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1. Introduction

It happens often that we have to treat the sampling error of a
determinant, all elements of which are submitted to measurement error
or sampling error. In this paper we shall consider the evaluation of
the maximum variance of a determinant under a certain condition.

2. Main results.

Let X=|x;| be a determinant of %-th order, and ;, the (¢, j)-ele-
ment. We assume that the following conditions are satisfied.

Condition (A): .

(i) @, are independent random variables with non-negative real
values,

(ii) the expectation and the variance of x;, are respectively
E(x,)=ay;,
D(x;)=0t,=0" for all 4, j,
(iii)  max(a;)=M and m‘u} (a,)=m.
i J ,
The condition (i) is only for the sake of simplicity, but in general we

shall be able to get a smaller bound of the sampling error of X (see § 3).
Expanding X we have

X=735gn () @y Tusy ** Ty (1)
where ‘sgn (¢)’ means + or — according to whether the permutation
(’}1’&2; fk) is even or odd.

Now, as for the expectation of X, we have

EX)=Xsgn () ay *- au,=|a, (2)

and as for the variance of X we have
D(X)=EX)—{EX)}* (3)

where
X=X al, -, +2335 sgn(t)SgN(J)Tu,, * * Tur, Ty, ** Ty, (4)
i<y ,

i
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The computation in taking the expectation of the second term of 4) is
somewhat complicated. We calculate it in several steps as follows.

At first we introduce the notation g‘ g" P ":] which means the

* G
product of two permutations (1 2 -k ) and ( ) Further
D1 Dy Dy 1 Q2 O

DDt Dy DD, - pk]
[:pl q: ** Qx :' is denoted by [ Qe ** Qe

12 8 4 12314
For example, [ 34 2:] means [1 34 2:|.

With these notations we can express the equation (4) for k=3 as
follows.

X=[1223]+[ 223 1] +[F 12 2] +[ 123 2] +[ 20 1> 3] +[ 32 22 17]
AR I T T
BIRE PR DA B B
BHMED g

From this equation (5) we have

E(X*)=>(a}+ *)(a3, +*) (a3 + 0%) — 235(a; + 0°) Ay Gss s
+ 230110150050y

Thus, in order to evaluate D*(X), we need only to calculate the number of

terms with the type [p 1P ":I. Let us say that a permutation (1 2 .- k)
G D1 Dz * Dy

has a different type from (1 2 -- k) when p,4q, for all 4.
Q1 Q2 Qx
LEmMMmA 1. Suppose n(=2) different numbers «,, «,, --, a, are
given. For a fixed even (0dd) permutation, we denote f(n) the number
of even (odd) permutations with different type from that fixed permuta-
tion. Similarly, we donote g(n) the number of odd (even) permutation
with different type from that fixed permutation. Then we have

fo)=(n=1){g(n—1)+g(n—2)}, n=2 (6)

PrROOF. For small n we can easily prove this relation by the re-
presentation of cycles.

For example, when n=38, we have f(3)=2, g(3)=0.
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Even permutation Reg;esce;lctlztsion 0dd permutation Ret;:;eieyr‘x:tlz;tsion
123 . . 12
123 123
(231) az3 (152) 23
123 \ | 123
(312) | 132 | (521) @3

When we fix the permutation G g :;), then even permutations of dif-
123

ferent types from that permutation are G g g) and <3 1 1), because

E g :ﬂ and |:§ ? %] have different type from each other. But the odd
231

. . 231 231
permutation does not exist, because 21 3], I:l 3 2] and 321

not different as they have the same element 2’, 3° and 17, respectively.
Similarly, we have the following table.

are

n 2 ' 3 ’ 4 5 | 6 | 7 | 8
‘ \
|
‘ \ | |
@) o 2 | 3 2 130 i 930 \ 7413
: 1 =
i
g(m) 1 0 E 6 20 13 k 924 \ 7420
| i

In order to prove (6) for the general case we use the mathematical
induction.

Suppose we have proved (6) for n not greater than n,.
have

Then we

fm)=(n—1){g(n—1)+g(n—2)} for n=<n,

At first we represent every permutation by means of cycles. In order
If this
.+, ), then the
number of new permutations such as (o, @pys1y A2y **, @)y (s Ay Ay
.., a), ete. is n.
-+ (Qpy-1» An,) We have mnew my permutations (;, Q41 @) (@, Q) -+
(@ny-17 Ang)s (@, @, i) (s Q) «(@py-1y Oyy), €tC.

Thus we can always make the new permutations of order n,+1 from
g(n,) permutations of order 7, and in consequence we have n,9(n,) per-

to compute f (n,+1) we pick up anyone of g (%) permutations.
permutation is represented by the cycle (a;, a,

Similarly, in the case of the cycle (a;, @) (a3, @)
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mutations. Besides of these new permutations we can make new per-
mutations of order =n,+1, which do not coincide with those derived
from g(n,) permutations of order =, from g (n,—1) permutations of
order n,—1.

For example we get n, new permutations («,, a,,- -, Qpy-1) (Angs A1)y
(Hngy Ay + 2y An-i) (A1, Apyea), =+, and (@, a,, --, gy A)) (A1 Ang)
which are not found in the previous construction. Similarly, from

(a, @) (@5, Ay ++ (Apy-sy Xy-) We get new n, permutations (a,, a,)
(a5, @) <= (Anpmzy Cnym1) (Unpy Anger)y (Ayy ) (s, @) + o (Apymzy Unyp-1)
(1) Anger), (a1, An) (A, @) =+ (Apyosy Uppm)) (Azy Agysr), =+, and (a, Q)
(a37 a) .- (-2 ano) (Ang-15 Angs1)-

Thus we have in general
S(no+1)=n,{g(n) +g(n,—1)}

which proves our lemma 1.

n Type of cycles in fm) |  Type of cycles in gn)
permutations permutations
3 (123) —
4 12)34) (1234)
|

5 (12345) (12)(345)

6 (12)(3456) (123456)
(123)(456) (12)(34)(56)

7 (1234567) (12)(34567)
(12)(34)(567) (123)(4567)
(12)(345678) 12345678)

e azsseery) (psicery
e (12)(345)(678)

LEMMA 1'. It holds that for n>2
g(r)=m—-1){f(n—1)+f(n—2)} (7)

LEMMA 2. We have

1 1 1 1 ~
g(n)=nPn-2(?!‘_~*3—!‘+"Z!_'-"im)! fOl' né4 (8)
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where ,P,_, is the number of permutations of n—2 numbers taken out
of » numbers at a time, and sign + holds for even =, sign — holds
for odd =.

PrOOF. From lemmas 1 and 1’ we get
g(n)=mn—-1)(n—2){g(n—2) +g(rn—3)} +(n—1)(n—3) {g(n—3) +g(n—4)}

Applying the mathematical induction we can easily prove the lemma.

LEMMA 3. It holds that for n>2
o) +( 1) 001 +(3 )90=2+ - +(, " 5)9@=aPass  (9)

PRrROOF. Inserting the equation g¢(n) of lemma 2 into the left side
of the equation (9) we can prove this lemma.
Now we can prove that following theorem.

THEOREM. Under the condition (A) we have

MaXD’(X)=k!{a”“+kaz""‘”M2+kPn—a§ (kz(g)-),(M"— ")} (10)

ProoF. Expanding X* in terms of type [Z‘ 2"], we have
1 k

2 2
Xi= I: 2.2, . z:l [plpg"pk-z pk-lpk]
> pipe - pi |+ 2 Ter e

DID) * * Dims Di-3 P2 Pr—1 pk]
+
Z|: Q-3 Q-2 Qx-1 9x

Di D, Ds* * Vi Dy s * 1
et T[ q: 95 - :I @ - ] )

Then we obtain
E(X)= Z(au», +0) (@i, + %) -+ (@ip, +07)
+ Z(a1,1+a")’ (@2, 5y, F0) Oxor, o D1, 0, Ok, 3, Tk, g
Feee ek Dy Qig, Gopy Gog,* *i, o, B, a,, 12)
Putting a,, equal to m for negative terms and M for positive terms,

we have the upper bound of D*(X):

max DX(X)=Fk!{o* +c, a’("-”M‘+Zc o (M —m¥)} (say)  (13)

T=2
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From the equation (12) we have easily
=k (14)
and for r=>2

cr=g(r)(kf,.) +g.(r—1)(k_l;f+ 1)(k—{+ 1) +9(T“2)<k—¢+2>(k_§+ 2)
Foeees +9(2)(kf2) f:g)

~(i" ) 00+ (1) se=+(5 o=+ +(,7,) 0@}

From lemma 8 we get

k P,
= PT‘ = kT k-2
o= ’(k—r) (k—m)!
Thus we have proved the theorem.

3. Comparison with other result and some remark.
1. If we calculate the measuring error by Hadamard’s theorem,
we have

|6.X| < 8kP(k— 1) %012 M1 5 15

where |6X| denotes the absolute value of the error of X derived from
the error 3¢ of =z, (see [1]). For M=10s, m=3s, for instance, we
have from (15)

|maximum error|=3-10%""-F*(k—1)*-V"5* 15)

Comparing this bound and 3v/'max D*(X) for k=3, 4, ----, 10, we have
the following table.

k H?fg‘;'/fﬁrd 3y/max D(X)/o*
3 5400 1274.0
4 2.494 X 105 5.102 x 104
5 1.200 x 107 2.552 x 10°
10 5.905 x 1015 7.717 % 1015

2. The estimation of the upper bound of the error in our theorem
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is very crude. But in usual calculation we shall get smaller bound
than that. For in the equation (13) the term o**-" (M* —m®) comes

from E(w;, @1, o, @, p, @y, o) —E (@15, Trgy ** Trp Trjgy). On the average
we have approximately
eE (2, 2, %10, T, p, qur)=6(a1pl Qrq,° 'a'r,q,.)=A2r

where A, denotes the expected value of the product of different 2r
factors of a,, sampled from all a,;. Therefore the principal part of (10)

on the average is reduced to
k! o™ + ka*®-V M?} 17

k 31/ max eD*(X)/s*
3 127.5
4 294.3
5 735.6
10 1.808 x 105

3. Under the condition (B) that the random variables a,, are not
always non-negative, we shall get the equation (17) as the principal
part of the upper bound of I*(X) by the similar procedure as that in
2.

4. In problems of quantification we cannot get the exact formulas
of sampling errors, but we can estimate the upper bounds of errors of
order 1/1/n by this theorem. As for the details refer to the author’s
paper [1].
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