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1. Introduction

The classification problem arises very often in our daily life, and
thus far various methods have been presented for it (see [1], [2], [3],
[4], [6]). It, however, seems that most of them have laid some as-
sumptions, for instance, normality, on the functional form of distributions
concerned and that the success rate has not been given except in a few
cases such as when the distributions are completely specified (see [2],
[6], [6]). In this paper we shall give a decision rule for this problem
and a lower bound for its success rate when the distributions concerned
are not specified. The rule we give here is very simple and the sue-
cess rate tends to 1 as sizes of samples become large. The treatment by
a linear combination in multivariate case will be also referred to.

Throughout the present paper, we shall consider only discrete
distributions with a finite number of possible outcomes as in the previous
papers [7], [8], [9], and our treatment is based on the following inequality
or equality :

for any positive number 7

(1) PF-S,>n<k=1 o BEE=1 G>o nsp
ny* (n?)?

or

(2) P(|F—S,>7) = Pty > 4n7")

where F' denotes the distribution of the discrete random variable under
consideration, S, the empirical distribution for = observations on the
variable, k¥ the number of values the variable takes on, and y%_,, a
random variable which has y*-distribution with £—1 degrees of freedom.
The idea is just the same with which we have treated the two sample
problem in [7], [8].

Our rule is always applicable with any distance which has a property
like (1) or (2), though in this paper use is made only of distance | |.
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2. Properties of distance | || and affinity

In connection with distance | ||, we have previously defined the
affinity between two distributions, that is, for two distributions F'={p;} ,
G={q}, (i=1,2, -+, k) defined on the same space, R, we have defined
the affinity as follows :

oE, G)= S Vb Vg
while .
IF-GF= 3 /5 —Va,)

Between |[F'—G| and p it holds that

(3) |F—GF=2(1—p)
and
(4) IF-GF< 3 Ip—al <2V I—F <21F—G|

According to (3), p serves for the calculation of the distance and the
computation of p is very simple. Further, from (4) it follows that for
any subset of R, E,

(5) |F(E)—-G(E)|<2V1—p* <2|F-G|

Therefore, when |F'—G/| is small, consequently, p is large, the difference
of probabilities defined by F and G is very small. For example, when
p=0.9998, that is, |FF—G|=0.02, we have always

|F(E)—G(E)|<0.03999.
Now, let X and Y be random variables with F and G, and S,.={m}
n
and S;n={%} the empirical distributions based on the observations on

X and Y, respectively. Then we have:
when F=G,

—S, - y>1-7
PIS,~Sul<7)=P(p(S,, S)>1-T1)

21PN )
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or
40 +k=1)(1, 1Y, 160k +k—1y
21 - L )+
or
= P(Xt-<<19*) P(Ye-1y <m7")

where -1, is a random variable having y*-distribution with £—1 degrees
of freedom,
and when |F—-G|=6,(>7),

—Sal> )= <1-7
P(IS,=Sul>7)=P(e(S,, Su) <1-T )

Ck—1/1 _ 1Y
=1 (so_w\l/?{*v;,;)

or
Ale+k—1)1 | 1\, 16(2+k—1)
12— 2 4 2 )2 TR
= (6—7) (n’+m“ (0o—7n)*w’m?
or

= P(Yte-1 <<7(30— 7)) P -1, < M8y — 7))

(see [7], [9]). These relations will serve for study of the probabilistic
behaviour of affinity.

3. Decision rule

Given two independent discrete random variables, X, Y, we want
to decide whether the third variable Z has the same distribution as that
of X or that of Y, provided that either of them holds. Let ¥ and G
be the distributions of X and Y, and S,, S, , S, the empirical distri-
butions based on observations X, Y and Z, respectively, where n, m, I
mean the numbers of observations. Then our rule is :

When |S,—S/|<Z\S.—S’ ||, decide that Z has F,
and when |S,—S"|>|S,.—S/|, decide that Z has G,

which is also expressed as:

When oS, , S;)=p(Sn,S;), decide that Z has F,
and when o(S,,S;)<p(S,,S), decide that Z has G .

This rule can easily be extended to the case of several random
variables. That is, when there are several random variables under
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consideration, say, X, X,, X,, ---, X;, and when we want to decide
which is the one among X,, X,, ---, X,, whose distribution X is
considered to have, make decision according to the distances HS"—SE}I)“ .
IS,,—Sﬁ.’;“ s oo 1S =820 namely, when HS,,—-Sﬁfl’“ is the minimum among
1S, =820, 1S, =820 5 «++, 1S, =S, then decide that X has the same
distribution as that of X;,, where S,, Sf,‘l’ , *ty .S’S,:) mean the empirieal
distributions of X, X,, ---, X,, respectively. Of course, we assume
here that the distribution of X is the same as one of the distributions
of Xi, X, -+, X,. \

As is seen, our rule is very simple. The problem is how to evaluate
the success rate. In the following we shall deal with this problem.

4, Evaluation of success rate I (Case of many observations)

In order to discuss the success rate of our rule, it is sufficient to
treat the simplest case where only three variables, X, Y, Z, are con-
cerned. Further, in this section we shall treat the case where a lot of
observations on Z as well as on X and Y are available.

Let E,, E,, ---, E, (k=2) be the values the variables take on.

Then F, G, S,,, S, are respectively represented by, say, {».}, {¢.}, {%},

{—m—‘—}, {%} (9=1,2, ---, k). We assume here that a lower bound for

m
|FF—G|, d, is known. Then it holds:
When Z has distribution F, we have
' ’ ' 16(k—1) 16(k—1) 16(k—1)
— — >(1- —- —
(S, —S71<IS. - 87 = (1- EEZD) (o ISE=D)(; 166D

2

for m, m, l greater than 16(’;7;—1) , and

P(IS, =S/ 1=1S» =S

2(1_16(72;; I;— 1))(1_16(1(‘:;-;5;2— 1))(1_16(k(’l-:z—2;c2—- 1))

for m, m, 1 greater than ﬂ/kz_“i*;k;l_ and k, and

P(IS,~ S/ <ISw-S1)
22 P(Yion <t L)P (i <AmE) P (s <a1T)
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Jfor sufficiently large n, m, I, where Y%._,, denotes a random variable having
y-distribution with k—1 degrees of freedom.

ProOOF: First we have:
1S, = SN<IS.—F| + S/ = F,
1Sn —SUIZIF -Gl = IS0 =Gl =S/ = FI .
From this it follows that
18 =S/ = 1S, = SII=NF =Gl =S, — F| - 2|8/ = F| - |Sn — G|l
| >d~18,~Fl-2IS/ ~FI -1, Gl
Therefore, when |S,—F| +2||S;’—F| +|S. —G| is less than d, we have
1Sn =S/ 1= 18, -8 | =d—d=0,
that is, ‘
1S =S =18, =S| -
Thus we have

(IS, ~ S/ I<ISa =S/ N ZP(S,—FI +21S; ~ F| + S, ~ 61 <d)
‘ d yor_ g8 1o @
=P(18.-FI<% 157 -FI<Z 18, -61< %)
—p(18,-Fl< & _Fl< S - —Gl<
—P(15,—FI<2)P(157 - FI< L) P(1S. - 61< %)

(-2 )

for n, m, [ greater than

——16(12: 1) , and

() )

for n, I, m greater than é]ék‘;—_zk—_l and %k, and

. 2 a? " d:
:?Pr(xgk-l) < 4”'{1—6 )Pr(x?k-n < 4l]§ )Pr(X(k-—n <4m—1§ )

for sufficiently large n, I, m.
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According to this fact, it can be seen that our rule has success rate
not less than

(1_ 16(k—1) )(1_ 16(k— 1))(1_ 16(k— 1))

nd? md? ld?
or .
_16(B+k—1)\(y 1602 +k—1)\/y _16(k*+k—1)
(1 (nd’y )(1 (md?)? (1 ) )
or

p (X%k—1><4n%)P (ka-u<4m'l%)P (X%k—1)<4lli;) .

These values shows that the success rate of our rule tends to 1 as the
numbers of observations become larger and larger.

5. Evaluation of success rate II (Case of a single observation)

Now consider the case where we have to make decision based on only
one observation on Z. In this case we can consider the success rate of our

rule as not less than min (Z'IE , Z’zﬂ)—v with probability equal to or
n m

greater than ( 1— kn;zl)(l - I‘fm;vzl) or (1 - (E';T—];:l))(l - %) or

P(Ye-1y < An5*) P(i-1y < Am7*) , where the summation 3, runs over such i's

that &_z_ﬂ, and 3, runs over such j's that n—’<ﬂ, and 7 18 a
n- m n m

positive number less than le— .

For
P(IS.,—FI<7, 1S = Gl<n)=P(|S,— F| <) P(IS. - G| <7)
2(1_10—1)( _k;l) or (1_k2+k—1)(1_lc’+k—1)

= nv? mv2 n274 m274

or
= P(xte-1y < A" )P (-1, < 4m7°) ,

that is, it holds with probability equal to or greater than (l—kn_zl)
7

(15D or (1-EEE=) (1 LD or Pty <tnp )Py <tom)

that |S,—F|<7 and |S,—G|<7.
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Let P(E,:F) and P(E,;:G) denote the probabilities of E; by F' and

G, respectively. In [5], [6], we presented the decision rule which

decides that Z has F when the observation on Z falls into the set

&={E,; H(E,:F)>P(E,:G)} , and that Z has G otherwise. This rule

has the success rate not less than min( X P(E,:F), >, P(E;:G)). Our
5,6 5,6

present rule is a modification of this one. We use here the empirical
distribution instead of the true distribution there.
As to the distance |S,—S;|, when the observation on Z falls on

Ei 1 we llaie
“Sn Sl “ 2(1 — ]

I1Su— S 1=2(1- )/ )

m

where n, and m; mean the numbers of FE; in the previous observations
on X and Y, respectively. Therefore,

1S, —STI<Sn =87
means

M S My
n m

Thus our rule is equivalent to the rule:
Decide that Z has F when the observation value on Z falls

in the set 6’={Et; ﬂg_’l‘i} and that Z has G otherwise.
n- m)

Hence, the rule has the success rate min (P(@’:F), P((@’)":G)), where
(8’)° means the complement of &' .

Now, from |S,—F|<7 and |S, —G|<7, it follows that
|P©&:F)-PE'":8S,)<27,
|P(&":G)—P(&':5,)<27,
|P(&): G)—P(&')°:8,)I<27 .

Consequently,
P& :F)=P®':G)—47,
P(©:F)=F®':S,)-27,
P(©):GQ) =P(&'):8n)—27 .
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Therefore, our rule has the succesé rate not less than min (P(@’; S.),
P((@’)”;S,,))—Zv, when |S,—F||<» and ||S,,—G|<7», and we can say

as mentioned in the beginning of this section.

6. Treatment by linear combination

In some cases where the random variables under consideration take
vector values a linear combination of the components of the vector
value is considered rather than the vector value itself. However, this
can not always be recommended. In this section, we shall give some
explanation about these circumstances.

Let
ay (% (2751
(17% Az L)
. ’ . ’ b :
TS Aoy (/™
X, Y,
be the vector values the random variables X’ , I.,’ take on with
probabilities (p,, p., *++, v) and (&, @, ***, @), and represent
ay
generally those vector values by @ For a set of numbers

a;
(a;, atz, -+, a,) we consider linear combinations
X=a X t+a.X,+- - +a,X,,
Y=a1Y1 +a2Y2+ e +C¥tY,; .

These quantities take the values a,a,+ a,a,+ -« +a,a,. When we want
to treat the classification problem employing these X, Y, we evidently
should choose («;, «,, -+, «,) such that the distributions of X and Y lies
apart from each other as much as possible. For this, when »,, 0,, +*+, D:,
@i, @25 ***, ¢, are known, we classify I={1, 2, ---, k} into subgroups
L={in,tn, ==, 0w}, ==+, Li={i, &, -+, 4} such that the affinity

. —
pi= > PIT RTEDIN
€7,

J=1 lte
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attains its minimum value. Then, from a system of linear equations
oty 1t oo s H Q0 =00yt e+,
e =alaiﬂc,1+ ces +aca‘.’kj‘
(=1,2,-+-,9)

we can find a system («,, «,, -+, @,;) suitable for the above purpose.

With each value a=a,++-- +a,a, for (a,, a,, -+, a;) thus ob-
tained are associated probabilities defined by {p,} and {g;}, that is, to
a=a,a,+ -+ +a,a, with a,=a, sttty @g=04,, are given %‘,jp, and ‘EZIJ Q.
We put

E,= {a; P(a: {p.}) = P(a: {a})} ,
E,={a; P(a: {p}) <P(a:{g:})}
where P(a:{p;}) and P(a:{q;}) denote probabitities of a defined by {p;}

Al
and {q¢,}, respectively. Then, for an observed system of values 7 ” on
o)
A
the third variable Z=| % |, which has (5, 7., *++, B OF (@1, @, -++ @)
Z,

as its distribution, we calculate z=a,2,+ --- +a,z, and decide that Z has
the distribution (p,, »., --+, »,) when 2z falls in El‘ and that Z has
(@, & * -+, @) otherwise. The success rate of this procedure is not
less than 1—p, . '

The above-mentioned method to determine («,, a,, --- «;) depends
on the values of (p,, 0., ++-, ») and (@1, @, *++, ¢), but when
(p1y D2y =+, D) and (¢y, @25 *++, qx) are not known, we make use of the

X1 Yl
empirical distributions on X’ and Y” instead of them and proceed

as mentioned before (sections 4, 5).
Another method to determine («,, a,, -+, a;) is to make |E(X—-Y)]|

=]| gai(E(Xi)—E(Yi))l as large as possible and at the same time
D(X—Y)= iz‘la:(pﬂ(x,npﬁ(n)) as small as possible, for example, to
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|[E(X—Y)|
D(X-Y)
the distributions of X and Y as much as possible.

maximize (see [4]). This means in a sense setting apart

Now, for X and Y with any system («;, a,, ---, @,), we generally
have

PX, Y)Zp= S VP VG,

as is easily seen. This implies that it can not always be recommended
to consider the problem by taking linear combinations of the components
of the vector variables concerned.™ Of course, the situation may be
different, when the precision of estimation of the distributions is much
raised by taking the linear combinations, as in the case when the distri-
bution of a linear combination approaches a Gaussian distribution. How-
ever, in the discrete case, this seldom takes place for the number of the
components which is not so large.

7. Parametric case

Thus far we have considered the case where the distributions
under consideration are completely unknown. In this section we shall
treat the case where some parameters of the distributions are unkown,
while their functional forms are known.

Let F(x; 6,) and G(z; 6,) be the distributions of X and Y, respectively,
and assume 6, and 6, (generally vectors) are unknown. First, we estimate
6, and 6, by minimizing |F—S,| and |G—S,|. Denote the estimates

thus obtained by 6, and (72, and F and G with 4, é, replacing ¢,, 64,
by F,, and G, ,, respectively. Then we have

P(|F, ,— S, |<7)=>1— "n';} or 1-K+k=1

n2v4
or
=P(Yt-,<4n7*) when n is sufficiently large
and
P(IG, = Spl<p)z1-£=L op 1 KHE—1
my my
or

=P (Y&-,<<4m7n*) when m is sufficiently large.

*) Note that we consider here the classification problem, not the mere ordering
of vector values.
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(see [7], [9].) Now, put
T={E; Fe,n(Et)ch,m(El)}

and our rule is equivalent to: ‘
Decide that Z has F when S, lies in T, and that Z has G otherwise.

As for the success rate of this rule we can say with probability not

less than ( - -’%:721)(1 - ’;—n_ifl) or (1 _¥ ;f; 4_ 1 )(1 _¥ :;;;:’ 1 , Or asymp-

totically equal to P(x%-1,<4n7*)P((k-1,<4m7?), that it is not less than
min (P(T: F,,), P(T°:G. .)—27.

Concerning the estimation of the parameters, we can employ the
y-minimum method instead of minimum | | method, when F(E;:0,) and
G(E,: 6,) have a positive lower bound for possible values of 4, and 6, .
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