min{vay, vey, ***, v}

there is no need of considering the test based on the smallest value, v,.
Let us consider the case when Nk is sufficiently large as in the
previous case when the range is used. Then, under the hypothesis of

the homogeneity to be tested, H: poyy=puy="+++=pu)=p, we have
~ A=V(1)+V(2)+ e+ Y() =£
p="r Nk N

o’=Np(1—p) =~ Np(1—p)=5"

where ¢* is the common variance of v, under H. In this case, the
test based on the statistic (v,—Np)/6 ~ (»;,—Np)/s is equivalent to the
test based on the »; only. Thus, if we denote the observed value of »,
in a specified comparison by »¥, we can evaluate the probability

(32) P.{y, > v¥} =W(¥; k, N, p)

from the formula (5-a) or (5-b) for fixed values of %k, N and p.
If W(.¥: k, N, p)<a, the hypothesis H is rejected on the 100a 9 level
and otherwise accepted, where « is the prescribed level of significance.
For the data:

vay=9, v»=10, v5=15, vy=9
N=16
we have

9+10+15+9
¥—15, p~ I+10+15+49 4 o
“ P 16 x4 67

w(15; 4, 16, 0.67)=0.05730
hence we accept the hypothesis H on the 595 level
In order to give the convenience to the practical testing for the

binomial case, the author and Mr. T. Huziwara are now preparing the
the tables of U(r:; k, N, p), W(i; k, N,p), E{R.(N, p)} and D*{R,(N; p)},
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and we shall publish them in the near future.
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